1
|
Ale Enriquez F, Ahring BK. Ex-situ single-culture biomethanation operated in trickle-bed configuration: Microbial H 2 kinetics and stoichiometry for biogas conversion into renewable natural gas. BIORESOURCE TECHNOLOGY 2024; 411:131330. [PMID: 39182797 DOI: 10.1016/j.biortech.2024.131330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Biomethanation converts carbon dioxide (CO2) emissions into renewable natural gas (RNG) using mixed microbial cultures enriched with hydrogenotrophic archaea. This study examines the performance of a single methanogenic archaeon converting biogas with added hydrogen (H2) into methane (CH4) using a trickle-bed bioreactor with enhanced gas-liquid mass transport. The process in continuous operation followed the theoretical reaction of hydrogenotrophic methanogenesis (CO2 + 4 H2 → CH4 + 2 H2O), producing RNG with over 99 % CH4 and more than 0.9 H2 conversion efficiency. The Monod constants of H2 uptake were experimentally determined using kinetic modelling. Also, a dimensionless parameter was used to quantify the ratio between the H2 mass transfer rate and the maximum attainable H2 consumption rate. Single-culture biomethanation averts the formation of secondary metabolites and bicarbonate buffer interferences, resulting in lower demands for H2 than mixed-culture biomethanation.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
2
|
Deutzmann JS, Callander G, Spormann AM. Improved reactor design enables productivity of microbial electrosynthesis on par with classical biotechnology. BIORESOURCE TECHNOLOGY 2024:131733. [PMID: 39486654 DOI: 10.1016/j.biortech.2024.131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Microbial electrosynthesis (MES) converts (renewable) electrical energy into CO2-derived chemicals including fuels. To achieve commercial viability of this process, improvements in production rate, energy efficiency, and product titer are imperative. Employing a compact plate reactor with zero gap anode configuration and NiMo-plated reticulated vitreous carbon cathodes substantially improved electrosynthesis rates of methane and acetic acid. Electromethanogenesis rates exceeded 10 L Lcatholyte-1 d-1 using an undefined mixed culture. Continuous thermophilic MES by Thermoanaerobacter kivui produced acetic acid at a rate of up to 3.5 g Lcatholyte-1 h-1 at a titer of 14 g/L, surpassing continuous gas fermentation without biomass retention and on par with glucose fermentation by T. kivui in chemostats. Coulombic efficiencies reached 80 %-90 % and energy efficiencies up to 30 % for acetate and methane production. The performance of this plate-reactor demonstrates that MES can deliver production rates that are competitive with those of established biotechnologies.
Collapse
Affiliation(s)
- Jörg S Deutzmann
- Department of Civil and Environmental Engineering, 473 Via Ortega, Stanford University, Stanford, CA 94305, USA; Novo Nordisk Foundation CO(2) Research Center, Aarhus University, Gustav Wieds Vej 10C, Aarhus C DK-8000, Denmark.
| | - Grace Callander
- Department of Chemical Engineering, 443 Via Ortega, Stanford University, Stanford, CA 94305, USA; Novo Nordisk Foundation CO(2) Research Center, Aarhus University, Gustav Wieds Vej 10C, Aarhus C DK-8000, Denmark.
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, 473 Via Ortega, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, 443 Via Ortega, Stanford University, Stanford, CA 94305, USA; Novo Nordisk Foundation CO(2) Research Center, Aarhus University, Gustav Wieds Vej 10C, Aarhus C DK-8000, Denmark.
| |
Collapse
|
3
|
Ayodele T, Liadi M, Tijani AT, Alarape K, Bitrus C, Clementson CL, Hammed A. Microbial Protein and Metabolite Profiles of Klebsiella oxytoca M5A1 in a Bubble Column Bioreactor. BIOTECH 2024; 13:43. [PMID: 39449373 PMCID: PMC11503442 DOI: 10.3390/biotech13040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
The production of microbial proteins (MPs) has emerged as a critical focus in biotechnology, driven by the need for sustainable and scalable alternatives to traditional protein sources. This study investigates the efficacy of two experimental setups in producing MPs using the nitrogen-fixing bacterium Klebsiella oxytoca M5A1. K. oxytoca M5A1, known for its facultative anaerobic growth and capability to fix atmospheric nitrogen, offers a promising avenue for environmentally friendly protein production. This research compares the performance of a simple bubble column (BC) bioreactor, which promotes efficient mixing and cross-membrane gas transfer, with static fermentation, a traditional method lacking agitation and aeration. The study involved the parallel cultivation of K. oxytoca M5A1 in both systems, with key parameters such as microbial growth, glucose utilization, protein concentration, and metabolite profiles monitored over a 48 h period. The results indicate that the BC bioreactor consistently outperformed static fermentation regarding the growth rate, protein yield, and glucose utilization efficiency. The BC exhibited a significant increase in protein production, reaching 299.90 µg/mL at 48 h, compared to 219.44 µg/mL in static fermentation. The organic acid profile reveals both synthesis and utilization regimes of varying patterns. These findings highlight the advantages of the BC bioreactor for MP production, particularly its ability to maintain aerobic conditions that support higher growth and yield.
Collapse
Affiliation(s)
- Tawakalt Ayodele
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA; (T.A.); (A.T.T.)
| | - Musiliu Liadi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA; (T.A.); (A.T.T.)
| | - Abodunrin Tirmidhi Tijani
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA; (T.A.); (A.T.T.)
| | - Kudirat Alarape
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA; (T.A.); (A.T.T.)
| | - Christiana Bitrus
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA; (T.A.); (A.T.T.)
| | - Clairmont L. Clementson
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA;
| | - Ademola Hammed
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA; (T.A.); (A.T.T.)
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA;
| |
Collapse
|
4
|
Schmitz LM, Kreitli N, Obermaier L, Weber N, Rychlik M, Angenent LT. Power-to-vitamins: producing folate (vitamin B 9) from renewable electric power and CO 2 with a microbial protein system. Trends Biotechnol 2024:S0167-7799(24)00177-X. [PMID: 39271416 DOI: 10.1016/j.tibtech.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 09/15/2024]
Abstract
We recently proposed a two-stage Power-to-Protein technology to produce microbial protein from renewable electric power and CO2. Two stages were operated in series: Clostridium ljungdahlii in Stage A to reduce CO2 with H2 into acetate, and Saccharomyces cerevisiae in Stage B to utilize O2 and produce microbial protein from acetate. Renewable energy can be used to power water electrolysis to produce H2 and O2. A drawback of Stage A was the need for continuous vitamin supplementation. In this study, by using the more robust thermophilic acetogen Thermoanaerobacter kivui instead of C. ljungdahlii, vitamin supplementation was no longer needed. Additionally, S. cerevisiae produced folate when grown with acetate as a sole carbon source, achieving a total folate concentration of 6.7 mg per 100 g biomass with an average biomass concentration of 3 g l-1. The developed Power-to-Vitamin system enables folate production from renewable power and CO2 with zero or negative net-carbon emissions.
Collapse
Affiliation(s)
- Lisa Marie Schmitz
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Nicolai Kreitli
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Lisa Obermaier
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Nadine Weber
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Michael Rychlik
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany; AG Angenent, Max Planck Institute for Biology, Max Planck Ring 5, D-72076 Tübingen, Germany; Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000Aarhus C, Denmark; The Novo Nordisk Foundation CO(2) Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, C, Denmark; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72074 Tübingen, Germany.
| |
Collapse
|
5
|
Ale Enriquez F, Ahring BK. Phenotypic and genomic characterization of Methanothermobacter wolfeii strain BSEL, a CO 2-capturing archaeon with minimal nutrient requirements. Appl Environ Microbiol 2024; 90:e0026824. [PMID: 38619268 PMCID: PMC11107166 DOI: 10.1128/aem.00268-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 04/16/2024] Open
Abstract
A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Birgitte K. Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
- Biological Systems Engineering Department, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Hoffstadt K, Nikolausz M, Krafft S, Bonatelli ML, Kumar V, Harms H, Kuperjans I. Optimization of the Ex Situ Biomethanation of Hydrogen and Carbon Dioxide in a Novel Meandering Plug Flow Reactor: Start-Up Phase and Flexible Operation. Bioengineering (Basel) 2024; 11:165. [PMID: 38391651 PMCID: PMC10886298 DOI: 10.3390/bioengineering11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
With the increasing use of renewable energy resources for the power grid, the need for long-term storage technologies, such as power-to-gas systems, is growing. Biomethanation provides the opportunity to store energy in the form of the natural gas-equivalent biomethane. This study investigates a novel plug flow reactor that employs a helical static mixer for the biological methanation of hydrogen and carbon dioxide. In tests, the reactor achieved an average methane production rate of 2.5 LCH4LR∗d (methane production [LCH4] per liter of reactor volume [LR] per day [d]) with a maximum methane content of 94%. It demonstrated good flexibilization properties, as repeated 12 h downtimes did not negatively impact the process. The genera Methanothermobacter and Methanobacterium were predominant during the initial phase, along with volatile organic acid-producing, hydrogenotrophic, and proteolytic bacteria. The average ratio of volatile organic acid to total inorganic carbon increased to 0.52 ± 0.04, while the pH remained stable at an average of pH 8.1 ± 0.25 from day 32 to 98, spanning stable and flexible operation modes. This study contributes to the development of efficient flexible biological methanation systems for sustainable energy storage and management.
Collapse
Affiliation(s)
- Kevin Hoffstadt
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Marcell Nikolausz
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Simone Krafft
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Maria Letícia Bonatelli
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Vivekanantha Kumar
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Hauke Harms
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Isabel Kuperjans
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| |
Collapse
|