1
|
Vo DK, Trinh KTL. Polymerase Chain Reaction Chips for Biomarker Discovery and Validation in Drug Development. MICROMACHINES 2025; 16:243. [PMID: 40141854 PMCID: PMC11944077 DOI: 10.3390/mi16030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Polymerase chain reaction (PCR) chips are advanced, microfluidic platforms that have revolutionized biomarker discovery and validation because of their high sensitivity, specificity, and throughput levels. These chips miniaturize traditional PCR processes for the speed and precision of nucleic acid biomarker detection relevant to advancing drug development. Biomarkers, which are useful in helping to explain disease mechanisms, patient stratification, and therapeutic monitoring, are hard to identify and validate due to the complexity of biological systems and the limitations of traditional techniques. The challenges to which PCR chips respond include high-throughput capabilities coupled with real-time quantitative analysis, enabling researchers to identify novel biomarkers with greater accuracy and reproducibility. More recent design improvements of PCR chips have further expanded their functionality to also include digital and multiplex PCR technologies. Digital PCR chips are ideal for quantifying rare biomarkers, which is essential in oncology and infectious disease research. In contrast, multiplex PCR chips enable simultaneous analysis of multiple targets, therefore simplifying biomarker validation. Furthermore, single-cell PCR chips have made it possible to detect biomarkers at unprecedented resolution, hence revealing heterogeneity within cell populations. PCR chips are transforming drug development, enabling target identification, patient stratification, and therapeutic efficacy assessment. They play a major role in the development of companion diagnostics and, therefore, pave the way for personalized medicine, ensuring that the right patient receives the right treatment. While this tremendously promising technology has exhibited many challenges regarding its scalability, integration with other omics technologies, and conformity with regulatory requirements, many still prevail. Future breakthroughs in chip manufacturing, the integration of artificial intelligence, and multi-omics applications will further expand PCR chip capabilities. PCR chips will not only be important for the acceleration of drug discovery and development but also in raising the bar in improving patient outcomes and, hence, global health care as these technologies continue to mature.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Zhang W, Zheng K, Ye Y, Ji J, Cheng X, He S. Pipette-Tip-Enabled Digital Nucleic Acid Analyzer for COVID-19 Testing with Isothermal Amplification. Anal Chem 2021; 93:15288-15294. [PMID: 34735121 DOI: 10.1021/acs.analchem.1c02414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a pipette-tip-enabled digital nucleic acid analyzer for high-performance COVID-19 testing is demonstrated. This is achieved by digital loop-mediated isothermal amplification (digital LAMP or dLAMP) using common laboratory equipment and materials. It is shown that simply fixing a glass capillary inside conventional pipette tips enables the generation of monodisperse, water-in-oil microdroplets with benchtop centrifugation. It is shown that using LAMP, the ORF1a/b gene, a standard test region for COVID-19 screening, can be amplified without a thermal cycler. The amplification allows counting of fluorescent microdroplets so that Poisson analysis can be performed to allow quantification with a limit of detection that is 1 order of magnitude better than those of nondigital techniques and comparable to those of commercial dLAMP platforms. It is envisioned that this work will inspire studies on ultrasensitive digital nucleic acid analyzers demanding both sensitivity and accessibility, which is pivotal to their large-scale applications.
Collapse
Affiliation(s)
- Wenyao Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yang Ye
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Jiali Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| |
Collapse
|
4
|
Podbiel D, Laermer F, Zengerle R, Hoffmann J. Fusing MEMS technology with lab-on-chip: nanoliter-scale silicon microcavity arrays for digital DNA quantification and multiplex testing. MICROSYSTEMS & NANOENGINEERING 2020; 6:82. [PMID: 34567692 PMCID: PMC8433415 DOI: 10.1038/s41378-020-00187-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 05/18/2023]
Abstract
We report on the development of a microfluidic multiplexing technology for highly parallelized sample analysis via quantitative polymerase chain reaction (PCR) in an array of 96 nanoliter-scale microcavities made from silicon. This PCR array technology features fully automatable aliquoting microfluidics, a robust sample compartmentalization up to temperatures of 95 °C, and an application-specific prestorage of reagents within the 25 nl microcavities. The here presented hybrid silicon-polymer microfluidic chip allows both a rapid thermal cycling of the liquid compartments and a real-time fluorescence read-out for a tracking of the individual amplification reactions taking place inside the microcavities. We demonstrate that the technology provides very low reagent carryover of prestored reagents < 6 × 10-2 and a cross talk rate < 1 × 10-3 per PCR cycle, which facilitate a multi-targeted sample analysis via geometric multiplexing. Furthermore, we apply this PCR array technology to introduce a novel digital PCR-based DNA quantification method: by taking the assay-specific amplification characteristics like the limit of detection into account, the method allows for an absolute gene target quantification by means of a statistical analysis of the amplification results.
Collapse
Affiliation(s)
- Daniel Podbiel
- Robert Bosch GmbH, Corporate Sector Research, Microsystems and Nanotechnologies, Robert-Bosch-Campus 1, 71272 Renningen, Germany
| | - Franz Laermer
- Robert Bosch GmbH, Corporate Sector Research, Microsystems and Nanotechnologies, Robert-Bosch-Campus 1, 71272 Renningen, Germany
| | - Roland Zengerle
- IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Jochen Hoffmann
- Robert Bosch GmbH, Corporate Sector Research, Microsystems and Nanotechnologies, Robert-Bosch-Campus 1, 71272 Renningen, Germany
| |
Collapse
|
5
|
Gorgannezhad L, Sreejith KR, Zhang J, Kijanka G, Christie M, Stratton H, Nguyen NT. Microfluidic Array Chip for Parallel Detection of Waterborne Bacteria. MICROMACHINES 2019; 10:E883. [PMID: 31888270 PMCID: PMC6952809 DOI: 10.3390/mi10120883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
The polymerase chain reaction (PCR) is a robust technique used to make multiple copies of a segment of DNA. However, the available PCR platforms require elaborate and time-consuming operations or costly instruments, hindering their application. Herein, we introduce a sandwiched glass-polydimethylsiloxane (PDMS)-glass microchip containing an array of reactors for the real-time PCR-based detection of multiple waterborne bacteria. The PCR solution was loaded into the array of reactors in a single step utilising capillary filling, eliminating the need for pumps, valves, and liquid handling instruments. Issues of generating and trapping bubbles during the loading chip step were addressed by creating smooth internal reactor surfaces. Triton X-100 was used to enhance PCR compatibility in the chip by minimising the nonspecific adsorption of enzymes. A custom-made real-time PCR instrument was also fabricated to provide thermal cycling to the array chip. The microfluidic device was successfully demonstrated for microbial faecal source tracking (MST) in water.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia;
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
| | - Gregor Kijanka
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Melody Christie
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia;
| | - Helen Stratton
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
| |
Collapse
|
6
|
Shunting microfluidic PCR device for rapid bacterial detection. Talanta 2019; 207:120303. [PMID: 31594577 DOI: 10.1016/j.talanta.2019.120303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
Polymerase chain reaction (PCR) is commonly used for the analysis of nucleic acids in a variety of applications including clinical. There is, however, a need for a low cost portable PCR device that allows rapid identification of pathogenic bacteria. We report a shunting PCR microfluidic device comprising: polycarbonate microfluidic PCR chip; shunting thermal cycler and fluorescence detector. The microfluidic PCR chip - fabricated using micro-milling and thermal fusion bonding for sealing of the cover - was shunted between three double side temperature zones for thermal cycling. Rapid amplification was observed with heating and cooling rates of 1.8 °C/s and 2 °C/s respectively. Lock-in photodetector for fluorescence detection of the microfluidic PCR chip achieved at 95% confidence an LOD of 75pM FITC and 0.7 ng μl-1 of dsDNA using a QuantiFluor assay kit. The device was validated using universal primers - based on chromosomal DNA extracted from non-pathogenic K-12 subtype of Escherichia coli (E. coli) - for amplification of fragments of 250, 552 and 1500 bp. PCR amplification was demonstrated, with annealing temperatures ranging between 54 °C and 68 °C, and confirmed using gel electrophoresis. The developed shunting PCR microfluidic device will allow for low cost and portable nucleic acid amplification for the detection of infectious diseases.
Collapse
|
7
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
8
|
Qian C, Wang R, Wu H, Ping J, Wu J. Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1522. [PMID: 29797414 PMCID: PMC6185786 DOI: 10.1002/wnan.1522] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
Biomarkers are nucleic acids, proteins, single cells, or small molecules in human tissues or biological fluids whose reliable detection can be used to confirm or predict disease and disease states. Sensitive detection of biomarkers is therefore critical in a variety of applications including disease diagnostics, therapeutics, and drug screening. Unfortunately for many diseases, low abundance of biomarkers in human samples and low sample volumes render standard benchtop platforms like 96-well plates ineffective for reliable detection and screening. Discretization of bulk samples into a large number of small volumes (fL-nL) via droplet microfluidic technology offers a promising solution for high-sensitivity and high-throughput detection and screening of biomarkers. Several microfluidic strategies exist for high-throughput biomarker digitization into droplets, and these strategies have been utilized by numerous droplet platforms for nucleic acid, protein, and single-cell detection and screening. While the potential of droplet-based platforms has led to burgeoning interest in droplets, seamless integration of sample preparation technologies and automation of platforms from biological sample to answer remain critical components that can render these platforms useful in the clinical setting in the near future. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Department of Biomedical Engineering, Johns Hopkins University
| |
Collapse
|
10
|
Yang F, Yang N, Huo X, Xu S. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS 2018; 12:041501. [PMID: 30867860 PMCID: PMC6404956 DOI: 10.1063/1.5037421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Nana Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Xiaoye Huo
- Faculty of Mechanical Engineering, Micro-and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
11
|
Tran BM, Nam NN, Son SJ, Lee NY. Nanoporous anodic aluminum oxide internalized with gold nanoparticles for on-chip PCR and direct detection by surface-enhanced Raman scattering. Analyst 2018; 143:808-812. [DOI: 10.1039/c7an01832k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoporous anodic aluminum oxide (AAO) internalized with gold nanoparticles was utilized as an integrated platform miniaturized for consecutively performing on-chip PCR and downstream detection of the target DNA amplicons using surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- B. M. Tran
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| | - N. N. Nam
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| | - S. J. Son
- Department of Chemistry
- Gachon University
- Seongnam-si
- Korea
| | - N. Y. Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| |
Collapse
|
12
|
Ramalingam N, Warkiani ME, Gong THQ. Acetylated bovine serum albumin differentially inhibits polymerase chain reaction in microdevices. BIOMICROFLUIDICS 2017; 11:034110. [PMID: 28611870 PMCID: PMC5435503 DOI: 10.1063/1.4983692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Bovine serum albumin (BSA) is widely used as an additive in polymerase chain reaction (PCR)-based microfluidic devices to passivate reactors and alleviate nucleic-acid amplification. BSA is available commercially in two types: either acetylated or non-acetylated. A survey of literature indicates that both types of BSA are used in PCR-based microfluidic devices. Our study results reveal that the use of acetylated BSA in PCR micro-devices leads to differential inhibition of PCR, compared to non-acetylated BSA. This result is noticed for the first time, and the differential inhibition generally goes un-noticed, as compared to complete PCR inhibition.
Collapse
Affiliation(s)
- Naveen Ramalingam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore 639798
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Center for NanoMedicine, University of New South Wales, 2052 Sydney, Australia
| | - Thomas Hai-Qing Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore 639798
| |
Collapse
|
13
|
HE QD, HUANG DP, HUANG G, CHEN ZG. Advance in Research of Microfluidic Polymerase Chain Reaction Chip. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60921-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Ma X, Xu W, Chen C, Lu Z, Li J. A microfabrication-free nanoliter droplet array for nucleic acid detection combined with isothermal amplification. Analyst 2016; 140:4370-3. [PMID: 25988200 DOI: 10.1039/c5an00573f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A nanoliter droplet array based on a hydrophilic-hydrophobic patterned chip is developed without using microfabrication technology. Combined with the isothermal amplification technology, it has been applied to perform nucleic acid detection, showing excellent specificity and sensitivity. As a versatile platform, it is used to detect three gene targets successfully.
Collapse
Affiliation(s)
- Xiaodong Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Poehler E, Pfeiffer SA, Herm M, Gaebler M, Busse B, Nagl S. Microchamber arrays with an integrated long luminescence lifetime pH sensor. Anal Bioanal Chem 2015; 408:2927-35. [DOI: 10.1007/s00216-015-9178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
16
|
Ha ML, Lee NY. Miniaturized polymerase chain reaction device for rapid identification of genetically modified organisms. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Hayes CJ, Dalton TM. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:22-32. [PMID: 27077035 PMCID: PMC4822205 DOI: 10.1016/j.bdq.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/02/2023]
Abstract
PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits.
Collapse
Affiliation(s)
- Christopher J Hayes
- Stokes Institute, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland; Department of Life Sciences, University of Limerick, Limerick, Ireland
| | - Tara M Dalton
- Stokes Institute, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
18
|
Warf MB, Flake DD, Adams D, Gutin A, Kolquist KA, Wenstrup RJ, Roa BB. Analytical validation of a melanoma diagnostic gene signature using formalin-fixed paraffin-embedded melanocytic lesions. Biomark Med 2015; 9:407-16. [DOI: 10.2217/bmm.15.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: These studies were to validate the analytical performance of a gene expression signature that differentiates melanoma and nevi, using RNA expression from 14 signature genes and nine normalization genes that generates a melanoma diagnostic score (MDS). Materials & Methods: Formalin-fixed paraffin-embedded melanocytic lesions were evaluated in these studies. Results: The overall SD of the assay was determined to be 0.69 MDS units. Individual amplicons within the signature had an average amplification efficiency of 92% and a SD less than 0.5 CT. The MDS was reproducible across a 2000-fold dilution range of input RNA. Melanin, an inhibitor of PCR, does not interfere with the signature. Conclusion: These studies indicate this signature is robust and reproducible and is analytically validated on formalin-fixed paraffin-embedded melanocytic lesions.
Collapse
Affiliation(s)
- M Bryan Warf
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Darl D Flake
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Doug Adams
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Alexander Gutin
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Kathryn A Kolquist
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Richard J Wenstrup
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Benjamin B Roa
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
19
|
Microfluidic platform towards point-of-care diagnostics in infectious diseases. J Chromatogr A 2014; 1377:13-26. [PMID: 25544727 DOI: 10.1016/j.chroma.2014.12.041] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023]
Abstract
Rapid and timely diagnosis of infectious diseases is a critical determinant of clinical outcomes and general public health. For the detection of various pathogens, microfluidics-based platforms offer many advantages, including speed, cost, portability, high throughput, and automation. This review provides an overview of the recent advances in microfluidic technologies for point-of-care (POC) diagnostics for infectious diseases. The key aspects of such technologies for the development of a fully integrated POC platform are introduced, including sample preparation, on-chip nucleic acid analysis and immunoassay, and system integration/automation. The current challenges to practical implementation of this technology are discussed together with future perspectives.
Collapse
|
20
|
Wu J, Kodzius R, Cao W, Wen W. Extraction, amplification and detection of DNA in microfluidic chip-based assays. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1140-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Li P, Grigorenko E, Funari V, Enright E, Zhang H, Kim HL. Evaluation of a high-throughput, microfluidics platform for performing TaqMan™ qPCR using formalin-fixed paraffin-embedded tumors. Bioanalysis 2013; 5:1623-33. [PMID: 23822126 PMCID: PMC3816109 DOI: 10.4155/bio.13.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Compared with the standard qPCR, nanoliter-scale qPCR can use smaller quantities of RNA and increase throughput. The TaqMan™ OpenArray® NT Cycler System was assessed for use with degraded RNA from formalin-fixed paraffin-embedded (FFPE) tumors. RESULTS Expression of candidate prognostic genes was quantified using the OpenArray platform and matching fresh frozen and FFPE patient renal cell carcinomas. Reverse transcription, with gene-specific reverse transcription and preamplification, optimized the percentage of detectable transcripts. When using high quality RNA from fresh frozen tumors, the OpenArray platform identified 30 prognostic genes. However, when using RNA from FFPE tumors, only 13 prognostic genes were identified, but this increased to 33 with addition of preamplification. CONCLUSION The OpenArray platform can be optimized to quantify gene expressions from FFPE tumors.
Collapse
Affiliation(s)
- Ping Li
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Vince Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Enright
- Life Technologies, Beverly, MA, USA and San Diego, CA, USA
| | - Hao Zhang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Belgrader P, Tanner SC, Regan JF, Koehler R, Hindson BJ, Brown AS. Droplet Digital PCR Measurement of HER2 Copy Number Alteration in Formalin-Fixed Paraffin-Embedded Breast Carcinoma Tissue. Clin Chem 2013; 59:991-4. [DOI: 10.1373/clinchem.2012.197855] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Human epidermal growth factor receptor 2 (HER2) testing is routinely performed by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) analyses for all new cases of invasive breast carcinoma. IHC is easier to perform, but analysis can be subjective and variable. FISH offers better diagnostic accuracy and added confidence, particularly when it is used to supplement weak IHC signals, but it is more labor intensive and costly than IHC. We examined the performance of droplet digital PCR (ddPCR) as a more precise and less subjective alternative for quantifying HER2 DNA amplification.
METHODS
Thirty-nine cases of invasive breast carcinoma containing ≥30% tumor were classified as positive or negative for HER2 by IHC, FISH, or both. DNA templates for these cases were prepared from formalin-fixed paraffin-embedded (FFPE) tissues to determine the HER2 copy number by ddPCR. ddPCR involved emulsifying hydrolysis probe–based PCR reaction mixtures containing the ERBB2 [v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian); also known as HER2] gene and chromosome 17 centromere assays into nanoliter-sized droplets for thermal cycling and analysis.
RESULTS
ddPCR distinguished, through differences in the level of HER2 amplification, the 10 HER2-positive samples from the 29 HER2-negative samples with 100% concordance to HER2 status obtained by FISH and IHC analysis. ddPCR results agreed with the FISH results for the 6 cases that were equivocal by IHC analyses, confirming 2 of these samples as positive for HER2 and the other 4 as negative.
CONCLUSIONS
ddPCR can be used as a molecular-analysis tool to precisely measure copy number alterations in FFPE samples of heterogeneous breast tumor tissue.
Collapse
Affiliation(s)
| | | | - John F Regan
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, CA
| | - Ryan Koehler
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, CA
| | | | | |
Collapse
|
23
|
|
24
|
|
25
|
Hoffmann J, Trotter M, von Stetten F, Zengerle R, Roth G. Solid-phase PCR in a picowell array for immobilizing and arraying 100,000 PCR products to a microscope slide. LAB ON A CHIP 2012; 12:3049-3054. [PMID: 22820686 DOI: 10.1039/c2lc40534b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a method for performing highly parallel PCR reactions in a picowell array (PWA) simultaneously immobilizing generated PCR products in a covalent and spatially-resolved manner onto a microscope slide via solid-phase PCR (SP-PCR). This so called PWA-SP-PCR was performed in picowell arrays featuring 100,000 wells cm(-2) of 19 pL reaction volumes with a surface-to-volume ratio of 0.2 μm(-1). Positive signals were obtained in 97.2% of the 110,000 wells in an area of 110 mm(2). Immobilized DNA was either indirectly detected using streptavidin-Cy5 or directly by molecular hybridisation of Cy3- and/or Cy5-labelled probes. Amplification and immobilization was demonstrated for template DNA ranging from 100 bp up to 1513 bp lengths. Even single DNA molecules were successfully amplified and immobilized demonstrating digital solid-phase PCR. Compared to widely established emulsion based PCR (emPCR) approaches, leading to PCR products immobilized onto bead surfaces in a highly parallel manner, the novel technique results in direct spatial registration of immobilized PCR products in a microarray format. This enables the subsequent use for massively parallel analysis similar to standard microarrays.
Collapse
Affiliation(s)
- Jochen Hoffmann
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, Freiburg, 79110, Germany
| | | | | | | | | |
Collapse
|
26
|
Pak N, Saunders DC, Phaneuf CR, Forest CR. Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip. Biomed Microdevices 2012; 14:427-33. [PMID: 22218821 DOI: 10.1007/s10544-011-9619-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic polymerase chain reaction (PCR) systems have set milestones for small volume (100 nL-5 μL), amplification speed (100-400 s), and on-chip integration of upstream and downstream sample handling including purification and electrophoretic separation functionality. In practice, the microfluidic chips in these systems require either insertion of thermocouples or calibration prior to every amplification. These factors can offset the speed advantages of microfluidic PCR and have likely hindered commercialization. We present an infrared, laser-mediated, PCR system that features a single calibration, accurate and repeatable precision alignment, and systematic thermal modeling and management for reproducible, open-loop control of PCR in 1 μL chambers of a polymer microfluidic chip. Total cycle time is less than 12 min: 1 min to fill and seal, 10 min to amplify, and 1 min to recover the sample. We describe the design, basis for its operation, and the precision engineering in the system and microfluidic chip. From a single calibration, we demonstrate PCR amplification of a 500 bp amplicon from λ-phage DNA in multiple consecutive trials on the same instrument as well as multiple identical instruments. This simple, relatively low-cost plug-and-play design is thus accessible to persons who may not be skilled in assembly and engineering.
Collapse
Affiliation(s)
- Nikita Pak
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Room 2103, 315 Ferst Drive, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
27
|
Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: A review. Anal Chim Acta 2012; 733:1-15. [DOI: 10.1016/j.aca.2012.04.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/10/2012] [Accepted: 04/24/2012] [Indexed: 12/19/2022]
|
28
|
A polymer microfluidic chip for quantitative detection of multiple water- and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification. Biomed Microdevices 2012; 14:769-78. [DOI: 10.1007/s10544-012-9658-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Nagatani N, Yamanaka K, Ushijima H, Koketsu R, Sasaki T, Ikuta K, Saito M, Miyahara T, Tamiya E. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip. Analyst 2012; 137:3422-6. [PMID: 22354200 DOI: 10.1039/c2an16294f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influenza virus RNA was amplified by a continuous-flow polydimethylsiloxane microfluidic RT-PCR chip within 15-20 min. The amplified influenza virus RNA was observed with the naked eye, as the red color at the test line, using a lateral flow immunoassay within 1 min.
Collapse
Affiliation(s)
- Naoki Nagatani
- Department of Applied Chemistry, Graduate School of Engineering, Okayama University of Science, Okayama-shi 700-0005, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Furutani S, Nagai H, Takamura Y, Aoyama Y, Kubo I. Detection of expressed gene in isolated single cells in microchambers by a novel hot cell-direct RT-PCR method. Analyst 2012; 137:2951-7. [PMID: 22234623 DOI: 10.1039/c2an15866c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to be able to detect the expression of a gene in individual cells, the ability to isolate and lyse a single cell and to perform reverse transcription polymerase chain reaction (RT-PCR) in one device is important. As is common, when performing cell lysis and RT-PCR in the same reaction chamber, it is necessary to add the reagent for RT-PCR after cell lysis. In this study, we propose an original formula for cell lysis and RT-PCR in the same reaction chamber without the addition of reagent by only a heat process, which we termed hot cell-direct RT-PCR. Hot cell-direct RT-PCR was enabled by using Tth DNA polymerase, which is a thermostable polymerase and has high reverse transcription activity in the presence of manganese ions. Direct detection of RT-PCR products was performed by detecting fluorescence with the use of a double-dye fluorescent probe. We attempted to detect the mRNA of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene in isolated Jurkat cells on a microfluidic device, which we had already developed for single cell isolation. After cell isolation and successive hot cell-direct RT-PCR on the device, fluorescent signals from RT-PCR products for a single cell were detected and differentiated from the chamber containing no cells. A highly positive linear relationship (r = 0.9933) was observed between the number of chambers containing cell(s) and those containing RT-PCR products from 10 to 400 cells μL(-1). Thus it was possible to use the novel hot cell-direct RT-PCR method to detect the expressed gene in isolated cells.
Collapse
Affiliation(s)
- Shunsuke Furutani
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | |
Collapse
|
31
|
Wang JH, Wang CH, Lee GB. Sample pretreatment and nucleic acid-based detection for fast diagnosis utilizing microfluidic systems. Ann Biomed Eng 2011; 40:1367-83. [PMID: 22146901 PMCID: PMC7088154 DOI: 10.1007/s10439-011-0473-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022]
Abstract
Recently, micro-electro-mechanical-systems (MEMS) technology and micromachining techniques have enabled miniaturization of biomedical devices and systems. Not only do these techniques facilitate the development of miniaturized instrumentation for biomedical analysis, but they also open a new era for integration of microdevices for performing accurate and sensitive diagnostic assays. A so-called “micro-total-analysis-system”, which integrates sample pretreatment, transport, reaction, and detection on a small chip in an automatic format, can be realized by combining functional microfluidic components manufactured by specific MEMS technologies. Among the promising applications using microfluidic technologies, nucleic acid-based detection has shown considerable potential recently. For instance, micro-polymerase chain reaction chips for rapid DNA amplification have attracted considerable interest. In addition, microfluidic devices for rapid sample pretreatment prior to nucleic acid-based detection have also achieved significant progress in the recent years. In this review paper, microfluidic systems for sample preparation, nucleic acid amplification and detection for fast diagnosis will be reviewed. These microfluidic devices and systems have several advantages over their large-scale counterparts, including lower sample/reagent consumption, lower power consumption, compact size, faster analysis, and lower per unit cost. The development of these microfluidic devices and systems may provide a revolutionary platform technology for fast sample pretreatment and accurate, sensitive diagnosis.
Collapse
Affiliation(s)
- Jung-Hao Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan, ROC
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan, ROC
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan, ROC
| |
Collapse
|
32
|
Li Y, Guo SJ, Shao N, Tu S, Xu M, Ren ZR, Ling X, Wang GQ, Lin ZX, Tao SC. A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray. LAB ON A CHIP 2011; 11:3609-3618. [PMID: 21909519 DOI: 10.1039/c1lc20526a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Both basic research and clinical medicine have urgent demands for highly efficient strategies to simultaneously identify many different DNA sequences within a single tube. Effective and simultaneous amplification of multiple target sequences is a prerequisite for any successful multiple nucleic acid detection method. Multiplex PCR is one of the best choices for this purpose. However, due to the intrinsic interference and competition among primer pairs in the same tube, multiple rounds of highly empirical optimization procedures are usually required to establish a successful multiplex PCR reaction. To address this challenge, we report here a universal multiplex PCR strategy that is capable of over 100-plex amplification using a specially designed microarray in which hydrophilic microwells are patterned on a hydrophobic chip. On such an array, primer pairs tagged with a universal sequence are physically separated in individual hydrophilic microwells on an otherwise hydrophobic chip, enabling many unique PCR reactions to be proceeded simultaneously during the first step of the procedure. The PCR products are then isolated and further amplified from the universal sequences, producing a sufficient amount of material for analysis by conventional gel electrophoresis or DNA microarray technology. This strategy is abbreviated as "MPH&HPM" for "Multiplex PCR on a Hydrophobically and Hydrophilically Patterned Microarray". The feasibility of this method is first demonstrated by a multiplex PCR reaction for the simultaneous detection of eleven pneumonia-causing pathogens. Further, we demonstrate the power of this strategy with a highly successful 116-plex PCR reaction that required only little prior optimization. The effectiveness of the MPH&HPM strategy with clinical samples is then illustrated with the detection of deleted exons of the Duchenne Muscular Dystrophy (DMD) gene, the results are in excellent agreement with the clinical records. Because of its generality, simplicity, flexibility, specificity and capacity of more than 100-plex amplification, the MPH&HPM strategy should have broad applications in both laboratory research and clinical applications when multiplex nucleic acid analysis is required.
Collapse
Affiliation(s)
- Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Julich S, Riedel M, Kielpinski M, Urban M, Kretschmer R, Wagner S, Fritzsche W, Henkel T, Möller R, Werres S. Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosens Bioelectron 2011; 26:4070-5. [PMID: 21531125 DOI: 10.1016/j.bios.2011.03.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 11/18/2022]
Abstract
A lab-on-a-chip system for rapid nucleic acid-based analysis was developed that can be applied for diagnosis of selected Phytophthora species as a first example for use in plant pathology. All necessary polymerase chain reaction process (PCR) and hybridization steps can be performed consecutively within a single chip consisting of two components, an inflexible and a flexible one, with integrated microchannels and microchambers. Data from the microarray is collected from a simple electrical measurement that is based on elementary silver deposition by enzymatical catalyzation. Temperatures in the PCR and in the hybridization zone are managed by two independent Peltier elements. The chip will be integrated in a compact portable system with a pump and power supply for use on site. The specificity of the lab-on-a-chip system could be demonstrated for the tested five Phytophthora species. The two Pythium species gave signals below the threshold. The results of the electrical detection of the microarray correspond to the values obtained with the control method (optical grey scale analysis).
Collapse
Affiliation(s)
- Sandra Julich
- Institute of Photonic Technology (IPHT), Nanobiophotonics Department, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Furutani S, Nagai H, Takamura Y, Kubo I. Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell. Anal Bioanal Chem 2010; 398:2997-3004. [DOI: 10.1007/s00216-010-4205-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 12/01/2022]
|
36
|
Polini A, Mele E, Sciancalepore AG, Girardo S, Biasco A, Camposeo A, Cingolani R, Weitz DA, Pisignano D. Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. BIOMICROFLUIDICS 2010; 4:036502. [PMID: 20877657 PMCID: PMC2946093 DOI: 10.1063/1.3481776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/03/2010] [Indexed: 05/27/2023]
Abstract
Producing polymeric or hybrid microfluidic devices operating at high temperatures with reduced or no water evaporation is a challenge for many on-chip applications including polymerase chain reaction (PCR). We study sample evaporation in polymeric and hybrid devices, realized by glass microchannels for avoiding water diffusion toward the elastomer used for chip fabrication. The method dramatically reduces water evaporation in PCR devices that are found to exhibit optimal stability and effective operation under oscillating-flow. This approach maintains the flexibility, ease of fabrication, and low cost of disposable chips, and can be extended to other high-temperature microfluidic biochemical reactors.
Collapse
|
37
|
Zhang C, Xing D. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chem Rev 2010; 110:4910-47. [DOI: 10.1021/cr900081z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
38
|
Stowers CC, Haselton FR, Boczko EM. An Analysis of Quantitative PCR Reliability Through Replicates Using the C Method. ACTA ACUST UNITED AC 2010; 3:459-469. [PMID: 20634997 DOI: 10.4236/jbise.2010.35064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is considerable interest in quantitatively measuring nucleic acids from single cells to small populations. The most commonly employed laboratory method is the real-time polymerase chain reaction (PCR) analyzed with the crossing point or crossing threshold (C(t)) method. Utilizing a multiwell plate reader we have performed hundreds of replicate reactions at each of a set of initial conditions whose initial number of copies span a concentration range of ten orders of magnitude. The resultant C(t) value distributions are analyzed with standard and novel statistical techniques to assess the variability/reliability of the PCR process. Our analysis supports the following conclusions. Given sufficient replicates, the mean and/or median C(t) values are statistically distinguishable and can be rank ordered across ten orders of magnitude in initial template concentration. As expected, the variances in the C(t) distributions grow as the number of initial copies declines to 1. We demonstrate that these variances are large enough to confound quantitative classification of the initial condition at low template concentrations. The data indicate that a misclassification transition is centered around 3000 initial copies of template DNA and that the transition region correlates with independent data on the thermal wear of the TAQ polymerase enzyme. We provide data that indicate that an alternative endpoint detection strategy based on the theory of well mixing and plate filling statistics is accurate below the misclassification transition where the real time method becomes unreliable.
Collapse
Affiliation(s)
- Chris C Stowers
- Bioprocess Division, Dow AgroSciences LLC, Indianapolis, IN 46268
| | | | | |
Collapse
|
39
|
Lindström S, Hammond M, Brismar H, Andersson-Svahn H, Ahmadian A. PCR amplification and genetic analysis in a microwell cell culturing chip. LAB ON A CHIP 2009; 9:3465-71. [PMID: 20024024 DOI: 10.1039/b912596e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have previously described a microwell chip designed for high throughput, long-term single-cell culturing and clonal analysis in individual wells providing a controlled way of studying high numbers of individual adherent or non-adherent cells. Here we present a method for the genetic analysis of cells cultured on-chip by PCR and minisequencing, demonstrated using two human adherent cell lines: one wild type and one with a single-base mutation in the p53 gene. Five wild type or mutated cells were seeded per well (in a defined set of wells, each holding 500 nL of culture medium) in a 672-microwell chip. The cell chip was incubated overnight, or cultured for up to five days, depending on the desired colony size, after which the cells were lysed and subjected to PCR directly in the wells. PCR products were detected, in the wells, using a biotinylated primer and a fluorescently labelled primer, allowing the products to be captured on streptavidin-coated magnetic beads and detected by a fluorescence microscope. In addition, to enable genetic analysis by minisequencing, the double-stranded PCR products were denatured and the immobilized strands were kept in the wells by applying a magnetic field from the bottom of the wells while the wells were washed, a minisequencing reaction mixture was added, and after incubation in appropriate conditions the expected genotypes were detected in the investigated microwells, simultaneously, by an array scanner. We anticipate that the technique could be used in mutation frequency screening, providing the ability to correlate cells' proliferative heterogeneity to their genetic heterogeneity, in hundreds of samples simultaneously. The presented method of single-cell culture and DNA amplification thus offers a potentially powerful alternative to single-cell PCR, with advantageous robustness and sensitivity.
Collapse
Affiliation(s)
- Sara Lindström
- Division of Nanobiotechnology, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
40
|
Nakayama T, Hiep HM, Furui S, Yonezawa Y, Saito M, Takamura Y, Tamiya E. An optimal design method for preventing air bubbles in high-temperature microfluidic devices. Anal Bioanal Chem 2009; 396:457-64. [DOI: 10.1007/s00216-009-3160-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/12/2009] [Accepted: 09/15/2009] [Indexed: 11/27/2022]
|
41
|
Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 2009; 80:8975-81. [PMID: 19551929 DOI: 10.1021/ac801276c] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow. The oil stream conducts the droplets through alternating denaturation and annealing zones, resulting in rapid (55-s cycles) and efficient PCR amplification. Inclusion of fluorescent probes in the PCR reaction mix permits the amplification process to be monitored within individual droplets at specific locations within the microfluidic chip. We show that amplification of a 245-bp adenovirus product can be detected and quantified in 35 min at starting template concentrations as low as 1 template molecule/167 droplets (0.003 pg/microL). The frequencies of positive reactions over a range of template concentrations agree closely with the frequencies predicted by Poisson statistics, demonstrating both the accuracy and sensitivity of this platform for limiting dilution and digital PCR applications.
Collapse
|
42
|
Dixon JM, Lubomirski M, Amaratunga D, Morrison TB, Brenan CJH, Ilyin SE. Nanoliter high-throughput RT-qPCR: a statistical analysis and assessment. Biotechniques 2009; 46:ii-viii. [PMID: 19480642 DOI: 10.2144/000112838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biomarkers discovered from gene expression profiles using hybridization microarrays have made great inroads in the diagnosis and development of safer and efficacious drugs. The candidate gene set is biologically validated by quantitative measurement with reverse transcriptase quantitative PCR (RT-qPCR) and is an effective strategy when implemented with microplates if the number of candidate genes and samples is small. With the trend toward informative candidate gene panels increasing from tens to hundreds of genes and sample cohorts exceeding several hundred, an alternative fluidic approach is needed that preserves the intrinsic analytical precision, large dynamic range, and high sensitivity of RT-qPCR, yet is scalable to high throughputs. We have evaluated the performance of a nanoliter fluidic system that enables up to 3072 nanoliter RT-qPCR assays simultaneously in a high-density array format. We measured the transcription from two different adult human tissues to assess measurement reproducibility across replicates, measurement accuracy, precision, specificity, and sensitivity; determined the false positive rate (FPR) and false negative rate (FNR) of the expressed transcript copies; and determined differences in kinase gene expression reflecting tissue and dosage differences. Using our methodology, we confirm the potential of this technology in advancing pharmaceutical research and development.
Collapse
Affiliation(s)
- James M Dixon
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Welsh and McKean Roads, Spring House, PA 19477, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ferguson BS, Buchsbaum SF, Swensen JS, Hsieh K, Lou X, Soh HT. Integrated Microfluidic Electrochemical DNA Sensor. Anal Chem 2009; 81:6503-8. [DOI: 10.1021/ac900923e] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian S. Ferguson
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - Steven F. Buchsbaum
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - James S. Swensen
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - Xinhui Lou
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - H. Tom Soh
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| |
Collapse
|
44
|
Ramalingam N, Liu HB, Dai CC, Jiang Y, Wang H, Wang Q, M Hui K, Gong HQ. Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications. Biomed Microdevices 2009; 11:1007-20. [PMID: 19421862 DOI: 10.1007/s10544-009-9318-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major challenge for the lab-on-a-chip (LOC) community is to develop point-of-care diagnostic chips that do not use instruments. Such instruments include pumping or liquid handling devices for distribution of patient's nucleic-acid test sample among an array of reactors and microvalves or mechanical parts to seal these reactors. In this paper, we report the development of a primer pair pre-loaded PCR array chip, in which the loading of the PCR mixture into an array of reactors and subsequent sealing of the reactors were realized by a novel capillary-based microfluidics with a manual two-step pipetting operations. The chip is capable of performing simultaneous (parallel) analyses of multiple gene targets and its performance was tested by amplifying twelve different gene targets against cDNA template from human hepatocellular carcinoma using SYBR Green I fluorescent dye. The versatility and reproducibility of the PCR-array chip are demonstrated by real-time PCR amplification of the BNI-1 fragment of SARS cDNA cloned in a plasmid vector. The reactor-to-reactor diffusion of the pre-loaded primer pairs in the chip is investigated to eliminate the possibility of primer cross-contamination. Key technical issues such as PCR mixture loss in gas-permeable PDMS chip layer and bubble generation due to different PDMS-glass bonding methods are investigated.
Collapse
Affiliation(s)
- Naveen Ramalingam
- BioMEMS Laboratory, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gregory KJ, Sun Y. Reduction of sample evaporation in small volume microplate luminescence assays. Anal Biochem 2009; 387:321-3. [DOI: 10.1016/j.ab.2009.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 11/17/2022]
|
46
|
Sun Y, Nguyen NT, Kwok YC. High-Throughput Polymerase Chain Reaction in Parallel Circular Loops Using Magnetic Actuation. Anal Chem 2008; 80:6127-30. [DOI: 10.1021/ac800787g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Sun
- National Institute of Education, Nanyang Technological University, 01 Nanyang Walk, Singapore 637616, and School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Nam-Trung Nguyen
- National Institute of Education, Nanyang Technological University, 01 Nanyang Walk, Singapore 637616, and School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Yien Chian Kwok
- National Institute of Education, Nanyang Technological University, 01 Nanyang Walk, Singapore 637616, and School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| |
Collapse
|
47
|
Yamanaka K, Saito M, Shichiri M, Sugiyama S, Takamura Y, Hashiguchi G, Tamiya E. AFM picking-up manipulation of the metaphase chromosome fragment by using the tweezers-type probe. Ultramicroscopy 2008; 108:847-54. [PMID: 18396375 DOI: 10.1016/j.ultramic.2008.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/26/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
We have studied the development of a new procedure based on atomic force microscopy (AFM) for the analysis of metaphase chromosome. The aim of this study was to obtain detailed information about the specific locations of genes on the metaphase chromosome. In this research, we performed the manipulation of the metaphase chromosome by using novel AFM probes to obtain chromosome fragments of a smaller size than the ones obtained using the conventional methods, such as glass microneedles. We could pick up the fragment of the metaphase chromosome dissected by the knife-edged probe by using our tweezers-type probe.
Collapse
Affiliation(s)
- Keiichiro Yamanaka
- Department of Biological Science and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Sathuluri RR, Yamamura S, Tamiya E. Microsystems technology and biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:285-350. [PMID: 17999038 DOI: 10.1007/10_2007_078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review addresses the recent developments in miniaturized microsystems or lab-on-a-chip devices for biosensing of different biomolecules: DNA, proteins, small molecules, and cells, especially at the single-molecule and single-cell level. In order to sense these biomolecules with sensitivity we have fabricated chip devices with respect to the biomolecule to be analyzed. The details of the fabrication are also dealt with in this review. We mainly developed microarray and microfluidic chip devices for DNA, protein, and cell analyses. In addition, we have introduced the porous anodic alumina layer chip with nanometer scale and gold nanoparticles for label-free sensing of DNA and protein interactions. We also describe the use of microarray and microfluidic chip devices for cell-based assays and single-cell analysis in drug discovery research.
Collapse
Affiliation(s)
- Ramachandra Rao Sathuluri
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | | | | |
Collapse
|
49
|
Zhang C, Xing D. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 2007; 35:4223-37. [PMID: 17576684 PMCID: PMC1934988 DOI: 10.1093/nar/gkm389] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 04/28/2007] [Accepted: 04/29/2007] [Indexed: 01/01/2023] Open
Abstract
The possibility of performing fast and small-volume nucleic acid amplification and analysis on a single chip has attracted great interest. Devices based on this idea, referred to as micro total analysis, microfluidic analysis, or simply 'Lab on a chip' systems, have witnessed steady advances over the last several years. Here, we summarize recent research on chip substrates, surface treatments, PCR reaction volume and speed, architecture, approaches to eliminating cross-contamination and control and measurement of temperature and liquid flow. We also discuss product-detection methods, integration of functional components, biological samples used in PCR chips, potential applications and other practical issues related to implementation of lab-on-a-chip technologies.
Collapse
Affiliation(s)
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
50
|
Kerman K, Vestergaard M, Nagatani N, Takamura Y, Tamiya E. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation. Anal Chem 2007; 78:2182-9. [PMID: 16579596 DOI: 10.1021/ac051526a] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unique structure of peptide nucleic acids (PNAs), linking the N-(2-aminoethyl)glycine units that create a neutral backbone, and prevent it from acting as a primer for DNA polymerase, has been utilized in an electrochemical biosensor scheme for simple and sensitive detection of hybridization. When the PNA is targeted against a single-nucleotide polymorphism (SNP) or wild-type site on the gene, PNA-mediated polymerase chain reaction (PCR) clamping method effectively blocks the formation of a PCR product. In our report, PNA probe for PCR clamping was targeted against the wild-type site of alcohol dehydrogenase. The electrostatic interactions between the negatively charged DNA and neutral PNA molecules with redox-active metal cation cobalt(III)hexamine ([Co(NH3)6]3+) were monitored using differential pulse voltammetry. The electrostatic binding of [Co(NH3)6]3+ to DNA provided the basis for the discrimination against PNA/PNA, PNA/DNA, and DNA/DNA hybrid molecules. We have optimized the experimental conditions, such as probe concentration, [Co(NH3)6]3+ concentration, accumulation time for [Co(NH3)6]3+, and target concentration. A new pretreatment method has also been employed to allow fast and simple detection of hybridization reaction between the PCR amplicon and the probe on glassy carbon electrode (GCE) surface. This method was based on the application of a high-temperature treatment (95 degrees C, 5 min), followed by a 1-min incubation in the presence of DNA primers. The excess concentration of DNA primers prevented the rehybridization of the denatured strands, while enabling the target gene sequence to bind with the immobilized probe. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism in standard Roundup Ready soybean samples. The amplicons of asymmetric PCR, which were predominantly single-stranded DNA as a result of unequal primer concentration, hybridized with the DNA probe on the sensor surface efficiently. The attachment of long single-strands on GCE surface caused the accumulation of [Co(NH3)6]3+ and a high current response. Here, we report a versatile method that would allow for simple and rapid analysis of nucleic acids in combination with PNA-mediated PCR and asymmetric PCR techniques by using an electrochemical genosensor.
Collapse
Affiliation(s)
- Kagan Kerman
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | | | | | | | | |
Collapse
|