1
|
Lu Y, Xu J, Liu S, Tian B, Long F. A facile optical fiber-embedded microfluidic biochip for rapid and sensitive detection of microRNA-let-7a in serum. Mikrochim Acta 2024; 192:9. [PMID: 39641831 DOI: 10.1007/s00604-024-06865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
A novel hybridization chain reaction (HCR) powered optical fiber-embedded microfluidic biochip (HCR-FMB) has been constructed for ultrafast and sensitive detection of lethal-7a (let-7a) in serum. By integrating HCR, fluorescence energy resonant transfer, and evanescent wave fluorescence principle, the HCR-FMB enables detecting let-7a with satisfactory limit of detection of 100.0 pM within 6 min at room temperature, and demonstrates excellent specificity. The HCR-FMB can directly detect let-7a in serum with high sensitivity and without any pre-treatment, and good recoveries were observed for let-7a in serum samples, demonstrating their potential application to the analysis of serum samples. The HCR-FMB exhibits several advantages, including rapidity, enzyme-free, miniaturization, ease-of-operation, field-deployment applicability, minimal-equipment, and cost-effectiveness. The HCR-FMB can be considered a revolutionary detection device that rapidly adapts and deploys in various settings, especially in low medical resource regions.
Collapse
Affiliation(s)
- Yongkai Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Jiaxin Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Siyan Liu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Baochun Tian
- Beijing Daxing Xinkang Hospital, Beijing, 102600, China
| | - Feng Long
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
2
|
Lu Y, Ji T, Xu W, Chen D, Gui P, Long F. Rapid, sensitive, and non-destructive on-site quantitative detection of nanoplastics in aquatic environments using laser-backscattered fiber-embedded optofluidic chip. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135591. [PMID: 39213771 DOI: 10.1016/j.jhazmat.2024.135591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A definitive link between the micro- and nano-plastics (NPLs) and human health has been firmly established, emphasizing the higher risks posed by NPLs. The urgent need for a rapid, non-destructive, and reliable method to quantify NPLs remains unmet with current detection techniques. To address this gap, a novel laser-backscattered fiber-embedded optofluidic chip (LFOC) was constructed for the rapid, sensitive, and non-destructive on-site quantitation of NPLs based on 180º laser-backscattered mechanism. Our theoretical and experimental findings reveal that the 180º laser-backscattered intensities of NPLs were directly proportional to their mass and particle number concentration. Using the LFOC, we have successfully detected polystyrene (PS) NPLSs of varying sizes, with a minimum detection limit of 0.23 μg/mL (equivalent to 5.23 ×107 particles/mL). Moreover, PS NPLs of different sizes can be readily differentiated through a simple membrane-filtering method. The LFOC also demonstrates high sensitivity in detecting other NPLs, such as polyethylene, polyethylene terephthalate, polypropylene, and polymethylmethacrylate. To validate its practical application, the LFOC was used to detect PS NPLs in various aquatic environments, exhibiting excellent accuracy, reproducibility, and reliability. The LFOC provides a simple, versatile, and efficient tool for direct, on-site, quantitative detection of NPLs in aquatic environments.
Collapse
Affiliation(s)
- Yongkai Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Tianxiang Ji
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenjuan Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Dan Chen
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Ping Gui
- China Academy of Urban Planning and Design, Beijing 100044, China
| | - Feng Long
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
Han X, Song D, Xu W, Lu L, Zhu A, Long F. CRISPR/Cas12a powered air-displacement enhanced evanescent wave fluorescence fiber-embedded microfluidic biochip for nucleic acid amplification-free detection of Escherichia coli O157:H7. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134037. [PMID: 38521032 DOI: 10.1016/j.jhazmat.2024.134037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Simple yet ultrasensitive and contamination-free quantification of environmental pathogenic bacteria is in high demand. In this study, we present a portable clustered regularly interspaced short palindromic repeats-associated protein 12a (CRISPR/Cas12a) powered Air-displacement enhanced Evanescent wave fluorescence Fiber-embedded microfluidic Biochip (AEFB) for the high-frequency and nucleic acid amplification-free ultrasensitive detection of Escherichia coli O157:H7. The performance of AEFB was dramatically enhanced upon employing a simple air-solution displacement process. Theoretical assays demonstrated that air-solution displacement significantly enhances evanescent wave field intensity on the fiber biosensor surface and increases the V-number in tapered fiber biosensors. Consequently, light-matter interaction is strengthened, and fluorescence coupling and collection efficiency are improved, considerably enhancing sensitivity. By integrating the CRISPR biosensing mechanism, AEFB facilitated rapid, accurate, nucleic acid amplification-free detection of E.coli O157:H7 with polymerase chain reaction (PCR)-level sensitivity (176 cfu/mL). To validate its practicality, AEFB was used to detect E.coli O157:H7 in surface water and wastewater. Comparison with RT-PCR showed a strong linear relationship (R2 = 0.9871), indicating the excellent accuracy and reliability of this technology in real applications. AEFB is highly versatile and can be easily extended to detect other pathogenic bacteria, which will significantly promote the high-frequency assessment and early-warning of bacterial contamination in aquatic environments.
Collapse
Affiliation(s)
- Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Laiya Lu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Anna Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
4
|
Chen D, Xu W, Lu Y, Zhuo Y, Ji T, Long F. Rapid and sensitive parallel on-site detection of antibiotics and resistance genes in aquatic environments using evanescent wave dual-color fluorescence fiber-embedded optofluidic nanochip. Biosens Bioelectron 2024; 257:116281. [PMID: 38677021 DOI: 10.1016/j.bios.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Environmental antibiotics and antibiotic resistance genes (ARGs) pose considerable threat to humans and animals; thus, the rapid and sensitive parallel detection of these pollutants from a single sample is urgently required. However, traditional multiplexed analytic technologies detect only one type of target (e.g., small molecules or nucleic acids) per assay. To address this issue, Evanescent wave Dual-color fluorescence Fiber-embedded Optofluidic Nanochip (EDFON) was fabricated by integrating a fiber-embedded optofluidic nanochip with evanescent wave dual-color fluorescence technology. The EDFON was used for the parallel quantitative detection of sulfamerazine (SMR) and MCR-1 with high sensitivity and specificity by combining a heterogeneous immunoassay with a homogenous hybridization chain reaction based on time-resolved effects. LODs of 0.032 μg/L and 35 pM was obtained for SMR and MCR-1, respectively, within 20 min. To our best knowledge, the EDFON is the first device for the simultaneous detection of two type of targets in each test, which is highly valuable to prevent the global threats of antibiotics and ARGs. Comparison with liquid chromatography-mass spectrometry showed a strong linear relationship (R2 = 0.998) for SMR pollution in the Qinghe River, with spiked SMR and MCR-1 negative surface and wastewater samples showing recovery rates of 91.8-113.4%. These results demonstrate the excellent accuracy and reliability of the EDFON, with features such as multi-analyte detection, field-deployment, and minimal-equipment, rendering it revolutionary for environmental monitoring, food safety, and medical diagnostics.
Collapse
Affiliation(s)
- Dan Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yongkai Lu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Tianxiang Ji
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
5
|
Chen D, Xu W, Huang Z, Liu J, Long F. A reusable fiber-embedded microfluidic chip for rapid and sensitive on-site detection of kanamycin residues in water environments. Analyst 2023; 148:6120-6129. [PMID: 37929744 DOI: 10.1039/d3an01409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The overuse and abuse of antibiotics have led to increased pollution in water environments. Thus, it is crucial to develop a rapid, high-frequency, and cost-effective method for on-site detection of antibiotics. In this regard, a reusable fiber-embedded microfluidic chip was constructed by combining a microfluidic chip with a functionalized fiber bioprobe that served as both a biorecognition element and an optical transducer. The fiber-embedded microfluidic chip enabled the quantitative detection of kanamycin (KANA) by integrating a portable all-fiber evanescent wave fluorescence detection device. Under optimized conditions, quantitative KANA detection was achieved with a detection limit of 0.03 μg L-1 and a linear detection range of 0.21-10.3 μg L-1. The accurate detection of KANA in various water samples can be completed within 25 min without pretreatment. The functionalized fiber-embedded microfluidic chip could be reused more than 200 times without significant performance loss. To demonstrate its suitability for practical applications, the fiber-embedded microfluidic chip was used to investigate KANA residues in surface waters obtained from the Qinghe River in Beijing, China. The results were compared with those of a traditional enzyme-linked immunosorbent assay, which showed a high correlation. Compared to conventional optical microfluidic chips, the proposed fiber-embedded microfluidic chip has several advantages, including its ease of use, miniaturization, cost-effectiveness, reusability, and high flexibility. It is an ideal alternative for rapid, sensitive on-site detection of antibiotics and other trace substances in environmental, food, and medical fields.
Collapse
Affiliation(s)
- Dan Chen
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Wenjuan Xu
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Ziqin Huang
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Jiayuan Liu
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Feng Long
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
6
|
Zhuo Y, Xu W, Chen Y, Long F. Rapid and sensitive point-of-need aflatoxin B1 testing in feedstuffs using a smartphone-powered mobile microfluidic lab-on-fiber device. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132406. [PMID: 37666172 DOI: 10.1016/j.jhazmat.2023.132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Rapid, high-frequency, and accurate identification of aflatoxin B1 (AFB1) is crucial for ensuring food safety and reducing population mortality. Herein, we constructed Smartphone powered Mobile mIcrofluidic Lab-on-fiber dEvice (SMILE) comprising a compact optical system, fiber nano-bioprobe-embedded microfluidic-chip system, mini-photodetector, and software application to facilitate the rapid and sensitive point-of-need quantitative testing for AFB1. The elegant optical design of SMILE significantly improves light transmission efficiency, detection sensitivity, and portability by integrating a compacted all-fiber optical structure with a fiber nano-bioprobe-embedded microfluidic chip. Furthermore, the nanopore layer of the fiber nano-bioprobe improves detection sensitivity by increasing the biorecognition molecule number and enhancing the interaction between the evanescent field and dye. Through an indirect competitive immunoassay mechanism, SMILE achieves sensitive quantitative detection of AFB1 with a detection limit of 0.08 µg/L. Herein, SMILE was validated using several feedstuff samples tested with a simple aqueous extraction protocol, demonstrating good correlation with high-performance liquid chromatography for AFB1-contaminated feedstuffs. The immunoassay process is completed within 12 min, boasting high sensitivity, specificity, reusability, and reproducibility. Owing to its sensitivity, portability, flexibility, plug-and-play, and smartphone integration, SMILE is highly scalable for rapid and high-frequency point-of-need testing for AFB1 and other trace contaminants.
Collapse
Affiliation(s)
- Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuan Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
7
|
Liu J, Xing Y, Lin Y, Xie Y, Zhou X. Effect of pretreatment approach on the ELISA-based detection of cyanotoxins in water: Analysis and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161988. [PMID: 36739018 DOI: 10.1016/j.scitotenv.2023.161988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Common cyanotoxins, such as microcystins and nodularins, are produced by frequently occurring harmful cyanobacterial algal blooms in freshwater systems. The required routine monitoring of microcystins and nodularins in drinking water and ambient water demands cost-efficient and reliable enzyme-linked immunosorbent assay kits. We validated the performance of a self-produced broad-spectrum enzyme-linked immunosorbent assay kit and investigated two different methods of mitigating the matrix effects to elucidate the effect of the respective pretreatment approaches recommended by China and the United States on the quantitative detection of cyanotoxins in surface water. We found that the enzyme-linked immunosorbent assay kit achieved a detection limit of 0.15 μg/L with a linear detection range from 0.27 μg/L to 1.87 μg/L for microcystin-LR (the most studied and widely distributed cyanotoxin). The matrix effects could be mitigated both by dilution of water samples with an optimal dilution ratio and dilution of antibody with the buffer containing phosphate buffer solution (10×), bovine serum albumin (1 %) and ethylene diamine tetraacetic acid (0.5 %). In terms of the surface water samples being tested, the concentrations of microcystins and nodularins measured based on pretreatment approach recommended by the United States were 1- 5 times that measured based on pretreatment approach recommended by China, indicating that the pretreatment approach of China overlooks cyanotoxins. In addition, all the measured total microcystins and nodularins of the surface water samples were below the health advisory limit (1.6 μg/L) for microcystins in drinking water proposed by the United States Environmental Protection Agency for school-age children and adults. Our research could provide significant information for outbreak warnings and risk management of harmful cyanobacterial algal blooms.
Collapse
Affiliation(s)
- Jinchuan Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yunpeng Xing
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yongshu Lin
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing 100043, PR China.
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Quintanilla-Villanueva GE, Maldonado J, Luna-Moreno D, Rodríguez-Delgado JM, Villarreal-Chiu JF, Rodríguez-Delgado MM. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. BIOSENSORS 2023; 13:90. [PMID: 36671925 PMCID: PMC9856096 DOI: 10.3390/bios13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
Aquaculture is an expanding economic sector that nourishes the world's growing population due to its nutritional significance over the years as a source of high-quality proteins. However, it has faced severe challenges due to significant cases of environmental pollution, pathogen outbreaks, and the lack of traceability that guarantees the quality assurance of its products. Such context has prompted many researchers to work on the development of novel, affordable, and reliable technologies, many based on nanophotonic sensing methodologies. These emerging technologies, such as surface plasmon resonance (SPR), localised SPR (LSPR), and fibre-optic SPR (FO-SPR) systems, overcome many of the drawbacks of conventional analytical tools in terms of portability, reagent and solvent use, and the simplicity of sample pre-treatments, which would benefit a more sustainable and profitable aquaculture. To highlight the current progress made in these technologies that would allow them to be transferred for implementation in the field, along with the lag with respect to the most cutting-edge plasmonic sensing, this review provides a variety of information on recent advances in these emerging methodologies that can be used to comprehensively monitor the various operations involving the different commercial stages of farmed aquaculture. For example, to detect environmental hazards, track fish health through biochemical indicators, and monitor disease and biosecurity of fish meat products. Furthermore, it highlights the critical issues associated with these technologies, how to integrate them into farming facilities, and the challenges and prospects of developing plasmonic-based sensors for aquaculture.
Collapse
Affiliation(s)
- Gabriela Elizabeth Quintanilla-Villanueva
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| | - Jesús Maldonado
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, Div. de Fotónica, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Mexico
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur No. 2501, Col. Tecnológico, Monterrey 64849, Mexico
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| |
Collapse
|
9
|
Wei X, Wang S, Zhan Y, Kai T, Ding P. Sensitive Identification of Microcystin-LR via a Reagent-Free and Reusable Electrochemical Biosensor Using a Methylene Blue-Labeled Aptamer. BIOSENSORS 2022; 12:bios12080556. [PMID: 35892453 PMCID: PMC9332554 DOI: 10.3390/bios12080556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/02/2023]
Abstract
We report a methylene blue (MB)-modified electrochemical aptamer (E-AB) sensor for determining microcystin-LR (MC-LR). The signal transduction of the sensor was based on changes in conformation and position of MB induced by the binding between MC-LR and the modified aptamer probe. In the absence of MC-LR, an aptamer probe was considered partially folded. After combining aptamer and MC-LR, the configuration of the aptamer probe changed and facilitated the electron transfer between MB and the electrode surface. As a result, an increased current response was observed. We optimized the parameters and evaluated the electrochemical performance of the sensor using square wave voltammetry (SWV). MC-LR was measured from 1.0 to 750.0 ng/L with a detection limit of 0.53 ng/L. The reliability of the method was verified by the determination of MC-LR in environmental real samples, such as pond water and tap water. Moreover, we demonstrated that this reagent-less biosensor could be regenerated and reused after rinsing with deionized water with good accuracy and reproducibility. As a reusable and regenerable E-AB sensor, this rapid, reagent-free, and sensitive sensing platform will facilitate routine monitoring of MC-LR in actual samples.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
- Correspondence: (T.K.); (P.D.)
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
- Correspondence: (T.K.); (P.D.)
| |
Collapse
|
10
|
Liu Y, Chen Y, Xu W, Song D, Han X, Long F. Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3759. [PMID: 35409443 PMCID: PMC8997826 DOI: 10.3390/ijerph19073759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023]
Abstract
This paper develops an improved portable and reusable evanescent wave optofluidic immunosensor (OIP-v2) for rapid and sensitive on-site determination of deoxynivalenol (DON), one of the most frequently detected mycotoxins mainly produced by Fusarium species. Using the bifunctional reagent N,N'-Disuccinimidyl carbonate, deoxynivalenol-bovine-serum-albumin (DON-BSA) were covalently modified onto a bio-probe surface as biorecognition elements, whose robustness allowed it to perform multiple detections without significant activity loss. An indirect competitive immunoassay strategy was applied for DON detection. Under optimal conditions, the limit of detection of 0.11 μg/L and the linear dynamic detection range of 0.43 to 36.61 μg/L was obtained when the concentration of the Cy5.5-anti-DON antibody was 0.25 μg/mL. The OIP-v2 was also applied to detect DON in various cereals, and the recoveries ranged from 81% to 127%. The correlation between OIP-v2 and enzyme-linked immunosorbent assay (ELISA) through the simultaneous detection of maize-positive samples was in good agreement (R2 = 0.9891).
Collapse
Affiliation(s)
- Yanping Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100874, China; (Y.L.); (W.X.); (D.S.); (X.H.)
| | - Yuyang Chen
- China National Intellectual Property Administration, Beijing 100088, China;
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100874, China; (Y.L.); (W.X.); (D.S.); (X.H.)
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100874, China; (Y.L.); (W.X.); (D.S.); (X.H.)
| | - Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing 100874, China; (Y.L.); (W.X.); (D.S.); (X.H.)
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100874, China; (Y.L.); (W.X.); (D.S.); (X.H.)
| |
Collapse
|
11
|
Zhang C, Shi D, Li X, Yuan J. Microfluidic electrochemical magnetoimmunosensor for ultrasensitive detection of interleukin-6 based on hybrid of AuNPs and graphene. Talanta 2021; 240:123173. [PMID: 34999320 DOI: 10.1016/j.talanta.2021.123173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 02/02/2023]
Abstract
Cytokines are important factors in the early diagnosis of autoimmune diseases and require high sensitivity, high selectivity and quantitative detection. We proposed a miniaturized electrochemical magneto-immunosensor (EC-MIS) on portable interleukin-6 (IL-6) detection based on this requirement. Firstly, a micro-fabricated working electrode is electrochemically modified with a hybrid of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). Increased surface area and enhanced charge transfer rate improve the performance of this immunosensor on sensitivity. Secondly, magnetic beads attached with the capture antibody (cAb) are employed in sandwich immunoassay. This kind of immunoassay is immobilized on the working electrode surface by an external magnet to enrich the analyte IL-6. Thirdly, the last two features are combined and integrated on a microfluidic device in order to restrict the sample at certain areas and ease the operation of detection. With our prototypic EC-MIS operated in amperometric mode, we have achieved the detection of IL-6 with a linear range from 0.97 to 250 pg/mL and a limit of detection (LOD) of 0.42 pg/mL. Real serum samples were demonstrated and compared with benchtop equipment's results.
Collapse
Affiliation(s)
- Chiye Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| | - Dongmin Shi
- Microelectronics, The Hong Kong University of Science and Technology (GZ), Hong Kong
| | - Xiaoyuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
| | - Jie Yuan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
12
|
Cheng Y, Wang H, Zhuo Y, Song D, Li C, Zhu A, Long F. Reusable smartphone-facilitated mobile fluorescence biosensor for rapid and sensitive on-site quantitative detection of trace pollutants. Biosens Bioelectron 2021; 199:113863. [PMID: 34894557 DOI: 10.1016/j.bios.2021.113863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Increasing exposure to toxic pollutants highlights the need for their sensitive detection technologies that can be rapidly adapted and deployed in various settings. Optical biosensors are an excellent solution due to their outstanding features. However, the sophisticated and expensive optical design limits their scalability and actual application. Herein, an innovative reusable smartphone-facilitated mobile fluorescence biosensor (s-MFB) was built through integrating miniaturized all-fiber optical system and microfluidic system with smartphone. An asymmetric Y-shaped fiber optic coupler (Y-FOC) is constructed for simultaneous transmission of excitation light and the collected fluorescence. In particular, the incidence rays are introduced into the fiber bio-probe at a specific angle through the single-mode fiber of the Y-FOC, which enhances the evanescent wave field and the number of total internal reflections. The s-MBF showed a LOD for free Cy5.5 of 0.1 nM. Combining indirect competitive immunoassay with the s-MFB, this new assay, which achieve quantitative detection of bisphenol A and norfloxacin in 15 min with high sensitivity and reusability, substantially reduces the complexity and improves the scalability of trace pollutants detection. The adjunctive smartphone application allows on-site real-time quantitative detection, automated interpretation of reporting results, and early-warning of pollution accidents.
Collapse
Affiliation(s)
- Yuan Cheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Hongliang Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Chunsheng Li
- Cell Biochemistry Laboratory, Biology Institute of Hebei Academy of Sciences, Shijiazhuang, 050051, China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
13
|
Mohamed A, Walsh R, Cherif M, Hafez HA, Ropagnol X, Vidal F, Perreault J, Ozaki T. High-sensitivity small-molecule detection of microcystin-LR cyano-toxin using a terahertz-aptamer biosensor. Analyst 2021; 146:7583-7592. [PMID: 34780591 DOI: 10.1039/d1an01577j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We demonstrate the rapid and highly sensitive detection of a small molecule, microcystin-LR (MC-LR) toxin using an aptasensor based on a terahertz (THz) emission technique named the terahertz chemical microscope (TCM). The main component of the TCM is the sensing plate, which consists of a thin silicon layer deposited on a sapphire substrate, with a natural SiO2 layer formed on the top of the Si layer. The DNA aptamer is linked to the oxidized top surface of the silicon layer by a one-step reaction (click chemistry) between the DBCO-labeled aptamer and an azido group that binds to the surface. Using density functional theory (DFT) calculations, the number of active sites on the surface has been estimated to be 3.8 × 1013 cm-2. Aptamer immobilization and MC-LR binding have been optimized by adjusting the aptamer concentration and the binding buffer composition. When MC-LR binds with the DNA aptamer, it causes a change in the chemical potential at the surface of the sensing plate, which leads to a change in the amplitude of the THz signal. Compared with other bio-sensing methods such as surface plasmon resonance (SPR), TCM is a rapid assay that can be completed in 15 min (10 min incubation and 5 min data acquisition). Moreover, our results show that the aptamer-based TCM can detect MC-LR with an excellent detection limit of 50 ng L-1, which is 20 times more sensitive compared with SPR measurements of MC-LR.
Collapse
Affiliation(s)
- Ahmed Mohamed
- Institut National de la Recherche Scientifique - Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada.
| | - Ryan Walsh
- INRS Centre Armand-Frappier Santé Biotechnologie, 531 boulevards des Prairies, Laval, Québec, Canada
| | - Mohamed Cherif
- Institut National de la Recherche Scientifique - Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada.
| | - Hassan A Hafez
- Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Xavier Ropagnol
- Institut National de la Recherche Scientifique - Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada. .,Département de génie électrique, École de technologie supérieure (ÉTS), Montréal, Québec, H3C 1 K3, Canada
| | - François Vidal
- Institut National de la Recherche Scientifique - Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada.
| | - Jonathan Perreault
- INRS Centre Armand-Frappier Santé Biotechnologie, 531 boulevards des Prairies, Laval, Québec, Canada
| | - Tsuneyuki Ozaki
- Institut National de la Recherche Scientifique - Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada.
| |
Collapse
|
14
|
Xu W, Zhuo Y, Song D, Han X, Xu J, Long F. Development of a novel label-free all-fiber optofluidic biosensor based on Fresnel reflection and its applications. Anal Chim Acta 2021; 1181:338910. [PMID: 34556220 PMCID: PMC8450429 DOI: 10.1016/j.aca.2021.338910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
A novel, compact, cost-effective, and robust label-free all-fiber optofluidic biosensor (LF-AOB) based on Fresnel reflection mechanism was built through integrating single-multi mode fiber coupler and highly sensitive micro-photodetector. The Fresnel reflection light intensity detected by the LF-AOB greatly depended on the RI change on the end-surface of the fiber probe according to experimental and simulation results. The capability of the LF-AOB for real-time in situ detection in optofluidic system were verified by measuring salt and protein solution, and the lowest limit of detection was 1.0 × 10−6 RIU. Our proposed theory can effectively eliminate the influence of light intensity fluctuation, and one-point calibration method of sensor performance is conducive for rapid and convenient detection of targets. Label-free sensitive detection of SARS-Cov-2 Spike protein receptor-binding domain (S-RBD) and the binding kinetics assay between S-RBD and anti-S-RBD antibody were achieved using the LF-AOB. These contributed to the elegant design of all-fiber optical system with high efficiency, high resolution and sensitivity of micro-photodetector, and enhanced interaction between the light and the samples at the liquid-sensor interface because of the large surface area of the multi-mode fiber probe. The LF-AOB can be extended as a universal sensing platform to measure other factors associated with refractive index because its high sensitivity, low sample consumption (∼160 nL), and capability of real-time in situ detection.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jiaxin Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
15
|
Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116344] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Bertani P, Lu W. Cyanobacterial toxin biosensors for environmental monitoring and protection. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Liu J, Xing Y, Zhou X, Chen GY, Shi H. Light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor for Microcystin-LR. Biosens Bioelectron 2021; 176:112902. [PMID: 33341317 DOI: 10.1016/j.bios.2020.112902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
A novel U-shaped fiber-optic evanescent-wave fluorescent immunosensor was designed that exploits light-sheet excitation of skew rays in a passive fiber for sensitive microcystin-LR (MC-LR) detection in real-time. In particular, a light sheet comprising a thin plane of light can be concentrated into exciting the optimum ray group, resulting in enhanced interaction between light and fluorophores. Meanwhile, skew rays excited by transmitting light into an optical fiber with an angle offset allow a much higher number of total-internal-reflections with increased interaction length along the fiber interface, which strengthens the light-matter interactions. Under the optimal angle offset, the proposed evanescent wave fluorescent immunosensor is the first demonstration of integrating light-sheet skew rays and a U-shaped fiber-optic probe for enhanced sensitivity. The results show that fluorescence sensitivity of the U-shaped fiber-optic probe with light-sheet skew rays excitation is 16 times higher than that of collimated skew rays excitation. Combined with this newly designed light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor, a sensitive and real-time MC-LR detection method was established based on the indirect competitive immunoassay principle. Real environmental water samples spiked with MC-LR were determined by the immunosensor with recovery rates between 85% and 112%. The present system could be an alternative tool for the on-site environmental monitoring, in-field food safety assurance and clinical diagnostics. It also advances the fiber-optic sensors field in terms of experimental design.
Collapse
Affiliation(s)
- Jinchuan Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunpeng Xing
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - George Y Chen
- Laser Physics and Photonic Devices Laboratories, UniSA STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Zhao J, Lu Z, Wang S, Wei Z, Zhou J, Ren S, Lou X. Nanoscale Affinity Double Layer Overcomes the Poor Antimatrix Interference Capability of Aptamers. Anal Chem 2021; 93:4317-4325. [PMID: 33620193 DOI: 10.1021/acs.analchem.0c05320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poor antimatrix interference capability of aptamers is one of the major obstacles preventing their wide applications for real-sample detections. Here, we devise a multiple-function interface, denoted as a nanoscale affinity double layer (NADL), to overcome this bottleneck via in situ simultaneous target enrichment, purification, and detection. The NADL consists of an upper aptamer layer for target purification and sensing and a lower nanoscale solid-phase microextraction (SPME) layer for sample enrichment. The targets flowing through the NADL-functionalized surface are instantly million-fold enriched and purified by the sequential extraction of aptamer and SPME. The formation of the aptamer-target complex is greatly enhanced, enabling ultrasensitive detection of targets with minimized interference from the matrix. Taking the fiber-optic evanescent wave sensor as an example, we demonstrated the feasibility and generality of the NADL. The unprecedented detection of limits of 800, 4.8, 40, and 0.14 fM were, respectively, achieved for three representative small-molecule targets with distinct hydrophobicity (kanamycin A, sulfadimethoxine, and di-(2-ethylhexyl) phthalate) and protein target (human serum albumin), corresponding to 2500 to 3 × 108-fold improvement compared to the sensors without the NADL. Our sensors also showed exceptionally high target specificity (>1000) and tunable dynamic ranges simply by manipulating the SPME layer. With these features comes the ability to directly detect targets in diluted environmental, food, and biological samples at concentrations all well below the tolerance limits.
Collapse
Affiliation(s)
- Jiaxing Zhao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Zhangwei Lu
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Shuo Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Zhenzhe Wei
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Jianshuo Zhou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Shang Ren
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road 105, Beijing 100048, China
| |
Collapse
|
20
|
Simple, rapid, and sensitive on-site detection of Hg 2+ in water samples through combining portable evanescent wave optofluidic biosensor and fluorescence resonance energy transfer principle. Anal Chim Acta 2021; 1155:338351. [PMID: 33766323 DOI: 10.1016/j.aca.2021.338351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Rapid and sensitive detection of Hg2+ in the environment and drinking water is vital because of its non-degradability, bioaccumulation, and high toxicity. Herein, we report a portable evanescent wave optofluidic biosensor (EWOB) for simple sensitive detection of Hg2+ using fluorescence labeled poly-A DNA strand (CY-A14) and quencher labeled poly-T DNA strand (BQ-T14) as signal reporter and biorecognition element, respectively. Both CY-A14 and Hg2+ can competitively bind with BQ-T14 based on DNA hybridization and the specifical binding of Hg2+ and T bases of DNA to form T-Hg2+-T mismatch structure, respectively. Higher concentration of Hg2+ lead to less CY-A14 bound to BQ-T14 and thus a higher fluorescence intensity. The influence of several key environmental factors on Hg2+ biosensor, such as pH, temperature, and ionic strength, was investigated in details because they were essential for practical applications of Hg2+ biosensor. Under optimal conditions, a detection cycle for a single sample, including the measurement and regeneration, was less than 10 min with a Hg2+ detection limit of 8.5 nM. The high selectivity of the biosensor was showed by evaluating its response to various potentially interfering metal ions. Our results clearly demonstrated that the portable EWOB could serve as a powerful tool for rapid and sensitive on-site detection of Hg2+ in real water samples. The EWOB is also potentially applicable to detect other heavy metal ions or small molecule targets for which DNA/aptamers could be applied as specific biosensing probes.
Collapse
|
21
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
22
|
Long F, Li W, Song D, Han X, Zhou Y, Fang S, Xu W, Liu J, Zhu A. Portable and automated fluorescence microarray biosensing platform for on-site parallel detection and early-warning of multiple pollutants. Talanta 2019; 210:120650. [PMID: 31987168 DOI: 10.1016/j.talanta.2019.120650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 12/14/2019] [Indexed: 01/26/2023]
Abstract
The portable and automated fluorescence microarray biosensing platform (FMB) that employed a compact hybrid optical structure, microfluidics, and microarray biosensors was constructed for on-site parallel detection of multiple analytes. In the FMB, a hybrid optical structure that composed of a 1 × 4 single mode fiber optic coupler, four fiber optic switches, a single-multi mode fiber optic bundle coupler was at the first time developed for the transmission of the excitation light and the collection and transmission of multi-channel fluorescence signals. Through the control of fiber optic switches, the parallel fluorescence assay of four channels could be achieved using only one excitation light and one photodiode detector on the basis of the time-resolved effect. This optical design not only greatly increased the efficiency of light transmission and fluorescence collection and detection sensitivity of the FMB, but also allows the miniaturization and portability of the whole system because of few optical separation elements used and no requirement of rigorous optical alignment. Taking Microcystin-LR (MC-LR), 2,4-D, atrazine (ATZ), and bisphenol A (BPA) for example, the application potential of the FMB to rapidly and parallelly detect four typical pollutants in real water with high sensitivity and specificity was demonstrated. The limits of detection of MC-LR, 2,4-D, ATZ, and BPA were 0.04 μg/L, 0.09 μg/L, 0.02 μg/L, and 0.03 μg/L, respectively. The FMB could also achieve early-warning of pollutants thanks to its ability of rapidity, high-frequency, and multiple-analyte detection. The FMB has significant implications as a multiplexable, portable, rapid, and quantitative detection platform for pollution accidents and water quality management to satisfy the increasing demands of alerting and protecting civilians.
Collapse
Affiliation(s)
- Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Wei Li
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yue Zhou
- Research Institute of Chemical Defense, Beijing, 102205, China
| | - Shunyan Fang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jiayao Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Anna Zhu
- Research Institute of Chemical Defense, Beijing, 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing, 102205, China
| |
Collapse
|
23
|
Tripathi SM, Dandapat K, Bock WJ, Mikulic P, Perreault J, Sellamuthu B. Gold coated dual-resonance long-period fiber gratings (DR-LPFG) based aptasensor for cyanobacterial toxin detection. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
Double-integrated mimic enzymes for the visual screening of Microcystin-LR: Copper hydroxide nanozyme and G-quadruplex/hemin DNAzyme. Anal Chim Acta 2019; 1054:128-136. [DOI: 10.1016/j.aca.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/08/2018] [Indexed: 02/06/2023]
|
25
|
Tang X, Yin Z, Lei X, Zeng Y, Zhang Z, Lu Y, Zhou G, Li L, Wu X. Colorimetric Method for Sensitive Detection of Microcystin-LR Using Surface Copper Nanoparticles of Polydopamine Nanosphere as Turn-On Probe. NANOMATERIALS 2019; 9:nano9030332. [PMID: 30832300 PMCID: PMC6473965 DOI: 10.3390/nano9030332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023]
Abstract
A novel, facile sensor was further developed for microcystin-LR (MC-LR) determination by visible spectroscopy. Antibody-functionalized SiO2-coated magnetic nanoparticles (Fe3O4@SiO2) and aptamer-functionalized polydopamine nanospheres decorated with Cu nanoparticles (PDA/CuNPs) recognized specific sites in MC-LR and then the sandwich-type composites were separated magnetically. The Cu in the separated composites was converted to Cu2+ ions in solution and turn-on visible absorption was achieved after reaction with bis(cyclohexanone)oxaldihydrazone (BCO) (λmax = 600 nm). There was a quantitative relationship between the spectral intensity and MC-LR concentration. In addition, under the optimum conditions, the sensor turns out to be a linear relationship from 0.05 to 25 nM, with a limit of detection of 0.05 nM (0.05 μg/L) (S/N = 3) for MC-LR. The sensitivity was dependent on the low background absorption from the off-to-on spectrum and label amplification by the polydopamine (PDA) surface. The sensor had high selectivity, which shows the importance of dual-site recognition by the aptamer and antibody and the highly specific color formed by BCO with Cu2+. The bioassay was complete within 150 min, which enabled quick determination. The sensor was successfully used with real spiked samples. These results suggest it has potential applications in visible detection and could be used to detect other microcystin analogs.
Collapse
Affiliation(s)
- Xiaodi Tang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoling Lei
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zulei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yixia Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaohua Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
26
|
Qin J, Sun X, Li D, Yan G. Phosphorescent immunosensor for simple and sensitive detection of microcystin-LR in water. RSC Adv 2019; 9:12747-12754. [PMID: 35515855 PMCID: PMC9063644 DOI: 10.1039/c9ra02141h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
A simple and sensitive Mn–ZnS quantum dot room-temperature phosphorescent immunosensor for detecting microcystin-LR was developed. This sensor adopted antigens and antibodies as recognition units and used Mn–ZnS RTP QDs as sensing materials to specifically bind with MC-LR. The structurally specific binding between the microcystin-LR antibody and MC-LR led to the aggregation of antibody-crosslinked QDs, and then the electrons of QDs would be transferred to the complex, leading to the phosphorescence quenching of QDs. The microcystin-LR antigen–antibody specific binding site was first analyzed. This phosphorescent immunosensor rapidly and sensitively detected microcystin-LR, with linear ranges of 0.2–1.5 μg L−1 and 1.5–20 μg L−1 and a detection limit of up to 0.024 μg L−1. Meanwhile, coexisting pollutants of microcystin-LR in water did not significantly interfere with microcystin-LR detection. The new sensor was applied to detect real water samples and showed high sensitivity and selectivity. A simple and sensitive Mn–ZnS quantum dot room-temperature phosphorescent immunosensor for detecting microcystin-LR was developed.![]()
Collapse
Affiliation(s)
- Jin Qin
- Shanxi Normal University
- Linfen
- China
| | | | | | | |
Collapse
|
27
|
Zhou L, Fang S, Liu Y, Yang R, Song D, Long F, Zhu A. Universal and reusable hapten/antibody-mediated portable optofluidic immunosensing platform for rapid on-site detection of pathogens. CHEMOSPHERE 2018; 210:10-18. [PMID: 29980068 DOI: 10.1016/j.chemosphere.2018.06.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
A universal and reusable hapten-antibody-mediated portable optofluidic immunosensing platform (OIP) was developed for rapid on-site detection of pathogens. By using Escherichia coli O157:H7 (E. coli O157:H7) and bisphenol A-Bovine serum albumin (BPA-BSA)/anti-BPA antibody as a model pathogen and a mediated hapten-antibody, respectively, a novel immunoassay mechanism was proposed to detect pathogens. The BPA-BSA-modified immunosensor and E. coli O157:H7 were initially saturated with anti-BPA antibodies (mouse IgG) and anti-E. coli O157:H7 antibodies (mouse IgG), respectively. Then, the fluorescence-labeled secondary antibodies (goat anti-mouse IgG antibody) were incubated with E. coli O157:H7 with their antibodies. Next, the mixture was introduced into the immunosensor surface bound to the anti-BPA antibodies. A high concentration of E. coli O157:H7 in the sample reduced the number of fluorescence-labeled secondary antibodies bound to the immunosensor surface, thus resulting in the detection of low fluorescence signals. Under optimized conditions, the hapten-antibody-mediated OIP system exhibited a detection limit of 8 cfu/mL E. coli O157:H7 after concentrating 100 times by using centrifugation, and a test cycle, including prereaction, detection, and regeneration, was less than 1 h. The robustness of the hapten-carrier protein-modified immunosensor surface allowed multiple pathogen immunoassays. The proposed strategy demonstrated good recovery, precision, and accuracy through the evaluation of the spiked water samples. We expect that the new platform can be readily used for the detection of other pathogens in a variety of application fields ranging from environmental monitoring and food safety to medical diagnosis.
Collapse
Affiliation(s)
- Liping Zhou
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Shunyan Fang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yanping Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
28
|
Li W, Wang H, Yang R, Song D, Long F, Zhu A. Integrated multichannel all-fiber optofluidic biosensing platform for sensitive and simultaneous detection of trace analytes. Anal Chim Acta 2018; 1040:112-119. [PMID: 30327100 DOI: 10.1016/j.aca.2018.07.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
An integrated multichannel all-fiber optofluidic biosensing platform (M-AOB) has been developed for a sensitive, rapid, and simultaneous detection of up to three trace analytes. The M-AOB platform employs a 1 × 3 fiber optical switch and three single-multimode fiber optic couplers for the transmission of excitation light and fluorescence and one photodiode detector for the simultaneous detection of fluorescence signals of multiple channels based on the time-resolve effect of the fiber optical switch. This design greatly simplified the entire system structure and improved light transmission efficiency. Through an indirect competitive immunoassay mechanism, we detected two highly regulated small molecules, namely, atrazine and 2,4-D, to demonstrate the value of M-AOB to the simultaneous measurement of trace analytes in water samples. The limits of detection of 0.03 μg/L and 0.04 μg/L were obtained for atrazine and 2,4-D, respectively, and were highly comparable with those of other analytical techniques. The high sensitivity of M-AOB benefited from the high light collective efficiency and low light loss of the excellent all-fiber optical structures and from the advantages of the evanescent wave technique. The regeneration of the biosensor surface, 200 assay cycles, were performed without any significant activity loss. Each assay cycle was less than 15 min. The immunoassay performance of the M-AOB, evaluated in several spiked water samples, showed good recovery, accuracy, and precision, indicating that the M-AOB was less susceptible to matrix effects of water samples. All these results illustrated that M-AOB can be readily extended toward the simultaneous and rapid detection of other trace small molecules using different biosensors modified by other analyte conjugates and their respective fluorescence-labeled antibodies.
Collapse
Affiliation(s)
- Wei Li
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Haoyu Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing, 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing, 102205, China.
| |
Collapse
|
29
|
Maguire I, Fitzgerald J, Heery B, Nwankire C, O’Kennedy R, Ducrée J, Regan F. Novel Microfluidic Analytical Sensing Platform for the Simultaneous Detection of Three Algal Toxins in Water. ACS OMEGA 2018; 3:6624-6634. [PMID: 30023955 PMCID: PMC6045346 DOI: 10.1021/acsomega.8b00240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Globally, the need for "on-site" algal-toxin monitoring has become increasingly urgent due to the amplified demand for fresh-water and for safe, "toxin-free" shellfish and fish stocks. Herein, we describe the first reported, Lab-On-A-Disc (LOAD) based-platform developed to detect microcystin levels in situ, with initial detectability of saxitoxin and domoic acid also reported. Using recombinant antibody technology, the LOAD platform combines immunofluorescence with centrifugally driven microfluidic liquid handling to achieve a next-generation disposable device capable of multianalyte sampling. A low-complexity "LED-photodiode" based optical sensing system was tailor-made for the platform, which allows the fluorescence signal of the toxin-specific reaction to be quantified. This system can rapidly and accurately detect the presence of microcystin-LR, domoic acid, and saxitoxin in 30 min, with a minimum of less than 5 min end-user interaction for maximum reproducibility. This method provides a robust "point of need" diagnostic alternative to the current laborious and costly methods used for qualitative toxin monitoring.
Collapse
Affiliation(s)
- Ivan Maguire
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jenny Fitzgerald
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Brendan Heery
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Charles Nwankire
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Richard O’Kennedy
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jens Ducrée
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fiona Regan
- School of Chemical Sciences, DCU Water Institute, School of Biotechnology, School of Physical
Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
30
|
TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosens Bioelectron 2018; 106:117-121. [PMID: 29414077 DOI: 10.1016/j.bios.2018.01.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
Abstract
In order to realize the multi-analyte assays for environmental contaminants, an optical biosensor utilizing laser-induced fluorescence-based detection via the binding of biomolecules to the surface of an integrated TriPleX™ waveguide chip on a glass substrate (fused silica, FS) is described. As far as we know, this is the first demonstration of using the TriPleX™ technology to fabricate the waveguide chip on a FS substrate. The sensor consists of 32 individually addressable sensor patches, which were formed on the chip surface by exploiting 3 Y-junction splitters, creating four equal rows of eight evanescently excited windows in parallel. The basic low-loss SiO2/Si3N4 TriPleX™ waveguide configuration in combination with on-chip spotsize convertors allows for both high fiber-to-chip coupling efficiency and enables at the same time individually optimized high chip surface intensity and low patch-to-patch deviation. Moreover, the complementary metal-oxide-semiconductor compatible fabrication of waveguide chip allows for its mass production at low cost. By taking MC-LR, 2,4-D, atrazine and BPA as the model analytes, the as-proposed waveguide based biosensor was proven sensitive with the detection limits of 0.22 μg/L for MC-LR, 1.18 μg/L for 2, 4-D, 0.2 μg/L for atrazine and 0.06 μg/L for BPA. Recoveries of the biosensor towards simultaneous detection of MC-LR, 2, 4-D, atrazine and BPA in spiked real water samples varied from 84% to 120%, indicating the satisfactory accuracy of the established technology.
Collapse
|
31
|
Gan C, Wang B, Huang J, Qileng A, He Z, Lei H, Liu W, Liu Y. Multiple amplified enzyme-free electrochemical immunosensor based on G-quadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-LR detection. Biosens Bioelectron 2017; 98:126-133. [DOI: 10.1016/j.bios.2017.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
|
32
|
Zanato N, Talamini L, Silva TR, Vieira IC. Microcystin-LR label-free immunosensor based on exfoliated graphite nanoplatelets and silver nanoparticles. Talanta 2017; 175:38-45. [DOI: 10.1016/j.talanta.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
|
33
|
Liu L, Zhou X, Wilkinson JS, Hua P, Song B, Shi H. Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and Analysis. Sci Rep 2017. [PMID: 28623299 PMCID: PMC5473886 DOI: 10.1038/s41598-017-03939-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nowadays, biosensor technologies which can detect various contaminants in water quickly and cost-effectively are in great demand. Herein, we report an integrated channel waveguide-based fluorescent immunosensor with the ability to detect a maximum of 32 contaminants rapidly and simultaneously. In particular, we use waveguide tapers to improve the efficiency of excitation and collection of fluorescent signals in the presence of fluorophore photobleaching in a solid surface bioassay. Under the optimized waveguide geometry, this is the first demonstration of using such a type of waveguide immunosensor for the detection of microcystin-LR (MC-LR) in lake water. The waveguide chip was activated by (3-Mercaptopropyl) trimethoxysilane/N-(4-maleimidobutyryloxy) succinimide (MTS/GMBS) for immobilization of BSA-MC-LR conjugate, which was confirmed to have uniform monolayer distribution by atomic force microscopy. All real lake samples, even those containing MC-LR in the sub-microgram per liter range (e.g. 0.5 μg/L), could be determined by the immunosensor with recovery rates between 84% and 108%, confirming its application potential in the measurement of MC-LR in real water samples.
Collapse
Affiliation(s)
- Lanhua Liu
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Xiaohong Zhou
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China.
| | - James S Wilkinson
- Optoelectronics Research Centre, Southampton University, Highfield, Southampton, SO17 1BJ, UK
| | - Ping Hua
- Optoelectronics Research Centre, Southampton University, Highfield, Southampton, SO17 1BJ, UK.
| | - Baodong Song
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Hanchang Shi
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
34
|
Liu L, Zhou X, Lu Y, Shan D, Xu B, He M, Shi H, Qian Y. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor. Biosens Bioelectron 2017; 97:16-20. [PMID: 28549265 DOI: 10.1016/j.bios.2017.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E2) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E2 free to bind to fluorophore-labeled anti-E2 monoclonal antibody. Unbound anti-E2 antibody then binds to the immobilized E2-protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E2-protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Didi Shan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bi Xu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Qian
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens Bioelectron 2017; 91:664-672. [DOI: 10.1016/j.bios.2017.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
|
36
|
Lim HJ, Chua B, Son A. Detection of bisphenol A using palm-size NanoAptamer analyzer. Biosens Bioelectron 2017; 94:10-18. [PMID: 28237901 DOI: 10.1016/j.bios.2017.02.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD655 was tethered to QD565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD655 from the complex and hence corresponding decrease in QD655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea.
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Bilibana MP, Williams AR, Rassie C, Sunday CE, Makelane H, Wilson L, Ntshongontshi N, Jijana AN, Masikini M, Baker PGL, Iwuoha EI. Electrochemical Aptatoxisensor Responses on Nanocomposites Containing Electro-Deposited Silver Nanoparticles on Poly(Propyleneimine) Dendrimer for the Detection of Microcystin-LR in Freshwater. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1901. [PMID: 27845719 PMCID: PMC5134560 DOI: 10.3390/s16111901] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023]
Abstract
A sensitive and reagentless electrochemical aptatoxisensor was developed on cobalt (II) salicylaldiimine metallodendrimer (SDD-Co(II)) doped with electro-synthesized silver nanoparticles (AgNPs) for microcystin-LR (L, l-leucine; R, l-arginine), or MC-LR, detection in the nanomolar range. The GCE|SDD-Co(II)|AgNPs aptatoxisensor was fabricated with 5' thiolated aptamer through self-assembly on the modified surface of the glassy carbon electrode (GCE) and the electronic response was measured using cyclic voltammetry (CV). Specific binding of MC-LR with the aptamer on GCE|SDD-Co(II)|AgNPs aptatoxisensor caused the formation of a complex that resulted in steric hindrance and electrostatic repulsion culminating in variation of the corresponding peak current of the electrochemical probe. The aptatoxisensor showed a linear response for MC-LR between 0.1 and 1.1 µg·L-1 and the calculated limit of detection (LOD) was 0.04 µg·L-1. In the detection of MC-LR in water samples, the aptatoxisensor proved to be highly sensitive and stable, performed well in the presence of interfering analog and was comparable to the conventional analytical techniques. The results demonstrate that the constructed MC-LR aptatoxisensor is a suitable device for routine quantification of MC-LR in freshwater and environmental samples.
Collapse
Affiliation(s)
- Mawethu P Bilibana
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Avril R Williams
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados.
| | - Candice Rassie
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Christopher E Sunday
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Hlamulo Makelane
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Lindsay Wilson
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Nomaphelo Ntshongontshi
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Abongile N Jijana
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Milua Masikini
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Priscilla G L Baker
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| | - Emmanuel I Iwuoha
- SensorLab, Department of Chemistry, University of Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
38
|
Prutthiwanasan B, Phechkrajang C, Suntornsuk L. Fluorescent labelling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water. Talanta 2016; 159:74-79. [DOI: 10.1016/j.talanta.2016.05.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
39
|
Xiao R, Wang C, Zhu A, Long F. Single functional magnetic-bead as universal biosensing platform for trace analyte detection using SERS-nanobioprobe. Biosens Bioelectron 2016; 79:661-8. [DOI: 10.1016/j.bios.2015.12.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 11/28/2022]
|
40
|
He X, Liu YL, Conklin A, Westrick J, Weavers LK, Dionysiou DD, Lenhart JJ, Mouser PJ, Szlag D, Walker HW. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. HARMFUL ALGAE 2016; 54:174-193. [PMID: 28073475 DOI: 10.1016/j.hal.2016.01.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators.
Collapse
Affiliation(s)
- Xuexiang He
- Southern Nevada Water Authority, PO Box 99954, Las Vegas, NV 89193, USA
| | - Yen-Ling Liu
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Conklin
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Judy Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Linda K Weavers
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John J Lenhart
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Paula J Mouser
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Szlag
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Harold W Walker
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
41
|
Li X, Cheng R, Shi H, Tang B, Xiao H, Zhao G. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:474-80. [PMID: 26619046 DOI: 10.1016/j.jhazmat.2015.11.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/29/2015] [Accepted: 11/09/2015] [Indexed: 05/22/2023]
Abstract
A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well.
Collapse
Affiliation(s)
- Xiuyan Li
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Ruojie Cheng
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Huijie Shi
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Bo Tang
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Hanshuang Xiao
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
42
|
A non-enzymatic electrochemical immunosensor for microcystin-LR rapid detection based on Ag@MSN nanoparticles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Gan C, Ling L, He Z, Lei H, Liu Y. In-situ assembly of biocompatible core-shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection. Biosens Bioelectron 2015; 78:381-389. [PMID: 26655177 DOI: 10.1016/j.bios.2015.11.072] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Microcystin-LR (MC-LR) is a kind of hepatotoxin which can cause functional and structural disturbances of the liver, accumulate in aquatic organisms and transfer to higher trophic levels, a biocompatible electrochemical immunosensor was constructed to detect MC-LR sensitively and selectively. The three-dimensional villiform-like carbon nanotube/cobalt silicate (CNT@Co silicate) core-shell nanocomposites were synthesized and firstly used as the substrate to immobilize the antigen of MC-LR (Ag), while Fe3O4 nanoclusters/polydopamine/gold nanoparticles (Fe3O4@PDA-Au) core-shell magnetic nanocomposites were prepared as the label carrier of the immunosensor to conjugate the second antibody (Ab2) and horse radish peroxidase (HRP). Since the toxicity of nanomaterials is important in the construction of biosensors including the immobilization of antigen or antibody, the biocompatibility of such nanocomposites were investigated by monitoring the cell viability after culturing with Hela cells. Due to the excellent biocompatibility, the immunosensor can immobilize more antigens by the large surface area of the three-dimensional villiform-like structure in CNT@Co silicate, and provide high electrochemical signals by Fe3O4@PDA-Au labeled Ab2 and HRP. After investigation of the binding capability of biomolecules on nanomaterials and optimization of the conditions in the competitive immunoassay, the proposed electrochemical immunosensor shows a linear response to MC-LR in the range from 0.005 μg/L to 50 μg/L with a detection limit of 0.004 μg/L. In addition, the specificity, reproducibility and stability of the immunosensor were also proved to be acceptable, indicating its potential application in environmental monitoring.
Collapse
Affiliation(s)
- Cuifen Gan
- Institute of Biomaterials, College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China
| | - Li Ling
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zuyu He
- Institute of Biomaterials, College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Institute of Biomaterials, College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
44
|
A reusable electrochemical immunosensor fabricated using a temperature-responsive polymer for cancer biomarker proteins. Biosens Bioelectron 2015; 78:181-186. [PMID: 26606310 DOI: 10.1016/j.bios.2015.11.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
In the present study, we describe a reusable electrochemical immunosensor for the repeated detection of cancer biomarkers using a single platform. The integration of a temperature-responsive polymer on the electrode surface enables easy manipulation of the biological sensing interface (i.e., addition of biotin, streptavidin, and antibody), thus allowing for temperature-induced regeneration and disruption of the interface architecture of the electrode surface. Using our immunosensor, we demonstrate sequential amperometric detection of three tumor markers: CA125, CEA, and PSA. Interestingly, greatly amplified signals are achieved by immersing the immunosensor in a solution of horseradish peroxidase (HRP) and antibody-labeled nanoparticles, resulting in a linear range of 0.0064 to 256 U/mL, 1 pg/mL to 100 ng/mL, and 10 pg/mL to 10 ng/mL with a detection limit of 0.007 U/mL, 0.7 pg/mL, and 0.9 pg/mL for CA125, CEA, and PSA, respectively. By alternating temperature, the immunosensor adsorbs and desorbs the biological elements without damage. Our proposed methodology can be expanded to measure other relevant biological species by repeated detection and thus has enormous potential for industrial and clinical applications.
Collapse
|
45
|
Tan F, Saucedo NM, Ramnani P, Mulchandani A. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9256-63. [PMID: 26120934 DOI: 10.1021/acs.est.5b01674] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.
Collapse
Affiliation(s)
- Feng Tan
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- ‡Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Nuvia Maria Saucedo
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Pankaj Ramnani
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Ashok Mulchandani
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
46
|
Construction of an impedimetric immunosensor for label-free detecting carbofuran residual in agricultural and environmental samples. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL. Waterborne pathogens: detection methods and challenges. Pathogens 2015; 4:307-34. [PMID: 26011827 PMCID: PMC4493476 DOI: 10.3390/pathogens4020307] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.
Collapse
Affiliation(s)
- Flor Yazmín Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Abraham Loera-Muro
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Mario Jacques
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Philippe Garneau
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Francisco Javier Avelar-González
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Josée Harel
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| |
Collapse
|
48
|
Long F, Zhu A, Shi H, Sheng J, Zhao Z. Adsorption kinetics of pesticide in soil assessed by optofluidics-based biosensing platform. CHEMOSPHERE 2015; 120:615-620. [PMID: 25462305 DOI: 10.1016/j.chemosphere.2014.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
Abstract
The adsorption of pesticides in soil is a key process that affects transport, degradation, mobility, and bioaccumulation of these substances. To obtain extensive knowledge regarding the adsorption processes of pesticides in the environment, the new green assay technologies for the rapid, sensitive, field-deployable, and accurate quantification of pesticides are required. In the present study, an evanescent wave-based optofluidics biosensing platform (EWOB) was developed by combining advanced photonics and microfluidics technology for the rapid sensitive immunodetection and adsorption kinetics assay of pesticides. The robustness, reusability, and accuracy of the EWOB allow an enhanced prediction of pesticide adsorption kinetics in soil. Using atrazine (ATZ) as the target model, we found that the adsorption kinetics in soil followed a pseudo-second-order kinetic model. EWOB was compared with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method and yielded a good correlation coefficient (r(2)=0.9968). The underestimated results of LC-MS/MS resulted in a higher adsorption constant of ATZ in soil derived from LC-MS/MS than that of a biosensor. The proposed EWOB system provides a simple, green, and powerful tool to investigate the transport mechanism and fate of pesticide residues.
Collapse
Affiliation(s)
- Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, China.
| | - Anna Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, China
| | - Jianwu Sheng
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, China
| | - Zhen Zhao
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Wang F, Liu S, Lin M, Chen X, Lin S, Du X, Li H, Ye H, Qiu B, Lin Z, Guo L, Chen G. Colorimetric detection of microcystin-LR based on disassembly of orient-aggregated gold nanoparticle dimers. Biosens Bioelectron 2015; 68:475-480. [PMID: 25621999 DOI: 10.1016/j.bios.2015.01.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/10/2015] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Recently we demonstrated oriented formation of gold nanoparticle (AuNP) dimers for ultrasensitive sensing oligonucleotides (J. Am. Chem. Soc. 2013, 135, 12338). Herein, we investigate the reverse process of this sensing mechanism using target analytes to disassemble the orient-aggregated AuNP dimers. This enables us to expand the analytes from oligonucleotides to other molecules, e.g. highly sensitive and selective determination of microcystin-LR (MC-LR) is selected for a demonstration in this work. Aptamers specific to the target molecules are used as linkers to prepare the AuNP dimers. In the presence of the target molecule, the aptamer changes its structure to bind the target molecule. Thus the pre-formed AuNP dimers are disassembled. As a result, the solution color is changed from blue to red. This sensing design retains the advantages of the previously developed sensors based on target molecules guided formation of AuNP dimers, e.g. the overwhelming sensitivity and stability comparing with those non-oriented sensors based on the formation of large aggregates, with the additional advantages as follows: 1) the target molecules are expanded from oligonucleotides to arbitrary molecules that can specifically bind to aptamers; 2) the color change is completed within 5 min, while the previous sensor based on the formation of AuNP dimers cost ~1 hour to obtain stable responses.
Collapse
Affiliation(s)
- Fangfang Wang
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Shuzhen Liu
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Mingxia Lin
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xing Chen
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Shiru Lin
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiazhen Du
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - He Li
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Hongbin Ye
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bin Qiu
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhenyu Lin
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Longhua Guo
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Guonan Chen
- Institute of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
50
|
An integrated multifunctional platform based on biotin-doped conducting polymer nanowires for cell capture, release, and electrochemical sensing. Biomaterials 2014; 35:9573-80. [DOI: 10.1016/j.biomaterials.2014.08.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022]
|