1
|
Shen Y, Zhao S, Chen F, Lv Y, Fu L. Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. BIOSENSORS 2024; 14:496. [PMID: 39451709 PMCID: PMC11505628 DOI: 10.3390/bios14100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental principles of electrochemical immunosensors and explore innovative approaches to improve their performance. These include the utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled miniaturization and automation, while screen-printed and disposable electrodes have facilitated on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and the stability of biological recognition elements. Emerging trends such as the application of artificial intelligence for data interpretation and the development of aptamer-based sensors are highlighted. The review also considers the potential for commercialization and the hurdles that must be overcome for widespread adoption. Future research directions are identified, including the development of multi-analyte detection platforms and the integration of sensors with emerging technologies like the Internet of Things. This comprehensive overview provides insights into the current state of the field and outlines promising avenues for future development in organophosphate pesticide detection.
Collapse
Affiliation(s)
| | | | | | | | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.S.); (S.Z.); (F.C.); (Y.L.)
| |
Collapse
|
2
|
Zhang J, Cheng D, He J, Hong J, Yuan C, Liang M. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 2021; 16:4878-4896. [PMID: 34497386 DOI: 10.1038/s41596-021-00602-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Ferritins are spherical iron storage proteins within cells, composed of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin. Ferritins auto-assemble naturally into hollow nanocages with an outer diameter of 12 nm and an interior cavity 8 nm in diameter. Since the intrinsic tumor-targeting property of human HFn was first reported in 2012, HFn has been extensively explored for tumor-targeted delivery of anticancer drugs and diagnostic molecules, including radioisotopes and fluorophores, as well as inorganic nanoparticles (NPs) and chemotherapeutic drugs. This protocol provides four detailed procedures describing how to load four types of cargoes within HFn nanocages that are capable of accurately controlling cargo loading: synthesis of inorganic metal nanoparticles within the cavity of a wild-type human HFn nanocage (Procedure 1, requires ~5 h); loading of doxorubicin into the cavity of a wild-type human HFn nanocage (Procedure 2, requires ~3 d); loading Gd3+ into the cavity of a genetically engineered human HFn nanocage (Procedure 3, requires ~20 h); and loading 64Cu2+ radioisotope into the cavity of a genetically engineered human HFn nanocage (Procedure 4, requires ~3 h). Subsequent use of these HFn-based formulations is advantageous as they have intrinsic tumor-targeting capability and lack immunogenicity. Human HFn generated as described in this protocol can therefore be used to deliver therapeutic drugs and diagnostic signals as multifunctional nanomedicines.
Collapse
Affiliation(s)
- Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jiuyang He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
3
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angew Chem Int Ed Engl 2021; 60:6890-6918. [PMID: 31729826 PMCID: PMC9205421 DOI: 10.1002/anie.201909927] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Indexed: 01/01/2023]
Abstract
Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.
Collapse
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, Illinois 61801 (USA)
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| |
Collapse
|
4
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Funktionelle Nukleinsäure‐Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yi Lu
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
5
|
Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosens Bioelectron 2020; 165:112382. [PMID: 32729507 DOI: 10.1016/j.bios.2020.112382] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
The increasing level of pesticides and herbicides in food and water sources is a growing threat to human health and the environment. The development of portable, sensitive, specific, simple, and cost-effective sensors is hence in high demand to avoid exposure or consumption of these chemicals through efficient monitoring of their levels in food as well as water samples. The use of nanomaterials (NMs) for the construction of an immunosensing system was demonstrated to be an efficient and effective option to realize selective sensing against pesticides/herbicides. The potential of such applications has hence been demonstrated for a variety of NMs including graphene, carbon nanotubes (CNTs), metal nanoparticles, and nano-polymers either in pristine or composite forms based on diverse sensing principles (e.g., electrochemical, optical, and quartz crystal microbalance (QCM)). This article evaluates the development, applicability, and performances of NM-based immunosensors for the measurement of pesticides and herbicides in water, food, and soil samples. The performance of all the surveyed sensors has been evaluated on the basis of key parameters, e.g., detection limit (DL), sensing range, and response time.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Xu YL, Li FY, Ndikuryayo F, Yang WC, Wang HM. Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4281. [PMID: 30563111 PMCID: PMC6312092 DOI: 10.3390/s18124281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/04/2023]
Abstract
Nowadays, pesticide residues constitute an increasing public health concern. Cholinesterases, acetylcholinesterase, and butyrylcholinesterase, are reported to be involved in detoxification processes owing to their capability of scavenging organophosphates and carbamates. Thus, these enzymes are targeted for the discovery of sensors aiming at detecting pesticide residues. In recent years, cholinesterase-based biosensors have attracted more and more attention in the detection of pesticides. Herein, this review describes the recent progress on the engineering of cholinesterases and the development of the corresponding sensors that could be used for the detection of organophosphorus pesticide residues.
Collapse
Affiliation(s)
- Yu-Ling Xu
- School of Chemical & Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng-Ye Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hong-Mei Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
7
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
8
|
Lee NY. A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Mikrochim Acta 2018; 185:285. [PMID: 29736588 DOI: 10.1007/s00604-018-2791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Since the advent of microfabrication technology and soft lithography, the lab-on-a-chip concept has emerged as a state-of-the-art miniaturized tool for conducting the multiple functions associated with micro total analyses of nucleic acids, in series, in a seamless manner with a miniscule volume of sample. The enhanced surface-to-volume ratio inside a microchannel enables fast reactions owing to increased heat dissipation, allowing rapid amplification. For this reason, PCR has been one of the first applications to be miniaturized in a portable format. However, the nature of the basic working principle for microscale PCR, such as the complicated temperature controls and use of a thermal cycler, has hindered its total integration with other components into a micro total analyses systems (μTAS). This review (with 179 references) surveys the diverse forms of PCR microdevices constructed on the basis of different working principles and evaluates their performances. The first two main sections cover the state-of-the-art in chamber-type PCR microdevices and in continuous-flow PCR microdevices. Methods are then discussed that lead to microdevices with upstream sample purification and downstream detection schemes, with a particular focus on rapid on-site detection of foodborne pathogens. Next, the potential for miniaturizing and automating heaters and pumps is examined. The review concludes with sections on aspects of complete functional integration in conjunction with nanomaterial based sensing, a discussion on future prospects, and with conclusions. Graphical abstract In recent years, thermocycler-based PCR systems have been miniaturized to palm-sized, disposable polymer platforms. In addition, operational accessories such as heaters and mechanical pumps have been simplified to realize semi-automatted stand-alone portable biomedical diagnostic microdevices that are directly applicable in the field. This review summarizes the progress made and the current state of this field.
Collapse
Affiliation(s)
- Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
9
|
Du B, Jia S, Wang Q, Ding X, Liu Y, Yao H, Zhou J. A Self-Targeting, Dual ROS/pH-Responsive Apoferritin Nanocage for Spatiotemporally Controlled Drug Delivery to Breast Cancer. Biomacromolecules 2018; 19:1026-1036. [PMID: 29455519 DOI: 10.1021/acs.biomac.8b00012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, an intelligent pH and ROS dual-responsive drug delivery system based on an apoferritin (AFt) nanocage was prepared. This therapeutic system can specifically self-target 4T1 breast cancer cells by exploiting L-apoferritin receptor SCARA 5, avoiding the nonspecific binding or aggregation of nanoparticles due to the chemical functionalization for targeting. The characteristics of AFt were utilized for the simultaneous delivery of anticancer drug doxorubicin (DOX) and photosensitizer rose bengal (RB). RB exhibited efficient reactive oxygen species (ROS) generation, which can be applied to photodynamic therapy. Meanwhile, the AFt nanocage was prone to undergoing peptide backbone cleavage when oxidized by ROS. Therefore, by combining the intrinsic pH-responsive property of AFt, the dual ROS/pH-responsive system was developed. The time and location of drug release can be controlled by the combination of internal and external stimulus, which avoids the incomplete drug release under single stimulus response. The drug release rate increased significantly (from 26.1% to 92.0%) under low-pH condition (pH 5.0) and laser irradiation. More DOX from AFt entered the nucleus and killed the tumor cells, and the cell inhibition rate was up to ∼83% (DOX concentration: 5 μg/mL) after 48 h incubation. In addition, the biodistribution and the in vivo antitumor efficacy (within 14 d treatment) of the nanosystem were investigated in 4T1 breast cancer BALB/c mice. The results indicated that the system is a promising therapeutic agent involving ROS/pH dual response, self-targeting, and chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province 100 Science Road , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province 100 Science Road , Zhengzhou 450001 , China
| | - Shaona Jia
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Qinghui Wang
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Xiaoyu Ding
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Ying Liu
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Hanchun Yao
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province 100 Science Road , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province 100 Science Road , Zhengzhou 450001 , China
| | - Jie Zhou
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province 100 Science Road , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province 100 Science Road , Zhengzhou 450001 , China
| |
Collapse
|
10
|
Wei J, Cao J, Hu H, Yang Q, Yang F, Wan J, Su H, He C, Li P, Wang Y. Sensitive and Selective Detection of Oxo-Form Organophosphorus Pesticides Based on CdSe/ZnS Quantum Dots. Molecules 2017; 22:molecules22091421. [PMID: 28846648 PMCID: PMC6151729 DOI: 10.3390/molecules22091421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022] Open
Abstract
A rapid, sensitive and enzyme-based optical biosensor was applied for the determination of seven organophosphorus pesticides (OPPs), including the oxo forms (malaoxon, paraoxon, dibrom, and dichlorvos), the thio forms (malathion and parathion) and the mixed form (demeton) in Panax ginseng. The principal of the proposed method is that the fluorescence quenching effect of quantum dots (QDs) can be observed by enzyme-generated H₂O₂. The active centers of acetylcholinesterase (AChE) could be inhibited in the presence of pesticides, which caused decrease of the generated H₂O₂. Then, the inhibition efficiency of pesticide to AChE activity could be evaluated by measuring the fluorescence changes. Different from biosensors based on immobilized enzyme or self-assembling technique, the proposed biosensor demonstrated a good selectivity for the detection of oxo forms of OPPs. In the present study, the important experimental conditions of the proposed biosensor were investigated. Under the optimized conditions (incubation temperature, 35 °C; incubation time, 20 min; pH value, 8.0; detection time, 30 min; AChE concentration, 40.9 U/L; and choline oxidase (ChOx) concentration, 637.5 U/L), the limit of detection for the investigated oxo-form OPPs was no more than 0.05 μM, which suggested that the proposed method could be used for sensitive and selective determination of trace amounts of OPPs residues in real samples with complex matrices.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Qing Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Fengqing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400015, China.
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
11
|
Zhang W, Guo Z, Chen Y, Cao Y. Nanomaterial Based Biosensors for Detection of Biomarkers of Exposure to OP Pesticides and Nerve Agents: A Review. ELECTROANAL 2017. [DOI: 10.1002/elan.201600748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college; Wuhan University of Science and Technology; Wuhan 430065 P.R.China
| | - Yong Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640; 24 Rue Lhomond Paris 75005 France
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| |
Collapse
|
12
|
Liang P, Kang C, Yang E, Ge X, Du D, Lin Y. A sensitive magnetic nanoparticle-based immunoassay of phosphorylated acetylcholinesterase using protein cage templated lead phosphate for signal amplification with graphite furnace atomic absorption spectrometry detection. Analyst 2017; 141:2278-83. [PMID: 26953358 DOI: 10.1039/c5an02656c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new magnetic nanoparticle sandwich-like immunoassay using protein cage nanoparticles (PCN) for signal amplification together with graphite furnace atomic absorption spectrometry (GFAAS) for the quantification of an organophosphorylated acetylcholinesterase adduct (OP-AChE), the biomarker of exposure to organophosphate pesticides (OPs) and nerve agents. OP-AChE adducts were firstly captured by titanium dioxide coated magnetic nanoparticles (TiO2-MNPs) from the sample matrixes through metal chelation with phospho-moieties, and then selectively recognized by anti-AChE antibody labeled on PCN which was packed with lead phosphate in its cavity (PCN-anti-AChE). The sandwich-like immunoreaction was performed among TiO2-MNPs, OP-AChE and PCN-anti-AChE to form a TiO2-MNP/OP-AChE/PCN-anti-AChE immunocomplex. The complex could be easily isolated from the sample solution with the help of magnet, and the released lead ions from PCN were detected by GFAAS for the quantification of OP-AChE. Greatly enhanced sensitivity was achieved because PCN increased the amount of metal ions in the cavity of each apoferritin. The proposed immunoassay yielded a linear response over a broad range of OP-AChE concentrations from 0.01 nM to 2 nM, with a detection limit of 2 pM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This new method showed an acceptable stability and reproducibility and was validated with OP-AChE spiked human plasma.
Collapse
Affiliation(s)
- Pei Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Caiyan Kang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Enjian Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiaoxiao Ge
- School of Mechanical and Materials Engineering, PO Box 642920 and Washington State University, Pullman, WA 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, PO Box 642920 and Washington State University, Pullman, WA 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, PO Box 642920 and Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
13
|
Mousavi MF, Mirsian S, Noori A, Ilkhani H, Sarparast M, Moradi N, Bathaie SZ, Mehrgardi MA. BSA-templated Pb Nanocluster as a Biocompatible Signaling Probe for Electrochemical EGFR Immunosensing. ELECTROANAL 2016. [DOI: 10.1002/elan.201600537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mir F. Mousavi
- Department of Chemistry; Tarbiat Modares University; Tehran 14115-175 Iran
| | - Samaneh Mirsian
- Department of Chemistry; Tarbiat Modares University; Tehran 14115-175 Iran
| | - Abolhassan Noori
- Department of Chemistry; Tarbiat Modares University; Tehran 14115-175 Iran
| | - Hoda Ilkhani
- Department of Chemistry; Tarbiat Modares University; Tehran 14115-175 Iran
| | - Morteza Sarparast
- Department of Chemistry; Tarbiat Modares University; Tehran 14115-175 Iran
| | - Nasrin Moradi
- Department of Chemistry; Tarbiat Modares University; Tehran 14115-175 Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences; Tarbiat Modares University; Tehran 14115-111 Iran
| | | |
Collapse
|
14
|
Bao J, Hou C, Dong Q, Ma X, Chen J, Huo D, Yang M, Galil KHAE, Chen W, Lei Y. ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. Biosens Bioelectron 2016; 85:935-942. [DOI: 10.1016/j.bios.2016.05.094] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 01/19/2023]
|
15
|
Yasmin J, Ahmed MR, Cho BK. Biosensors and their Applications in Food Safety: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.5307/jbe.2016.41.3.240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Ge X, Zhang A, Lin Y, Du D. Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 2016; 80:201-207. [DOI: 10.1016/j.bios.2016.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 02/01/2023]
|
17
|
Zhao Y, Du D, Lin Y. Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout. Biosens Bioelectron 2015; 72:348-54. [PMID: 26005847 DOI: 10.1016/j.bios.2015.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 12/12/2022]
Abstract
A new technology was developed to quantitatively detect a broad range of disease biomarkers and proven to be portable, economical, and conveniently accessible. Measurements were performed based on releasing encapsulated glucose from antibody-tagged liposomes and subsequently detecting the released glucose using a commercial personal glucose meter (GM). The innovative aspect of this approach lies in the quantification of target biomarkers through the detection of glucose, thus expanding the applicability of the GM by broadening the range of target biomarkers instead of detecting only one analyte, glucose. Because of the bilayer membrane of liposomes, which can accommodate tens of thousands of glucose molecules, the sensitivity was greatly enhanced by using glucose encapsulating liposomes as a signal output and an amplifier. Here, the model analyte, protein 53 phosphorylated on Serine 15 (phospho-p53(15)), was captured by primary antibodies bound on magnetic Fe3O4 nanoparticles and then recognized by reporting antibodies conjugated to glucose encapsulating liposomes. Finally, the target phospho-p53(15) was detected by lysing the bound liposomes to release the encapsulated glucose (4 × 10(5) glucose molecules per liposome), which is detected with the GM. This approach was demonstrated to be a universal technology that can be easily produced to quantify a wide variety of biomarkers in medical diagnostics, food safety, public health, and environmental monitoring. In the near future, it is expected that these sensors, in combination with a portable GM, can be used in many fields such as physicians' laboratories, hospitals and the common household.
Collapse
Affiliation(s)
- Yuting Zhao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Dan Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
An Organophosphorus Hydrolase-Based Biosensor for Direct Detection of Paraoxon Using Silica-Coated Magnetic Nanoparticles. Appl Biochem Biotechnol 2015; 176:359-71. [DOI: 10.1007/s12010-015-1579-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
19
|
Wang D, Gan N, Zhang H, Li T, Qiao L, Cao Y, Su X, Jiang S. Simultaneous electrochemical immunoassay using graphene–Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes. Biosens Bioelectron 2015; 65:78-82. [DOI: 10.1016/j.bios.2014.09.085] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023]
|
20
|
Ren X, Wei J, Ren J, Qiang L, Tang F, Meng X. A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots. Colloids Surf B Biointerfaces 2014; 125:90-5. [PMID: 25500325 DOI: 10.1016/j.colsurfb.2014.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
The carbon dots (C-dots) with high fluorescence quantum yield were prepared using hydrothermal method. C-dots have been adopted as probes for the fluorescence turn-off detection of H2O2 based on the special sensibility for the hydroxyl radical. And then the biosensors for the detection of substrate and enzymes activities were established in the acetylcholinesterase reaction system, which were related to the production of H2O2. Specifically, the proposed fluorescent biosensor was successfully applied to detect the concentration of choline (in the range from 0.025 to 50 μM) and acetylcholine (in the range from 0.050 to 50 μM), and the activity of choline oxidase (in the range from 1 to 75 U/L) and acetylcholinesterase (1 to 80 U/L). These results showed a sensitive, universal, nontoxic and eco-friendly detecting technique has been developed.
Collapse
Affiliation(s)
- Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, NO. 29, Zhongguancun East Road, Haidian District, Beijing 100190, PR China; The State Key Laboratory of Bioelectronics, Southeast University, 210096, PR China
| | - Jianfei Wei
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, NO. 29, Zhongguancun East Road, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, NO. 29, Zhongguancun East Road, Haidian District, Beijing 100190, PR China
| | - Li Qiang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, NO. 29, Zhongguancun East Road, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangqiong Tang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, NO. 29, Zhongguancun East Road, Haidian District, Beijing 100190, PR China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, NO. 29, Zhongguancun East Road, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
21
|
Sui T, Que J, Kong D, Xie H, Wang D, Shi K, Cao X, Li X. Rapid identification of spinal ventral and dorsal roots using a quartz crystal microbalance. Neural Regen Res 2014; 8:686-92. [PMID: 25206714 PMCID: PMC4146075 DOI: 10.3969/j.issn.1673-5374.2013.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
The fast and accurate identification of nerve tracts is critical for successful nerve anastomosis. Taking advantage of differences in acetylcholinesterase content between the spinal ventral and dorsal roots, we developed a novel quartz crystal microbalance method to distinguish between these nerves based on acetylcholinesterase antibody reactivity. The acetylcholinesterase antibody was immobilized on the electrode surface of a quartz crystal microbalance and reacted with the acetylcholinesterase in sample solution. The formed antigen and antibody complexes added to the mass of the electrode inducing a change in frequency of the electrode. The spinal ventral and dorsal roots were distinguished by the change in frequency. The ventral and dorsal roots were cut into 1 to 2-mm long segments and then soaked in 250 μL PBS. Acetylcholinesterase antibody was immobilized on the quartz crystal microbalance gold electrode surface. The results revealed that in 10 minutes, both spinal ventral and dorsal roots induced a frequency change; however, the frequency change induced by the ventral roots was notably higher than that induced by the dorsal roots. No change was induced by bovine serum albumin or PBS. These results clearly demonstrate that a quartz crystal microbalance sensor can be used as a rapid, highly sensitive and accurate detection tool for the quick identification of spinal nerve roots intraoperatively.
Collapse
Affiliation(s)
- Tao Sui
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jun Que
- Department of Intensive Care Unit, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dechao Kong
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hao Xie
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Daode Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Kun Shi
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaojian Cao
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiang Li
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
22
|
Wang M, Yin H, Fu Z, Guo Y, Wang X, Zhou Y, Ai S. A label-free electrochemical biosensor for microRNA detection based on apoferritin-encapsulated Cu nanoparticles. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2531-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y. Nanomaterial-enhanced paper-based biosensors. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Zhang W, Asiri AM, Liu D, Du D, Lin Y. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.10.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: a review. Biochem Res Int 2013; 2013:731501. [PMID: 24383001 PMCID: PMC3872028 DOI: 10.1155/2013/731501] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/03/2013] [Indexed: 11/17/2022] Open
Abstract
The exponentially growing population, with limited resources, has exerted an intense pressure on the agriculture sector. In order to achieve high productivity the use of pesticide has increased up to many folds. These pesticides contain organophosphorus (OP) toxic compounds which interfere with the proper functioning of enzyme acetylcholinesterase (AChE) and finally affect the central nervous system (CNS). So, there is a need for routine, continuous, on spot detection of OP compounds which are the main limitations associated with conventional analytical methods. AChE based enzymatic biosensors have been reported by researchers as the most promising tool for analysis of pesticide level to control toxicity and for environment conservation. The present review summarises AChE based biosensors by discussing their characteristic features in terms of fabrication, detection limit, linearity range, time of incubation, and storage stability. Use of nanoparticles in recently reported fabrication strategies has improved the efficiency of biosensors to a great extent making them more reliable and robust.
Collapse
|
26
|
Ge X, Zhang W, Lin Y, Du D. Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Biosens Bioelectron 2013; 50:486-91. [DOI: 10.1016/j.bios.2013.07.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
|
27
|
Ge X, Tao Y, Zhang A, Lin Y, Du D. Electrochemical detection of dual exposure biomarkers of organophosphorus agents based on reactivation of inhibited cholinesterase. Anal Chem 2013; 85:9686-91. [PMID: 24020883 DOI: 10.1021/ac402022p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Considering inter- or intra-individual variation in the normal levels of acetylcholinesterase (AChE), real-time measurement of AChE via the reactivation from a postexposure sample was used, and thus a baseline-free and reliable approach was proposed for detecting/screening low-dose organophosphorus pesticides (OPs) poisons. The principle of this technology is on the basis of parallel measurements of AChE activity before and after reactivation from a postexposure to simultaneously provide the content of dual biomarkers of both enzyme inhibition and enzyme adducts. It is more accurate and reliable compared with only one biomarker (inhibition or adduct). Reactivation from a postexposure sample is a better individual enzyme baseline compared to pre-exposure from the population average level in currently available approaches. AChE activity was measured with an electrochemical method. Greatly enhanced sensitivity was achieved by using Fe3O4/Au nanocomposites to enrich thiocholine, the hydrolysis product of active AChE, followed by electrochemical oxidative desorption of the adsorbed thiocholine. The validation of this method for measurement of OP exposures was further explored with in vitro paraoxon inhibited human red blood cells (RBCs) samples and demonstrated its practicability.
Collapse
Affiliation(s)
- Xiaoxiao Ge
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Wang X, Chen L, Su X, Ai S. Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup J. Biosens Bioelectron 2013; 47:171-7. [DOI: 10.1016/j.bios.2013.03.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 11/15/2022]
|
29
|
Sui T, Ge Y, Liu W, Zhao ZK, Zhang N, Cao X. An acetylcholinesterase antibody-based quartz crystal microbalance for the rapid identification of spinal ventral and dorsal roots. PLoS One 2013; 8:e69049. [PMID: 23935920 PMCID: PMC3720868 DOI: 10.1371/journal.pone.0069049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022] Open
Abstract
Differences in the levels of acetylcholinesterase (AChE) in ventral and dorsal spinal roots can be used to differentiate the spinal nerves. Although many methods are available to assay AChE, a rapid and sensitive method has not been previously developed. Here, we describe an antibody-based quartz crystal microbalance (QCM) assay and its application for the quantification of AChE in the solutions of ventral and dorsal spinal roots. The frequency variation of the QCM device corresponds to the level of AChE over a wide dynamic range (0.5-10 µg/ml), which is comparable to the response range of the ELISA method. The frequency shift caused by the ventral roots is 3-fold greater than that caused by the dorsal roots. The antibody-based QCM sensor was stable across many successive replicate samples, and the method required less than 10 min, including the AChE extraction and analysis steps. This method is a rapid and convenient means for the quantification of AChE in biological samples and may be applicable for distinguishing the ventral and dorsal roots during surgical operations.
Collapse
Affiliation(s)
- Tao Sui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, People’s Republic of China
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, People’s Republic of China
| | - Ning Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
30
|
Zhang X, Wang H, Yang C, Du D, Lin Y. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosens Bioelectron 2013; 41:669-74. [DOI: 10.1016/j.bios.2012.09.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
|
31
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang W, Ge X, Tang Y, Du D, Liu D, Lin Y. Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphorus agents. Analyst 2013; 138:5431-6. [DOI: 10.1039/c3an00621b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Marín S, Merkoçi A. Nanomaterials Based Electrochemical Sensing Applications for Safety and Security. ELECTROANAL 2012. [DOI: 10.1002/elan.201100576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Yang Y, Tu H, Zhang A, Du D, Lin Y. Preparation and characterization of Au–ZrO2–SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm15129d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Chen A, Bao Y, Ge X, Shin Y, Du D, Lin Y. Magnetic particle-based immunoassay of phosphorylated p53 using protein cage templated lead phosphate and carbon nanospheres for signal amplification. RSC Adv 2012. [DOI: 10.1039/c2ra20994b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Zhang Y, Tang Z, Wang J, Wu H, Lin CT, Lin Y. Apoferritin nanoparticle: a novel and biocompatible carrier for enzyme immobilization with enhanced activity and stability. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11598g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|