1
|
Kamel M, Salah F, Demerdash Z, Maher S, El-Baz H, Zakaria N, Abu-Shady R, Saad A, Hassan S, Aziz DA. Home-Made Lateral Flow Test Strip Versus POC-CCA Assay for Detection of Active Schistosomiasis in Egypt. Acta Parasitol 2024; 69:1926-1936. [PMID: 39356423 DOI: 10.1007/s11686-024-00917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND For years, the Kato-Katz (KK) technique has been considered the gold standard for diagnosing schistosomiasis. The aim of this study was to compare the effectiveness of our previously developed gold nanoparticle-based lateral flow test strip (AuNPs-LFTS) for diagnosing active Schistosoma mansoni with that of the commercially available point-of-care Circulating Cathodic Antigen detection (POC-CCA) kit. METHODS In this study, we collected sixty positive and twenty negative urine samples from patients in endemic hot spots in the Nile Delta, as well as from patients visiting the internal medicine clinic at Theodor Bilharz Research Institute (TBRI). We produced monoclonal antibodies (MAbs) against S. mansoni soluble egg antigen (SEA) from cloned hybridoma cells (4D/1D). These MAbs were conjugated with gold and mesoporous silica nanoparticles, and used to develop the LFTS. RESULTS The LFTS demonstrated a limit of detection (LoD) of 3 ng/ml. The sensitivity and specificity of the developed LFTS were found to be 96.7% and 95%, respectively, compared to 85% and 90% for the POC-CCA detection kit. The cases were divided into groups based on egg count in the stool, categorized as light, moderate, and heavy infections. The sensitivity of the LFTS in the group with light infection was higher than that of the POC-CCA. When using the KK technique (eggs per gram of stool sample [EPG]) as the reference test, the kappa value for the nano-based strips was 0.902, compared to 0.672 for the CCA strips, indicating an almost perfect agreement between KK and our developed LFTS. CONCLUSION These results confirm the reliability and effectiveness of the LFTS compared to commercially available kits for rapid, sensitive, and early diagnosis of schistosomiasis. However, it is recommended to conduct further assessments of the developed strip on a larger scale with a broader range of cases before considering its introduction to local or international markets.
Collapse
Affiliation(s)
- Manal Kamel
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt
| | - Faten Salah
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt
| | - Zeinab Demerdash
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt
| | - Sara Maher
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt.
| | - Hanan El-Baz
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt
| | - Nahla Zakaria
- Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rania Abu-Shady
- Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Saad
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt
| | - Salwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Kornish El Nil Street, Giza, Egypt
| | - Doaa Abdel Aziz
- Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Atta S, Zhao Y, Sanchez S, Seedial D, Devadhasan JP, Summers AJ, Gates-Hollingsworth MA, Pflughoeft KJ, Gu J, Montgomery DC, AuCoin DP, Zenhausern F, Vo-Dinh T. Plasmonic-Enhanced Colorimetric Lateral Flow Immunoassays Using Bimetallic Silver-Coated Gold Nanostars. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54907-54918. [PMID: 39342509 DOI: 10.1021/acsami.4c13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The colorimetric lateral flow immunoassay (cLFIA) has gained widespread attention as a point-of-care testing (POCT) technique due to its low cost, short analysis time, portability, and capability of being performed by unskilled operators with minimal requirement of reagents. However, the low analytical sensitivity of conventional LFIA based on colloidal gold nanospheres limits their applications for sensitive detection of trace amounts of target analytes. In this study, we introduced a novel plasmonic-enhanced colorimetric LFIA (PE-cLFIA) platform featuring bimetallic silver-coated gold nanostars (BGNS) with exceptional optical properties, leading to ultrahigh visual color brightness. The BGNS-based PE-cLFIA was successfully applied to detect a model analyte, low-calcium response V (LcrV), a virulence protein factor found in Yersinia pestis, the causative agent of bubonic plague. The PE-cLFIA sensing using BGNS-3 composed of 45 nm silver thickness showed a high visual colorimetric sensitivity with a detection limit as low as 13.7 pg/mL, which was around 50 times more sensitive than that of a traditional gold nanoparticle-based LFIA. In addition, the antibody-conjugated BGNS-3 showed excellent stability over 6 months. To illustrate the potential for clinical applications, we demonstrated that our LFIA platform for detecting LcrV spiked in human serum without any sample preprocessing exhibited a detection limit of 22.8 pg/mL. These results open up new opportunities for developing hybrid nanoparticle systems for sensitive POCT PE-cLFIA screening for infectious disease detection.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yuanhao Zhao
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sanchez
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Deven Seedial
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jasmine Pramila Devadhasan
- Center for Applied Nano Bioscience and Medicine, College of Medicine, University of Arizona, Phoenix, Arizona 85004, United States
| | - Alexander Jarrett Summers
- Center for Applied Nano Bioscience and Medicine, College of Medicine, University of Arizona, Phoenix, Arizona 85004, United States
| | | | - Kathryn J Pflughoeft
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, United States
| | - Jian Gu
- Center for Applied Nano Bioscience and Medicine, College of Medicine, University of Arizona, Phoenix, Arizona 85004, United States
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Douglas C Montgomery
- Center for Applied Nano Bioscience and Medicine, College of Medicine, University of Arizona, Phoenix, Arizona 85004, United States
- School of Computing and Augmented Intelligence, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, United States
| | - Frederic Zenhausern
- Center for Applied Nano Bioscience and Medicine, College of Medicine, University of Arizona, Phoenix, Arizona 85004, United States
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
4
|
Wang T, Ran C, He X, Li S, Xiang H, Shen Y, Wang J, Wei H. Effects on molecular interactions of hollow gold nanoparticles and antibody for sensitizing P24 antigen determination. RSC Adv 2024; 14:30154-30164. [PMID: 39315032 PMCID: PMC11418390 DOI: 10.1039/d4ra05277c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, with the rapid development of point-of-care testing, the application of lateral flow immunochromatography assay (LFIA) has become increasingly widespread. The key to the success of these detection technologies is the effective binding with diagnostic materials and detection antibody proteins. Although many researchers have tried to optimize antibody binding, a universally accepted strategy that can provide maximum performance has not been determined. In this study, the HIV infection P24 antigen was selected as the detection biomarker. Then the binding mechanism between hollow gold nanoparticles as diagnostic materials and detection antibodies was explored through dynamic light scattering, Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and other methods. It was found that the binding efficiency is related to the change in protein secondary conformation during binding, hydrogen bonding, and van der Waals force maintain the binding mechanism between antibodies and nanoparticles. The main forces of particle complexation and the main binding site of the antibody were discussed and analyzed. Finally, an immunochromatographic system was constructed to evaluate the significant advantages of this platform compared to the common colloidal gold immunochromatographic system.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Laboratory, Second People's Hospital of Taixing City Jiangsu Province 225400 China
| | - Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Shengzhou Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Hongguang Xiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 210019 Jiangsu Province China
| | - Jue Wang
- National Institutes for Food and Drug Control 2 Tiantan Xili, Dongcheng District Beijing 100050 China +86-10-67095126
| | - Hongxia Wei
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine Nanjing 210003 China +86-13851507368
| |
Collapse
|
5
|
Thangavelu RM, PK J, Ramasamy N, Rasappa V. Magnetic Nanozyme-Enhanced Rapid ImmunoFlow-Through Assay for the Femtomolar Detection of Sugarcane Yellow Leaf Virus. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2024; 4:759-767. [DOI: 10.1021/acsagscitech.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Raja Muthuramalingam Thangavelu
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Janiga PK
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Nithyanantham Ramasamy
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Viswanathan Rasappa
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
- Indian Institute of Sugarcane Research, Lucknow 226002, India
| |
Collapse
|
6
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
7
|
Contreras Alvarez LA, Lazo Jara MD, Campos FV, de Oliveira JP, Guimarães MCC. Barcode-style lateral flow immunochromatographic strip for the semi-quantitative detection of ochratoxin A in coffee samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:424-437. [PMID: 38415981 DOI: 10.1080/19440049.2024.2313115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin contaminating agricultural products produced by fungi, associated with important toxic effects. Thus, the development of fast, sensitive, and economical approaches for OTA detection is crucial. In this study, a barcode-style lateral flow assay for the semi-quantitative detection of OTA in coffee samples was developed. To achieve this goal, a BSA-OTA complex was immobilized in three test zones to compete with OTA molecules in the sample for binding with anti-OTA antibodies labeled with gold nanoparticles. Different concentrations of OTA in the sample produced distinct colour patterns, allowing semi-quantification of the analyte. The assay exhibited high sensitivity, with a limit of detection of 2.5 µg.L-1, and high reproducibility, with variation coefficient values between 2% and 13%. Moreover, the colour patterns obtained in the analysis with coffee samples were similar to the results obtained with standard OTA solutions, demonstrating a reliable applicability in real samples.
Collapse
|
8
|
Guo J, Zhou Y, Cheng J, Chen F, Xu J, Yang L, Shi H, An Z, Guo J, Ma X. Afterglow Nanoprobe-Enabled Quantitative Lateral Flow Immunoassay by a Palm-Size Device for Household Healthcare. Anal Chem 2024; 96:4891-4900. [PMID: 38462674 DOI: 10.1021/acs.analchem.3c05448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lateral flow immunoassay (LFIA), a classical point-of-care testing (POCT) technique, plays an important role in disease screening and healthcare monitoring. However, traditional LFIA is either designed for qualitative analysis or requires expensive equipment for quantification, limiting its use in household diagnosis. In this study, we proposed a new generation of LFIA for household health monitoring by using ultralong organic phosphorescence (UOP) nanomaterials as afterglow nanoprobes with a self-developed palm-size sensing device. The UOP nanoprobes exhibit a phosphorescence signal with a second-level lifetime, which completely avoids the interference from excitation light and biological background fluorescence. Therefore, an ultraminiaturized and low-cost UOP nanosensor was successfully designed by eliminating the complex optical path and filtering systems. We chose an inflammatory factor, C-reactive protein (CRP), for household POCT validation. The whole analysis was completed within 9 min. A limit of detection (LOD) of 0.54 ng/mL of CRP antigen was achieved with high stability and good specificity, which is comparable to laboratory instruments and fully satisfying the clinical diagnosis requirement.
Collapse
Affiliation(s)
- Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yudong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jie Cheng
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fuli Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiahui Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lirong Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Abdelrazig AO, Rijiravanich P, Suwannarat S, Surareungchai W, Somasundrum M. Detection of DNA using gold nanoparticle-coated silica nanoparticles. Anal Biochem 2024; 686:115411. [PMID: 38070665 DOI: 10.1016/j.ab.2023.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
We report a sensitive lateral flow assay (LFA) in which the assay colour change originated from reporter labels constructed from silica spheres (radius = 450 nm) coated with approximately 3.9 × 103 gold nanoparticles (radius = 8.5 nm). These reporter labels were modified with DNA and deposited in the conjugation area of an LFA device assembled on wax-patterned Fusion 5 paper. Test and control zones of the device were pre-loaded with capture probe formed by avidin-coated mesoporous silica nanoparticles attached with biotin-tagged DNA sequences. Proof-of-concept was demonstrated by the detection of a partial sequence of the actin gene of Colletotrichum truncatum. The DNA target could be detected with an LOD of 46 pM, which was 5 times lower than a comparative assay using gold nanoparticles alone. The assay showed good selectivity against the Colletotrichum species C. scovillei and C. gloeosporioides, as well as against DNA from the fungal genera Aspergillus niger and Alternaria alternata. There was negligible change in sensor response over storage for one month at room temperature. The LFA was used to detect PCR products following extraction from mycelium.
Collapse
Affiliation(s)
- Amir Osman Abdelrazig
- Sensor Technology Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
| | - Patsamon Rijiravanich
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand.
| | - Sawita Suwannarat
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Werasak Surareungchai
- Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok, 10400, Thailand; School of Bioresources and Technology, KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Mithran Somasundrum
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
10
|
Yu Q, Wu T, Tian B, Li J, Liu Y, Wu Z, Jin X, Wang C, Wang C, Gu B. Recent advances in SERS-based immunochromatographic assay for pathogenic microorganism diagnosis: A review. Anal Chim Acta 2024; 1286:341931. [PMID: 38049231 DOI: 10.1016/j.aca.2023.341931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Infectious diseases caused by bacteria, viruses, fungi, and other pathogenic microorganisms are among the most harmful public health problems in the world, causing tens of millions of deaths and incalculable economic losses every year. The establishment of rapid, simple, and highly sensitive diagnostic methods for pathogenic microorganisms is important for the prevention and control of infectious diseases, guidance of timely treatment, and the reduction of public safety risks. Lateral flow immunoassay (LFA) based on the colorimetric signal of colloidal gold is the most popular point-of-care testing technology at present, but it is limited by poor sensitivity and low throughput and hardly meets the needs of the highly sensitive screening of pathogenic microorganisms. In recent years, the combination of surface-enhanced Raman scattering (SERS) and LFA technology has developed into a novel analytical platform with high sensitivity and multiple detection capabilities and has shown great advantages in the detection of pathogenic microorganisms and infectious diseases. This review summarizes the working principle, design ideas, and application of the existing SERS-based LFA methods in pathogenic microorganism detection and further introduces the effect of new technologies such as Raman signal encoding, magnetic enrichment, novel membrane nanotags, and integrated Raman reading equipment on the performance of SERS-LFA. Finally, the main challenges and the future direction of development in this field of SERS-LFA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Wu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Benshun Tian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Zelan Wu
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Xiong Jin
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
11
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
12
|
Zhai W, Wei D, Cao M, Wang Z, Wang M. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Food Chem 2023; 429:136944. [PMID: 37487389 DOI: 10.1016/j.foodchem.2023.136944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenyu Wang
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
13
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Kim SK, Lee JU, Jeon MJ, Kim SK, Hwang SH, Hong ME, Sim SJ. Bio-conjugated nanoarchitectonics with dual-labeled nanoparticles for a colorimetric and fluorescent dual-mode serological lateral flow immunoassay sensor in detection of SARS-CoV-2 in clinical samples. RSC Adv 2023; 13:27225-27232. [PMID: 37701275 PMCID: PMC10494995 DOI: 10.1039/d3ra04373h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Serological detection of antibodies for diagnosing infectious diseases has advantages in facile diagnostic procedures, thereby contributing to controlling the spread of the pathogen, such as in the recent SARS-CoV-2 pandemic. Lateral flow immunoassay (LFIA) is a representative serological antibody detection method suitable for on-site applications but suffers from low clinical accuracy. To achieve a simple and rapid serological screening as well as the sensitive quantification of antibodies against SARS-CoV-2, a colorimetric and fluorescent dual-mode serological LFIA sensor incorporating metal-enhanced fluorescence (MEF) was developed. For the strong fluorescence signal amplification, fluorophore Cy3 was immobilized onto gold nanoparticles (AuNPs) with size-controllable spacer polyethyleneglycol (PEG) to maintain an optimal distance to induce MEF. The sensor detects the target IgG with a concentration as low as 1 ng mL-1 within 8 minutes. The employment of the MEF into the dual-mode serological LFIA sensor shows a 1000-fold sensitivity improvement compared with that of colorimetric LFIAs. The proposed serological LFIA sensor was tested with 73 clinical samples, showing sensitivity, specificity, and accuracy of 95%, 100%, and 97%, respectively. In conclusion, the dual-mode serological LFIA has great potential for application in diagnosis and an epidemiological survey of vaccine efficacy and immunity status of individuals.
Collapse
Affiliation(s)
- Sang Ki Kim
- Department of Chemical and Biological Engineering, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Jong Uk Lee
- Department of Chemical Engineering, Sunchon National University 225 Jungang-ro Suncheon Jeollanam-do 57922 Republic of Korea
| | - Myeong Jin Jeon
- Department of Chemical and Biological Engineering, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Soo-Kyung Kim
- Department of Laboratory Medicine, Ewha Womans University Mokdong Hospital Seoul 07985 Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine Seoul 05505 Republic of Korea
| | - Min Eui Hong
- Business Development, Kyung Nam Pharm.Co.,Ltd 702 Eonju-ro Gangnam-gu Seoul 06061 Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
15
|
Mo F, Spano CE, Ardesi Y, Ruo Roch M, Piccinini G, Graziano M. Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031687. [PMID: 36772727 PMCID: PMC9919708 DOI: 10.3390/s23031687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this work, we investigate, through ab initio atomistic calculations, a pyrrole-based Molecular Field Effect Transistor (MolFET) as a single-molecule sensor for the amperometric detection of aflatoxins. In particular, we theoretically explain the gate-tuned current modulation from a chemical-physical perspective, and we support our insights through simulations. In addition, this work demonstrates that, for the case under consideration, the use of a suitable gate voltage permits a considerable enhancement in the sensor performance. The gating effect raises the current modulation due to aflatoxin from 100% to more than 103÷104%. In particular, the current is diminished by two orders of magnitude from the μA range to the nA range due to the presence of aflatoxin B1. Our work motivates future research efforts in miniaturized FET electrical detection for future pervasive electrical measurement of aflatoxins.
Collapse
Affiliation(s)
- Fabrizio Mo
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Chiara Elfi Spano
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Yuri Ardesi
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Gianluca Piccinini
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Mariagrazia Graziano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
16
|
Aflatoxins in Feed: Types, Metabolism, Health Consequences in Swine and Mitigation Strategies. Toxins (Basel) 2022; 14:toxins14120853. [PMID: 36548750 PMCID: PMC9783261 DOI: 10.3390/toxins14120853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Feeding farm animals with aflatoxin-contaminated feed can cause various severe toxic effects, leading to increased susceptibility to infectious diseases and increased mortality, weight loss, poor performance and reduced reproductive capability. Following ingestion of contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in animals. Swine metabolism is not effective in detoxifying and excreting aflatoxins, meaning the risk of aflatoxicosis is increased. Thus, it is of great importance to elucidate the metabolism and all metabolic pathways associated with this mycotoxin. The damage induced by AFB1 in cells and tissues consists of inhibition of cell proliferation, carcinogenicity, immunosuppression, mutagenicity, oxidative stress, lipid peroxidation and DNA damage, leading to pathological lesions in the liver, spleen, lymph node, kidney, uterus, heart, and lungs of swine. At present, it is a challenging task and of serious concern to completely remove aflatoxins and their metabolites from feedstuff; thus, the aim of this study was a literature review on the deleterious effects of aflatoxins on swine metabolism, as well as alternatives that contribute to the detoxification or amelioration of aflatoxin-induced effects in farm animal feed.
Collapse
|
17
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
19
|
Das D, Singh T, Ahmed I, Masetty M, Priye A. Effects of Relative Humidity and Paper Geometry on the Imbibition Dynamics and Reactions in Lateral Flow Assays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9863-9873. [PMID: 35913402 DOI: 10.1021/acs.langmuir.2c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lateral flow assays and paper microfluidics have the potential to replace benchtop instrumented medical diagnostic systems with instrument-free systems that rely on passive transport of liquid through micro-porous paper substrates. Predicting the imbibition dynamics of liquid through dry paper substrates is mostly modeled through the Lucas-Washburn (LW) equations. However, the LW framework assumes that the fluid front exhibits a sharp boundary between the dry and wet phases across the liquid imbibition interface. Additionally, the relative humidity in the environment results in moisture trapped within the pores of the paper substrates as the paper attains an equilibrium with the ambient air. Here, we apply a two-phase transport framework based on Brooks and Corey's model to capture imbibition dynamics on partially saturated paper substrates. The model is experimentally validated and is then used to predict the liquid-paper imbibition dynamics in simulated environments with 1-70% relative humidity. The model was also used to determine the saturation gradient of liquid along the imbibition interface of the paper substrate. Insights from these studies enabled us to determine the mechanism of the liquid transport in partially saturated porous paper substrates. The model also enabled us to evaluate the optimal paper shapes and relative humidity of the environment that maximize imbibition rates and minimize imbibition front broadening. Finally, we evaluate the effect of moisture content of paper on the rate of paper-based biochemical reaction by amplifying a sequence of the SARS-CoV-2 RNA target via reverse transcriptase loop-mediated isothermal amplification. Taken together, this study provides some important guidelines to academic and applied researchers working in point-of-care diagnostics to develop paper-based testing platforms that are capable of functioning in a robust manner across multiple environmental conditions.
Collapse
Affiliation(s)
- Debayan Das
- Department of Chemical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Tarun Singh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Isteaque Ahmed
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Manaswini Masetty
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
20
|
Miller BS, Thomas MR, Banner M, Kim J, Chen Y, Wei Q, Tseng DK, Göröcs ZS, Ozcan A, Stevens MM, McKendry RA. Sub-picomolar lateral flow antigen detection with two-wavelength imaging of composite nanoparticles. Biosens Bioelectron 2022; 207:114133. [DOI: 10.1016/j.bios.2022.114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023]
|
21
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
22
|
|
23
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Mao X, Wang Y, Jiang L, Zhang H, Zhao Y, Liu P, Liu J, Hammock BD, Zhang C. A Polydopamine-Coated Gold Nanoparticles Quenching Quantum Dots-Based Dual-Readout Lateral Flow Immunoassay for Sensitive Detection of Carbendazim in Agriproducts. BIOSENSORS 2022; 12:bios12020083. [PMID: 35200343 PMCID: PMC8869244 DOI: 10.3390/bios12020083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/12/2023]
Abstract
In this study, a fluorometric and colorimetric dual-readout lateral flow immunoassay (LFIA) using antibody functionalized polydopamine-coated gold nanoparticles (Au@PDAs) as a probe was developed for the detection of carbendazim (CBD). Colloidal gold nanoparticles (AuNPs) were coated with polydopamines (PDA) by the oxidation of dopamine to synthesize Au@PDA nanoparticles. The Au@PDA nanoparticles mediated ZnCdSe/ZnS quantum dots (QDs) fluorescence quenching and recovery, resulting in a reverse fluorescence enhancement detection format of CBD. The CBD detection was obtained by the competition between the CBD and the immobilized antigen for Au@PDAs labelled antibody binding, resulting in a significant fluorescence increase and colorimetry decrease corresponded to the concentration of CBD. Dual readout modes were incorporated into the LFIA using the colorimetry signal under natural light and the fluorescence signal under UV light. The cut-off value in the mode of the colorimetric signal and fluorometric signal for CBD detection was 0.5 μg/mL and 0.0156 μg/mL, respectively. The sensitivity of LFIA of the fluorescence mode was 32 times higher than that of the colorimetry mode. There was negligible cross reactivity obtained by using LFIA for the determination of thiabendazole, benomyl, thiophanate-methyl, and thiophanate-ethyl. Consistent and satisfactory results have been achieved by comparing the results of Au@PDAs-QDs-LFIA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) testing spiked cucumber and strawberry samples, indicating good reliability of the Au@PDAs-QDs-LFIA.
Collapse
Affiliation(s)
- Xinxin Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Lan Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
| | - Hanxiaoya Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Yun Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Pengyan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Juanjuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Cunzheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Biology and Food Engineering, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
25
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
26
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
27
|
Nilghaz A, Mousavi SM, Li M, Tian J, Cao R, Wang X. Paper-based microfluidics for food safety and quality analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Kumari R, Jaiswal H, Chowdhury T, Ghosh A. Antibody conjugated magnetic nanoparticle based colorimetric assay for the detection and quantification of aflatoxin B1 in wheat grains. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin B1 (AFB1) is a most potent carcinogenic secondary metabolite produced by Aspergillus flavus. As a food safety concern, development of a rapid, cost effective, sensitive and easy to use method for the detection of aflatoxin is of prime requirement. In this study, AFB1 was conjugated with bovine serum albumin (BSA), and AFB1-BSA conjugate was purified by HPLC. Purification was confirmed by UV-Vis spectroscopy, FTIR and MALDI-TOF mass spectrometry. The polyclonal antibody was raised against AFB1-BSA conjugate in rabbit and purified by protein A sepharose and BSA sepharose affinity columns. Iron oxide nanoparticles (MNPs) were synthesised by co-precipitation method and their surface was functionalised with (3-aminopropyl) triethoxysilane (APTES). Size of APTES conjugated MNPs was determined by electron microscopy, and characterised by several biophysical techniques. The purified anti-AFB1 antibody was conjugated with surface functionalised MNPs and the conjugation was confirmed by determining the sizes of free and antibody conjugated MNPs by field emission scanning electron microscope where increase of particle sizes from 10-20 to 40-50 nm was observed due to antibody conjugation. Anti-AFB1 antibody conjugated MNPs were used for capturing AFB1 from the aflatoxin spiked wheat grains with a recovery percentage of more than 80% and used effectively five times. The captured AFB1 was then quantified by a sensitive colorimetric assay where colourless AFB1 was first converted into coumaric acid by NaOH. Subsequently, coumaric acid reacted with 2,6-dibromoquinone-4-chloroimide (DBQC) to a green-coloured indophenol product which was quantified spectrophotometrically. AFB1 contamination as low as 2 μg/kg in wheat grains was detected by the developed technique suggesting its potential application for both qualitative and quantitative analysis of aflatoxins present in feed and food materials.
Collapse
Affiliation(s)
- R. Kumari
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - H. Jaiswal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - T. Chowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A.K. Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
29
|
Fang A, Sun Y, Feng D, Ma M, Xu Z, Zhang T, Shi F. Flower-like gold nanoparticles labeled and silver deposition rapid vertical flow technology for highly sensitive detection of Brucella antibodies. Analyst 2021; 146:5362-5368. [PMID: 34337622 DOI: 10.1039/d1an01075a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To prevent the transmission of brucellosis, rapid vertical flow technology (RVFT) was developed to detect brucellosis antibodies. To improve the sensitivity of the technique, lipopolysaccharides (LPS) were purified and used to detect brucellosis antibodies. To improve the sensitivity of serum antibody detection, a single multifunctional buffer was established in whole blood and other biological samples, and the advantages of the lateral flow immunoassay were retained. Flower-like gold nanoparticles were applied to RVFT for the first time. In this study, silver ions were catalyzed by flower-like gold nanoparticles into metal silver deposited on the surface of gold nanoparticles for the first time, which not only increased the particle size of gold nanoparticles, but also showed a more distinguishable black color on the test zone, further improving the sensitivity of RVFT. Standard Brucella-positive serum (containing Brucella antibody at 4000 IU mL-1) could be detected in this system even for a dilution factor of 2 × 10-3. The detection limit was 2 IU mL-1. RVFT can effectively avoid the false negative phenomenon in lateral flow immunoassay. RVFT is simple to operate, with a short reaction time, 2-3 minutes visible to the naked eye, without any equipment. Because it is very important to control the brucellosis epidemic, this approach has great application prospects in basic medical units and for veterinarians.
Collapse
Affiliation(s)
- Ashe Fang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Su Z, Zhao G, Dou W. High-sensitivity detection of two H7 subtypes of avian influenza viruses (AIVs) by immunochromatographic assay with highly chromatic red silica nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2313-2319. [PMID: 33956005 DOI: 10.1039/d1ay00204j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a sensitive and quantitative immunochromatographic assay (ICA) detection method for avian influenza viruses (AIVs) of the H7 hemagglutinin (HA) antigen was established based on highly chromatic red silica nanoparticles (SiNPs). It can detect two H7 subtypes of influenza viruses, H7N2 and H7N9. The highly chromatic red SiNPs were prepared by adsorbing C.I. Direct Red 224 on the surface of the SiNPs for multiple times using the layer by layer (LbL) self-assembly method under the electrostatic action of ethylene imine polymer (PEI) and poly(sodium-p-styrenesulfonate) (PSS). The highly chromatic red silica nanoparticles modified with anti-H7 HA mAb1 were used as immunodetection probes. The accumulated highly chromatic red SiNPs on the T-line can be observed by the naked eye to qualitatively detect the H7 HA antigen. The quantitative analysis is carried out by using a camera and Image J software. Within the range of 0.1-10 ng mL-1, the linear equation between the H7 HA antigen concentration and the peak area of the T-line gray value was y = 868.9722 + 435.4836X (R2 = 0.9716), and the limit of detection (LOD) of this method was 0.08 pg mL-1 (S/N = 3). The highly chromatic red SiNP based ICA for the detection of H7 HA has no cross activity with other subtypes of influenza viruses. This method of combining highly chromatic colored markers with ICA has great potential in practical applications for the rapid and quantitative detection of other types of AIVs.
Collapse
Affiliation(s)
- Zixian Su
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
32
|
Charlermroj R, Phuengwas S, Makornwattana M, Sooksimuang T, Sahasithiwat S, Panchan W, Sukbangnop W, Elliott CT, Karoonuthaisiri N. Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta 2021; 233:122540. [PMID: 34215043 DOI: 10.1016/j.talanta.2021.122540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
While lateral flow immunoassay (LFIA) is a simple technique that offers a rapid, robust, user friendly, and point-of-care test, its capacity for multiplex detection is rather limited. This study therefore combined the multiplexity of microarray technique and the simple and rapid characteristics of LFIA to enable simultaneous and quantitative detection of five mycotoxins, namely aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FUMB1), T-2 toxin (T-2), and zearalenone (ZON). In addition, we have synthesized a novel extra-large Stokes shift and strong fluorescence organic compound to be used as a reporter molecule which can be detected under UV light without light filter requirement. Many parameters including microarray spotting buffer, blocking buffer, and concentrations of mycotoxin antibodies were optimized for the microarray LFIA (μLFIA) construction. With the optimal conditions, the μLFIA could accurately and quantitatively detect multiple mycotoxins at the same time. The limits of detection of AFB1, DON, FUMB1, T-2, and ZON were 1.3, 0.5, 0.4, 0.4, and 0.9 ppb, respectively. The recoveries of these five mycotoxins were 70.7%-119.5% and 80.4%-124.8% for intra-assay and inter-assay, respectively. Combining the advantages of the novel reporter molecule and the multiplex capability of μLFIA test, this system could simultaneously detect multiple mycotoxins in one sample with high specificity and high sensitivity. Moreover, this system presents a promising affordable point-of-care platform to detect other analytes as well.
Collapse
Affiliation(s)
- Ratthaphol Charlermroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Sudtida Phuengwas
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Manlika Makornwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Wannee Sukbangnop
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Biological Sciences Building, 19 Chlorine Gardens, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand.
| |
Collapse
|
33
|
Wang L, Wang X, Cheng L, Ding S, Wang G, Choo J, Chen L. SERS-based test strips: Principles, designs and applications. Biosens Bioelectron 2021; 189:113360. [PMID: 34051383 DOI: 10.1016/j.bios.2021.113360] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Test strips represent a class of point-of-care testing (POCT) tools for analysis of a variety of biomarkers towards diagnostics. Conventional test strips offer benefits of simple operation, visualization, and short detection time, along with the drawbacks of relatively low sensitivity and unavailability of quantitative analysis. Recently, the combination of surface-enhanced Raman scattering (SERS) and test strips have evolved to provide a powerful platform capable of ultrasensitive and multiplex detection of extensive analytes of interest. In this review, we focus on the working principles, design strategies and POCT applications of SERS-based test strips. Initially, both lateral and vertical flow test strips are briefly introduced, followed by presentation of various strategies for reforming SERS-based test strips with better detection performance. Applications of SERS-based test strips in diagnosis of disease biomarkers, nucleic acids and toxins are reviewed, with an emphasis on SERS tag design, sensitivity and analytical applicability. Finally, conclusions are made and perspectives on futuristic research directions are given.
Collapse
Affiliation(s)
- Luyang Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Cheng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
34
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
35
|
Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, de Lecuona I, Junot C, Trebicka J, Merkoçi A. The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006104. [PMID: 33719117 DOI: 10.1002/adma.202006104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Indexed: 05/15/2023]
Abstract
Monitoring of the human microbiome is an emerging area of diagnostics for personalized medicine. Here, the potential of different nanomaterials and nanobiosensing technologies is reviewed for the development of novel diagnostic devices for the detection and measurement of microbiome-related biomarkers. Moreover, the current and future landscape of microbiome-based diagnostics is defined by exploring the advantages and disadvantages of current nanotechnology-based approaches, especially in the context of developing point-of-care (PoC) devices that would meet the international guidelines known as REASSURED (Real-time connectivity; Ease of specimen collection; Affordability; Sensitivity; Specificity; User-friendliness; Rapid & robust operation; Equipment-free; and Deliverability). Finally, the strategies of the latest international scientific consortia working in this field are analyzed, the current microbiome diagnostics market are reported and the principal ethical, legal, and societal issues related to microbiome R&D and innovation are discussed.
Collapse
Affiliation(s)
- Celia Fuentes-Chust
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Claudio Parolo
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Lourdes Rivas
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Karla Perez-Toralla
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Itziar de Lecuona
- Bioethics and Law Observatory -UNESCO Chair in Bioethics-Department of Medicine, University of Barcelona, Barcelona, 08007, Spain
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure, Travesera de Gracia 11, Barcelona, 08021, Spain
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
36
|
Xu J, Dou L, Liu S, Su L, Yin X, Ren J, Hu H, Zhang D, Sun J, Wang Z, Wang J. Lateral flow immunoassay for furazolidone point-of-care testing: Cater to the call of saving time, labor, and cost by coomassie brilliant blue labeling. Food Chem 2021; 352:129415. [PMID: 33711728 DOI: 10.1016/j.foodchem.2021.129415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Furazolidone (FZD) and its metabolite called 3-amino-2-oxazolidinone (AOZ) would induce carcinogenic and mutagenic effects to human. In this work, to develop a novel, stable, and simple point of care testing (POCT) with a potential to social applied for FZD detection, we utilized the aspect of protein staining of coomassie brilliant blue (CBB) to exploit a new CBB-LFIA strategy free of NPs. Only one mixing step is needed during the probe manufacturing process, which requires just 2 h and is a great time saving strategy compared with other methods (requiring 4-33 h for probe preparation). Besides, the cost of CBB-LFIA is 300 times lesser than other LFIA with respect to obtaining the label. The developed CBB-LFIA was successfully applied to detect AOZ with a detection limit of 2 ng mL-1, without any influence from other potential interfering compounds. The proposed CBB-LFIA exhibited prominent practical application, and possesses considerable utilization potential in the related field.
Collapse
Affiliation(s)
- Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Jing Ren
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23Xinning Road, Xining 810008, Qinghai, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China.
| |
Collapse
|
37
|
Hodge CD, Rosenberg DJ, Wilamowski M, Joachimiak A, Hura GL, Hammel M. Rigid monoclonal antibodies improve detection of SARS-CoV-2 nucleocapsid protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.13.426597. [PMID: 33469584 PMCID: PMC7814821 DOI: 10.1101/2021.01.13.426597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NP NTD ) from SARS-CoV-2 using small angle X-ray scattering (SAXS). Our solution-based results distinguished the mAbs' flexibility and how this flexibility impacts the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NP NTD , we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the Fabs is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich ELISA, we show the rigid mAb-pairings with linear polymerization led to increased NP NTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices (LFA), key for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Curtis D Hodge
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
38
|
Hodge CD, Rosenberg DJ, Grob P, Wilamowski M, Joachimiak A, Hura GL, Hammel M. Rigid monoclonal antibodies improve detection of SARS-CoV-2 nucleocapsid protein. MAbs 2021; 13:1905978. [PMID: 33843452 PMCID: PMC8043170 DOI: 10.1080/19420862.2021.1905978] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NPNTD) from SARS-CoV-2 using small-angle X-ray scattering and transmission electron microscopy. Our solution-based results distinguished the mAbs' flexibility and how this flexibility affects the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NPNTD, we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the antigen-binding fragments is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich enzyme-linked immunosorbent assay, we show that rigid mAb-pairings with linear polymerization led to increased NPNTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices, which are critical for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Curtis D. Hodge
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel. J. Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Patricia Grob
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
39
|
Zhou Y, Chen Y, Liu Y, Fang H, Huang X, Leng Y, Liu Z, Hou L, Zhang W, Lai W, Xiong Y. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics. Biosens Bioelectron 2021; 171:112753. [PMID: 33120235 PMCID: PMC7575433 DOI: 10.1016/j.bios.2020.112753] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023]
Abstract
A polyethyleneimine (PEI)-assisted copper in-situ growth (CISG) strategy was proposed as a controlled signal amplification strategy to enhance the sensitivity of gold nanoparticle-based lateral flow sensors (AuNP-LFS). The controlled signal amplification is achieved by introducing PEI as a structure-directing agent to regulate the thermodynamics of anisotropic Cu nanoshell growth on the AuNP surface, thus controlling shape and size of the resultant AuNP@Cu core-shell nanostructures and confining free reduction and self-nucleation of Cu2+ for improved reproducibility and decreased false positives. The PEI-CISG-enhanced AuNP-LFS showed ultrahigh sensitivities with the detection limits of 50 fg mL-1 for HIV-1 capsid p24 antigen and 6 CFU mL-1 for Escherichia coli O157:H7. We further demonstrated its clinical diagnostic efficacy by configuring PEI-CISG into a commercial AuNP-LFS detection kit for SARS-CoV-2 antibody detection. Altogether, this work provides a reliable signal amplification platform to dramatically enhance the sensitivity of AuNP-LFS for rapid and accurate diagnostics of various infectious diseases.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi YeLi Medical Device Co. Ltd, Nanchang, 330096, PR China
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhengqiong Liu
- Department of Clinical Laboratories, Jiangxi Chest Hospital, Nanchang, 330006, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co. Ltd, Nanchang, 330096, PR China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
40
|
Xing KY, Shan S, Liu DF, Lai WH. Recent advances of lateral flow immunoassay for mycotoxins detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Lin JH, Sung WC, Liao JW, Hung DZ. A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites. Toxins (Basel) 2020; 12:toxins12090572. [PMID: 32899472 PMCID: PMC7551368 DOI: 10.3390/toxins12090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cobra snakes (genus Naja) are some of the most dangerous snake species in Asia and Africa, as their bites cause severe life-threatening respiratory failure and local tissue destruction, especially in the case of late diagnosis. The differential diagnosis of snakebite envenomation still mainly relies upon symptomatology, the patient’s description, and the experience of physicians. We have designed a rapid test, immunochromatographic test of cobra (ICT-Cobra), which obtained fair results in improving the diagnosis and treatment of Naja (N.) atra snakebites in Taiwan. In this study, we further investigated the feasibility of applying the kit for the detection of other cobra venoms based on the potential interspecies similarity. We firstly demonstrated the cross-reactivity between eight venoms of medically important cobra species and the rabbit anti-N. atra IgG that was used in ICT-Cobra by Western blotting and sandwich enzyme-linked immunosorbent assay. Then, ICT-Cobra was used to detect various concentrations of the eight venoms to elucidate its performance. Noticeable correlations between the cross-reactivity of venoms from genus Naja snakes and existing geographical characteristics were found. ICT-Cobra could detect venoms from other Asian cobras with variable detection limits comparable to those observed for N. atra, but the kit was less successful in the detection of venom from African cobras. The similar but slightly different venom components and the interaction between venom and rabbit anti-N. atra IgG led to variations in the detection limits. The transcontinental usage of ICT-Cobra might be possible due to the cross-reactivity of antibodies and similarities among the larger-sized proteins. This study showed that the close immunological relationships in the genus Naja could be used to develop a venom detection kit for the diagnosis of cobra envenomation in both Asian and African regions. Additional clinical studies and technical adjustments are still needed to improve the efficacy and broadening the application of ICT-Cobra in the future.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: (J.-W.L.); (D.-Z.H.); Tel.: +886-4-2284-0894 (J.-W.L.); +886-4-2205-2121 (D.-Z.H.)
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (J.-W.L.); (D.-Z.H.); Tel.: +886-4-2284-0894 (J.-W.L.); +886-4-2205-2121 (D.-Z.H.)
| |
Collapse
|
42
|
Hao L, Chen J, Chen X, Ma T, Cai X, Duan H, Leng Y, Huang X, Xiong Y. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chem 2020; 336:127710. [PMID: 32763739 DOI: 10.1016/j.foodchem.2020.127710] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
Conventional gold nanoparticle-based lateral flow immunoassay (LFIA) usually suffers a huge challenge in measuring target concentration in food matrices with dark color because of its poor resistance to the background matrix and color interference. To address this issue, we first report a novel bifunctional magneto-gold nanohybrid (MGNH) for the simultaneous magnetic separation and colorimetric target sensing by integrating MGNHs into LFIA. Under optimum conditions, an ultrasensitive detection of ochratoxin A (OTA) in grape juice was achieved with a limit of detection at 0.094 ng mL-1. The average recoveries of this MGNH-LFIA ranged from 92.31% to 108.97% with a coefficient of variation of below 12%. The excellent selectivity of our MGNH-LFIA against OTA was demonstrated. Besides, our MGNH-LFIA is comparable to liquid chromatography coupled with mass spectrometry in terms of accuracy, reproducibility, and practicability. The designed MGNH-LFIA platform is readily extended for improving other small molecule detection in food samples.
Collapse
Affiliation(s)
- Liangwen Hao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tongtong Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaoxia Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
43
|
Ren C, Bayin Q, Feng S, Fu Y, Ma X, Guo J. Biomarkers detection with magnetoresistance-based sensors. Biosens Bioelectron 2020; 165:112340. [PMID: 32729483 DOI: 10.1016/j.bios.2020.112340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Biosensing platforms for detecting and quantifying biomarkers have played an important role in the past decade. Among them, platforms based on magnetoresistance (MR) sensing technology are attractive. The resistance value of the material changes with the externally applied magnetic field is the core mechanism of MR sensing technology. A typical MR-based sensor has the characteristics of cost-effective, simple operation, high compactness, and high sensitivity. Moreover, using magnetic nanoparticles (MNPs) as labels, MR-based sensors have the ability to overcome the high background noise of complex samples, so they are particularly suitable for point-of-care testing (POCT). However, the problem still exists. How to obtain high-throughput, that is, multiple detections of biomarkers in MR-based sensors, thereby improving detection efficiency and reducing the burden on patients is an important issue in future work. This paper reviews three MR-based detection technologies for the detection of biomarkers, i.e., anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), and tunneling magnetoresistance (TMR). Based on these three common technologies, different typical applications that include biomedical diagnosis, food safety, and environmental monitoring are presented. Furthermore, the existing MR-based detection method is better expanded to make it more in line with present detection needs by combining different advanced technologies including microfluidics, Microelectromechanical systems (MEMS), and Immunochromatographic test strips (ICTS). And then, a brief discussion of current challenges and perspectives of MR-based sensors are pointed out.
Collapse
Affiliation(s)
- Chunhui Ren
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qiaoge Bayin
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| |
Collapse
|
44
|
Ghorbanpour M, Bhargava P, Varma A, Choudhary DK, Ameta SC. Use of Nanomaterials in Food Science. BIOGENIC NANO-PARTICLES AND THEIR USE IN AGRO-ECOSYSTEMS 2020. [PMCID: PMC7120067 DOI: 10.1007/978-981-15-2985-6_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current global population is nearly 6 billion; due to this rapid population growth, there is a need to produce food in a more efficient, safe, and sustainable way, and it should be safe from the adverse effects of pathogenic organisms. A large proportion of population living in developing countries face daily food shortages as a result of environmental impacts or some other reasons like political instability, etc., while in the developed countries, food is surplus. For developing countries, the objective is to develop drought- and pest-resistant crops, with maximized yield. In developed countries, the food industry depends on consumer’s demand for fresher and healthier foodstuffs. The present chapter describes the use of nanoparticles in food science.
Collapse
Affiliation(s)
- Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Prachi Bhargava
- Department of Bioscience & Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh India
| | - Devendra K. Choudhary
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh India
| | | |
Collapse
|
45
|
Ramadan MM, Mohamed MA, Almoammar H, Abd-Elsalam KA. Magnetic nanomaterials for purification, detection, and control of mycotoxins. NANOMYCOTOXICOLOGY 2020:87-114. [DOI: 10.1016/b978-0-12-817998-7.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
46
|
Shende P, Prabhakar B, Patil A. Color changing sensors: A multimodal system for integrated screening. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Pipetting-based immunoassay for point-of-care testing: Application for detection of the influenza A virus. Sci Rep 2019; 9:16661. [PMID: 31723156 PMCID: PMC6853919 DOI: 10.1038/s41598-019-53083-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Point-of-care tests (POCT) for pathogens are considered important for low-resource countries and facilities. Although lateral flow immunoassays (LFIA) have many advantages including speed and ease of use, their sensitivity is limited without specific equipment. Furthermore, their response cannot be enhanced through enzymatic reactions. Owing to these limitations, LFIAs have not yet been generally adopted as the standard protocol for in vitro analysis of infectious pathogens. We aimed to develop a novel pipetting-based immunoassay using a removable magnetic ring-coupled pipette tip. The “magnetic bead-capture antibody-targeted protein complex” was simply purified by pipetting and quantified by enzymatic colour development or using a lateral flow system. This pipetting-based immunoassay was applied to detect the nucleoprotein (NP) of the influenza A virus. Using an HRP-conjugated monoclonal antibody as a probe, the assay allowed for specific and sensitive detection. Furthermore, when this assay was applied exclusively for antigen capture in the lateral flow system, the limit of detection improved 100-fold and displayed greater sensitivity than the lateral flow system alone. Therefore, the pipetting-based immunoassay may be potentially used as a sensitive POCT to clinically detect a target antigen.
Collapse
|
48
|
Liu M, Won Lee J, Jung S, Ji S, Choi Y. Ability of S100 proteins and matrix metalloproteinase-9 to identify periodontitis in a ligature-induced periodontitis dog model. J Clin Periodontol 2019; 47:182-192. [PMID: 31680280 DOI: 10.1111/jcpe.13215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/09/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
AIMS The present study aimed to monitor the levels of selected salivary biomarkers during the development and treatment of periodontitis and to evaluate their ability to identify periodontitis in dogs. MATERIALS AND METHODS A total of 15 beagle dogs were divided into a control group (no ligature), group 1 (ligature on six teeth), and group 2 (ligature on 12 teeth). The experimental periods consisted of 8 weeks of periodontitis induction and 4 weeks of treatment. Clinical measurements and the sampling of saliva were performed every 4 weeks. The levels of S100A8, S100A9, S100A8/A9, and matrix metalloproteinase (MMP)-9 were measured by enzyme-linked immunosorbent assay. RESULTS All experimental animals and two control animals developed periodontitis, which was successfully treated. All salivary biomarkers were significantly increased in periodontitis with high diagnostic power (c-index ≥ 0.944) and were able to identify animals with periodontitis on a single tooth. Whereas the levels of salivary S100A8/A9 recovered to levels in health, those of S100A8, S100A9, and MMP-9 in periodontitis stability remained significantly higher than in health. CONCLUSION Salivary S100A8, S100A9, S100A8/A9, and MMP-9 may be used for the screening of periodontitis in dogs, but with caution of other conditions that can affect their levels in saliva.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jae Won Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Soyoung Jung
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Suk Ji
- Department of Periodontology, Ajou University Hospital, Suwon, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
49
|
Mahmoud M, Laufer S, Deigner HP. Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochim Acta 2019; 186:690. [PMID: 31595372 DOI: 10.1007/s00604-019-3795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
Abstract
This work describes an aptamer-based capillary assay for ethanolamine (EA). It is making use of strand displacement format and magnetic particles. The capillary tubes are coated with three layers, viz. (a) first with short oligonucleotides complementary to the aptamer (EA-comp.); (b) then with magnetic particles (Dynabeads) coated with EA-binding aptamer (EA-aptamer), and (c) with short oligonucleotide-coated magnetic particles (EA-comp.). On exposure to a sample containing ethanolamine, the DNA-coated magnetic particles are released and subsequently collected and spatially separated using a permanent magnet. This results in the formation of a characteristic black/brown spots. The assay has a visual limit of detection of 5 nM and only requires 5 min of incubation. Quantification is possible through capture and analysis of digital (RGB) photos in the 5 to 75 nM EA concentration range. Furthermore, results from tap water and serum spiked with EA samples showed that the platform performs well in complex samples and can be applied to real sample analysis. The combined use of plastic capillaries, visual detection and passive flow make the method suited for implementation into a point-of-care device. Graphical abstract Schematic representation of the capillary assay steps.
Collapse
Affiliation(s)
- Mostafa Mahmoud
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, D-18057, Rostock, Germany.
| |
Collapse
|
50
|
Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens Bioelectron 2019; 141:111407. [DOI: 10.1016/j.bios.2019.111407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022]
|