1
|
Wang Y, Gao M, Zhu S, Li Z, Zhang T, Jiang Y, Zhu L, Zhan X. Glycerol-driven adaptive evolution for the production of low-molecular-weight Welan gum: Characterization and activity evaluation. Carbohydr Polym 2024; 339:122292. [PMID: 38823937 DOI: 10.1016/j.carbpol.2024.122292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Zhu
- A & F Biotech. Ltd., Burnaby, BC V5A3P6, Canada
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jia L, Li T, Wang R, Ma M, Yang Z. Enhancing docosahexaenoic acid production from Schizochytrium sp. by using waste Pichia pastoris as nitrogen source based on two-stage feeding control. BIORESOURCE TECHNOLOGY 2024; 403:130891. [PMID: 38788808 DOI: 10.1016/j.biortech.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.
Collapse
Affiliation(s)
- Luqiang Jia
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| | - Tianyi Li
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Ruoyu Wang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Mengyao Ma
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| |
Collapse
|
3
|
Zhang ZX, Xu YS, Li ZJ, Xu LW, Ma W, Li YF, Guo DS, Sun XM, Huang H. Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids. Biotechnol Adv 2024; 73:108354. [PMID: 38588906 DOI: 10.1016/j.biotechadv.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Feng Li
- Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Jia YL, Zhang Y, Xu LW, Zhang ZX, Xu YS, Ma W, Gu Y, Sun XM. Enhanced fatty acid storage combined with the multi-factor optimization of fermentation for high-level production of docosahexaenoic acid in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2024; 398:130532. [PMID: 38447618 DOI: 10.1016/j.biortech.2024.130532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Schizochytrium sp. hasreceived much attention for itsability to synthesize and accumulate high-level docosahexaenoic acid (DHA), which can reach nearly 40 % of total fatty acids. In this study, the titer of DHA in Schizochytrium sp. was successfully improved by enhancing DHA storage through overexpressing the diacylglycerol acyltransferase (ScDGAT2C) gene, as well as optimizing the supply of precursors and cofactors required for DHA synthesis by response surface methodology. Notably, malic acid, citric acid, and biotin showed synergistic and time-dependent effects on DHA accumulation. The maximum lipid and DHA titers of the engineered Schizochytrium sp. strain reached 84.28 ± 1.02 g/L and 42.23 ± 0.69 g/L, respectively, with the optimal concentration combination (1.62 g/L malic acid + 0.37 g/L citric acid + 8.28 mg/L biotin) were added 48 h after inoculation. This study provides an effective strategy for improving lipid and DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China.
| |
Collapse
|
5
|
Zhang ZX, Xu LW, Xu YS, Li J, Ma W, Sun XM, Huang H. Integration of genetic engineering and multi-factor fermentation optimization for co-production of carotenoid and DHA in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2024; 394:130250. [PMID: 38154734 DOI: 10.1016/j.biortech.2023.130250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Schizochytrium sp., a microalga with high lipid content, holds the potential for co-producing docosahexaenoic acid (DHA) and carotenoids. In this study, the ability of Schizochytrium sp. to naturally produce carotenoids was systematically explored. Further, by enhancing the precursor supply of geranylgeranyl diphosphate, regulating carbon source through sugar limitation fermentation and employing a combination of response surface methodology and artificial neural networks to precisely optimize nitrogen sources, a new record of 43-fold increase in β-carotene titer was achieved in the 5L bioreactor (653.2 mg/L). Meanwhile, a high DHA content was maintained (13.4 g/L). Furthermore, the use of corn stover hydrolysate has effectively lowered the production costs of carotenoid and DHA while sustaining elevated production levels (with total carotenoid titer and DHA titer reached 502.0 mg/L and 13.2 g/L, respectively). This study offers an efficient and cost-effective method for the co-production of carotenoid and DHA in Schizochytrium sp..
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| |
Collapse
|
6
|
Xu H, Yin T, Wei B, Su M, Liang H. Turning waste into treasure: Biosynthesis of value-added 2-O-α-glucosyl glycerol and d-allulose from waste cane molasses through an in vitro synthetic biology platform. BIORESOURCE TECHNOLOGY 2024; 391:129982. [PMID: 37926357 DOI: 10.1016/j.biortech.2023.129982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The efficient and economical conversion of agricultural waste into glycosides and rare sugars is challenging. Herein, an in vitro synthetic bienzyme system consisting of sucrose phosphorylase and d-allulose 3-epimerase was constructed to produce 2-O-α-glucosyl glycerol and d-allulose from cane molasses. Lactic acid in the cane molasses significantly induced sucrose phosphorylase to hydrolyze sucrose instead of glycosylation. Notably, lactic acid significantly inhibited the catalytic performance of d-allulose 3-epimerase only in the presence of Na+ and K+, with an inhibition rate of 75%. After removing lactic acid and metal ions, 116 g/L 2-O-α-glucosyl glycerol and 51 g/L d-allulose were synthesized from 500 mM sucrose in the treated cane molasses with a sucrose consumption rate of 97%. Our findings offer an economically efficient and environmentally friendly pathway for the industrial production of glycosides and rare sugars from food industry waste.
Collapse
Affiliation(s)
- Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Taian Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, PR China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
8
|
Ma W, Li J, Yang WQ, Zhang ZY, Yan CX, Huang PW, Sun XM. Efficient Biosynthesis of Odd-Chain Fatty Acids via Regulating the Supply and Consumption of Propionyl-CoA in Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37326390 DOI: 10.1021/acs.jafc.3c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odd chain fatty acids (OCFAs) are high-value-added compounds with great application in the field of food and medicine. As an oleaginous microorganism, Schizochytrium sp. has the potential to produce OCFAs efficiently. Propionyl-CoA is used as a precursor to synthesize OCFAs through the fatty acid synthetase (FAS) pathway, so its flow direction determines the yield of OCFAs. Here, different substrates were assessed to promote propionyl-CoA supply for OCFA accumulation. Moreover, the methylmalonyl-CoA mutase (MCM) was identified as the key gene responsible for propionyl-CoA consumption, which promotes the propionyl-CoA to enter into the tricarboxylic acid cycle rather than the FAS pathway. As one of the classic B12-dependent enzymes, the activity of MCM can be inhibited in the absence of B12. As expected, the OCFA accumulation was greatly increased. However, the removal of B12 caused growth limitation. Furthermore, the MCM was knocked out to block the consumption of propionyl-CoA and to maintain cell growth; results showed that the engineered strain achieved the OCFAs titer of 2.82 g/L, which is 5.76-fold that of wild type. Last, a fed-batch co-feeding strategy was developed, resulting in the highest reported OCFAs titer of 6.82 g/L. This study provides guidance for the microbial production of OCFAs.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Zi-Yi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|