1
|
Bahramian H, Gholinejad J, Yazdanpanah Goharrizi A. Folded flexure MOEMS for the detection of PSA and hepatitis DNA as biosensor for prostate cancer and viruses. Sci Rep 2024; 14:22881. [PMID: 39358419 PMCID: PMC11446923 DOI: 10.1038/s41598-024-73910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Micro-opto-electro-mechanical systems (MOEMS) biosensors are employed in various applications such as disease monitoring, drug investigation, detection of pollutants, and biological fluid studies. In this paper, a novel MOEMS biosensor based on a differential folded-flexure structure is introduced. The designed device is employed to detect prostate-specific antigen (PSA) protein and Hepatitis DNA. The target molecules cause a mechanical deflection in the folded-flexure; subsequently, the transmitted optical power across the finger, attached to the flexure, is modulated in proportion to the input concentration. Then, a photodiode power sensor measures the modulated optical power, where the output of the sensor is simply a current related to the target molecules' concentrations. The employed readout circuit operates at a wavelength of λ = 1550 nm with a laser power of 1 µW. The dimensions of the proposed biosensor are considered to be 365 × 340 × 2 μm³, making this sensor small enough and suitable for integration. The designed biosensor provides notable features of mechanical deflection sensitivities of 0.2053 nm/(ng/ml) and 7.2486 nm/nM, optical transmittance sensitivities of 0.535504 × 10-3 1/(ng/ml) and 18.91 × 10-3 1/nM, total output sensitivities of 0.5398 (mA/W)/(ng/ml) and 19.059 (mA/W)/nM, and measurement ranges of 0-1000 ng/ml and 0-28.33 nM for PSA and Hepatitis DNA, respectively. The proposed system is a sensitive and powerful sensor that can play an important role in diagnosing many diseases.
Collapse
Affiliation(s)
- Hossein Bahramian
- Department of Electronics, Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Evin, Tehran, 19839- 69411, Iran
| | - Jalal Gholinejad
- Department of Electronics, Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Evin, Tehran, 19839- 69411, Iran
| | - Arash Yazdanpanah Goharrizi
- Department of Electronics, Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Evin, Tehran, 19839- 69411, Iran.
| |
Collapse
|
2
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
3
|
Liu J, Liu B, Liu J, He XD, Yuan J, Ghassemlooy Z, Torun H, Fu YQ, Dai X, Ng WP, Binns R, Wu Q. Integrated label-free erbium-doped fiber laser biosensing system for detection of single cell Staphylococcus aureus. Talanta 2023; 257:124385. [PMID: 36827941 DOI: 10.1016/j.talanta.2023.124385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 0.426 nm wavelength shift in the measured spectrum for S. aureus concentration of 10 CFU/mL. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics.
Collapse
Affiliation(s)
- Jiandong Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Bin Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Juan Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xing-Dao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jinhui Yuan
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China
| | - Zabih Ghassemlooy
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Hamdi Torun
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Yong-Qing Fu
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Xuewu Dai
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Wai Pang Ng
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Richard Binns
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Qiang Wu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China; Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
4
|
Zinc-Finger-Protein-Based Microfluidic Electrophoretic Mobility Reversal Assay for Quantitative Double-Stranded DNA Analysis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
6
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
7
|
Bandara AB, Zuo Z, McCutcheon K, Ramachandran S, Heflin JR, Inzana TJ. Identification of Histophilus somni by a nanomaterial optical fiber biosensor assay. J Vet Diagn Invest 2018; 30:821-829. [PMID: 30264658 PMCID: PMC6505835 DOI: 10.1177/1040638718803665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histophilus somni is an opportunistic pathogen responsible for respiratory and systemic diseases of cattle and sheep. Rapid and accurate detection of H. somni is essential to distinguish H. somni from other potential pathogens for proper control and treatment of infections. Nanomaterial optical fiber biosensors (NOFS) recognize analyte interactions, such as DNA hybridization, with high specificity and sensitivity, and were applied to detect H. somni DNA in culture and clinical samples. An ionic self-assembled multilayer (ISAM) film was fabricated on a long-period grating optical fiber, and a biotinylated, nucleotide probe complementary to the H. somni 16S rDNA gene was coupled to the ISAM film. Exposure of the ISAM::probe to ⩾100 killed cells of H. somni strain 2336 without DNA amplification resulted in attenuation of light transmission of ⩾9.4%. Exposure of the complexed fiber to Escherichia coli or non- H. somni species of Pasteurellaceae reduced light transmission by ⩽3.4%. Exposure of the ISAM::probe to blood, bronchoalveolar fluid, or spleen from mice or calves infected with H. somni resulted in ⩾24.3% transmission attenuation. The assay correctly detected all 6 strains of H. somni tested from culture, or tissues from 3 separate mice and calves tested in duplicate. Six heterologous strains (representing 6 genera) reacted at below the cutoff value of 4.87% attenuation of light transmission. NOFS detected at least 100 H. somni cells without DNA amplification within 45 min with high specificity. Although different fibers could vary in signal sensitivity, this did not affect the sensitivity or specificity of the assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J. Inzana
- Thomas J. Inzana, College of Veterinary Medicine, Long Island University, Brookville, NY 11548.
| |
Collapse
|
8
|
Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal Chim Acta 2018; 1051:1-23. [PMID: 30661605 DOI: 10.1016/j.aca.2018.10.058] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Global food and water safety issues have prompted the development of highly sensitive, specific, and fast analytical techniques for food and water analysis. The electrochemical aptamer-based detection platform (E-aptasensor) is one of the more promising detection techniques because of its unique combination of advantages that renders these sensors ideal for detection of a wide range of target analytes. Recent research results have further demonstrated that this technique has potential for real world analysis of food and water contaminants. This review summaries the recently developed E-aptasensors for detection of analytes related to food and water safety, including bacteria, mycotoxins, algal toxins, viruses, drugs, pesticides, and metal ions. Ten different electroanalytical techniques and one opto-electroanalytical technique commonly employed with these sensors are also described. In addition to highlighting several novel sensor designs, this review also describes the strengths, limitations, and current challenges this technology faces, and future development trend.
Collapse
Affiliation(s)
- Fengqin Li
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Zhigang Yu
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xianda Han
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, United States.
| |
Collapse
|
9
|
Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens Bioelectron 2018; 105:49-57. [PMID: 29358112 DOI: 10.1016/j.bios.2018.01.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/22/2022]
Abstract
Foodborne illness outbreaks caused by the consumption of food contaminated with harmful bacteria has drastically increased in the past decades. Therefore, detection of harmful bacteria in the food has become an important factor for the recognition and prevention of problems associated with food safety and public health. Staphylococcus aureus is one of the most commonly isolated foodborne pathogen and it is considered as a major cause of foodborne illnesses worldwide. A number of different methods have been developed for the detection and identification of S. aureus in food samples. However, some of these methods are laborious and time-consuming and are not suitable for on-site applications. Therefore, it is highly important to develop rapid and more approachable detection methods. In the last decade, biosensors have gained popularity as an attractive alternative method and now considered as one of most rapid and on-site applicable methods. An overview of the biosensor based methods used for the detection of S. aureus is presented herein. This review focuses on the state-of-the-art biosensor methods towards the detection and quantification of S. aureus, and discusses the most commonly used biosensor methods based on the transducing mode, such as electrochemical, optical, and mass-based biosensors.
Collapse
|
10
|
Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. LAB ON A CHIP 2017; 17:2713-2739. [PMID: 28702608 DOI: 10.1039/c7lc00397h] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.
Collapse
Affiliation(s)
- Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | |
Collapse
|
11
|
Hulme J. Recent advances in the detection of methicillin resistant Staphylococcus aureus (MRSA). BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-016-1201-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Najeeb MA, Ahmad Z, Shakoor RA, Mohamed AMA, Kahraman R. A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta 2017; 168:52-61. [PMID: 28391865 DOI: 10.1016/j.talanta.2017.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing.
Collapse
Affiliation(s)
- Mansoor Ani Najeeb
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - Zubair Ahmad
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| | - R A Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - A M A Mohamed
- Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt
| | - Ramazan Kahraman
- Department of Chemical Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
13
|
Pitman K, Raud M, Scotti G, Jokinen VP, Franssila S, Nerut J, Lust E, Kikas T. Electrochemical Characterization of the Microfabricated Electrochemical Sensor-Array System. ELECTROANAL 2016. [DOI: 10.1002/elan.201600559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kätlin Pitman
- Estonian University of Life Sciences; Institute of Technology; Kreutzwaldi 56 EE51014 Tartu Estonia
| | - Merlin Raud
- Estonian University of Life Sciences; Institute of Technology; Kreutzwaldi 56 EE51014 Tartu Estonia
| | - Gianmario Scotti
- Aalto University; Department of Materials Science and Engineering and Micronova Nanofabriction Centre; PO BOX 13500 FIN-00076 Aalto Finland
- current address: University of Helsinki; Faculty of Pharmacy, Division of Pharmaceutical Chemistry & Technology; Viikinkaari 5E FIN-00014 Helsinki Finland
| | - Ville P. Jokinen
- Aalto University; Department of Materials Science and Engineering and Micronova Nanofabriction Centre; PO BOX 13500 FIN-00076 Aalto Finland
| | - Sami Franssila
- Aalto University; Department of Materials Science and Engineering and Micronova Nanofabriction Centre; PO BOX 13500 FIN-00076 Aalto Finland
| | - Jaak Nerut
- University of Tartu; Institute of Chemistry; Ravila 14a EE50411 Tartu Estonia
| | - Enn Lust
- University of Tartu; Institute of Chemistry; Ravila 14a EE50411 Tartu Estonia
| | - Timo Kikas
- Estonian University of Life Sciences; Institute of Technology; Kreutzwaldi 56 EE51014 Tartu Estonia
| |
Collapse
|
14
|
Gebauer A, Schmidt S, Hoffmann W. Status and perspective of lab-on-a-chip systems for common diseases: a systematic review from 2003 to 2013. Per Med 2016; 13:71-91. [PMID: 29749869 DOI: 10.2217/pme.15.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lab-on-a-chip systems (LOCs) are a useful aid for the individualization of therapeutic algorithms at the point-of-care. MATERIALS & METHODS We performed a systematic literature review on LOCs for diseases with a global impact for healthcare. RESULTS A total of 1007 articles matched the previously specified search criteria, thereof 65 studies could be included in this review. A total of 55 different LOCs were evaluated, most for diagnosis or monitoring of cancer (n = 24). For other diseases we found considerably less analyzed LOCs. The analytical performance of the LOCs was usually very good, 37 (67%) LOCs had a sensitivity higher than 90%. CONCLUSION Although LOC systems performance has been positively evaluated in the great majority of studies, the testing was mostly limited to the research laboratory setting rather than real-world scenarios.
Collapse
Affiliation(s)
- Alexander Gebauer
- Institute for Community Medicine, Section Epidemiology of Healthcare & Community Health, University Medicine Greifswald, Germany
| | - Silke Schmidt
- Institute for Community Medicine, Section Epidemiology of Healthcare & Community Health, University Medicine Greifswald, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, Section Epidemiology of Healthcare & Community Health, University Medicine Greifswald, Germany
| |
Collapse
|
15
|
Bandara AB, Zuo Z, Ramachandran S, Ritter A, Heflin JR, Inzana TJ. Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings. Biosens Bioelectron 2015; 70:433-40. [PMID: 25845336 DOI: 10.1016/j.bios.2015.03.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 11/29/2022]
Abstract
Methicillin-resistance among Staphylococcus species is a major health problem in hospitals, communities, and animals. There is a need for culture-free diagnostic assays that can be carried out rapidly, and maintain a high degree of sensitivity and specificity. To address this need an ionic self-assembled multilayer (ISAM) film was deposited on the surface of a long-period grating (LPG) optical fiber by immersion alternately in poly-allylamine hydrochloride and in poly-1-[p-(3'-carboxy-4'-hydroxyphenylazo) benzenesulfonamido]-1,2-ethandiyl (PCBS), resulting in terminal carboxyl groups on the LPG-ISAM. The terminal carboxyl groups were covalently conjugated to monoclonal antibodies (MAb) specific to penicillin-binding-protein 2a of methicillin resistant (MR) staphylococci. After exposure of the LPG-ISAM to 10(2) colony forming units (CFU)/ml of MR S. aureus (MRSA) for 50 min., light transmission was reduced by 19.7%. In contrast, after exposure to 10(6) CFU/ml of methicillin-sensitive S. aureus (MSSA) attenuation of light transmission was less than 1.8%. Exposure of the LPG-ISAM to extracts of liver, lungs, or spleen from mice infected with MRSA attenuated light transmission by 11.7-73.5%. In contrast, exposure of the biosensor to extracts from MSSA-infected mice resulted in 5.6% or less attenuation of light transmission. When the sensor was tested with 36 strains of MR staphylococci, 15 strains of methicillin-sensitive staphylococci, 10 strains of heterologous genera (all at 10(4) CFU/ml), or tissue samples from mice infected with MRSA, there was complete agreement between MR and non-MR bacteria determined by antibiotic susceptibility testing and the biosensor assay when the cutoff value for attenuation of light transmission was 6.3%. Thus, the biosensor described has the potential to detect MR staphylococci in clinical samples with a high degree of sensitivity and specificity.
Collapse
Affiliation(s)
- Aloka B Bandara
- Department of Biomedical Sciences and Pathobiology, Life Sciences 1, 970 Washington Street, SW, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Ziwei Zuo
- Department of Physics, 850 West Campus Drive, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Siddharth Ramachandran
- Department of Electrical and Computer Engineering, 8 Saint Mary's Street, Boston University, Boston, MA 02215, USA.
| | - Alfred Ritter
- Virginia nanoTech, LLC, 2200 Kraft Drive, Blacksburg, VA 24060, USA.
| | - James R Heflin
- Department of Physics, 850 West Campus Drive, Virginia Tech, Blacksburg, VA 24061, USA; Virginia nanoTech, LLC, 2200 Kraft Drive, Blacksburg, VA 24060, USA.
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Life Sciences 1, 970 Washington Street, SW, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA.
| |
Collapse
|
16
|
Ran X, Pu F, Ren J, Qu X. A CuS-based chemical tongue chip for pattern recognition of proteins and antibiotic-resistant bacteria. Chem Commun (Camb) 2015; 51:2675-8. [DOI: 10.1039/c4cc08863h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuS-based sensor array having high stability and selectivity for identifying analytes on a quartz chip.
Collapse
Affiliation(s)
- Xiang Ran
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| | - Fang Pu
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| |
Collapse
|
17
|
Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee YK, Jaffa AA. Recent advances in application of biosensors in tissue engineering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:307519. [PMID: 25165697 PMCID: PMC4140114 DOI: 10.1155/2014/307519] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022]
Abstract
Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.
Collapse
Affiliation(s)
- Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon ; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Md Nurunnabi
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju 380-702, Republic of Korea
| | - Mahboob Morshed
- Tissue Engineering Centre, Faculty of Medicine, National University of Malaysia (Universiti Kebangsaan Malaysia), 56000 Cheras, Kuala Lumpur, Malaysia
| | - Arghya Paul
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Alessandro Polini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tapas Kuila
- Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Moustafa Al Hariri
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju 380-702, Republic of Korea
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
18
|
El Ichi S, Leon F, Vossier L, Marchandin H, Errachid A, Coste J, Jaffrezic-Renault N, Fournier-Wirth C. Microconductometric immunosensor for label-free and sensitive detection of Gram-negative bacteria. Biosens Bioelectron 2014; 54:378-84. [DOI: 10.1016/j.bios.2013.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
|
19
|
Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1195-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJ. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 2013; 49:118-25. [DOI: 10.1016/j.bios.2013.04.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022]
|
21
|
Rapid detection of resistance in Staphylococcus aureus by using Quicolor ES. World J Microbiol Biotechnol 2013; 30:715-8. [PMID: 24072497 DOI: 10.1007/s11274-013-1474-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Traditional microbiological methods are dependent on the growth of microorganisms, and hence require prolonged periods. The methods used to detect resistance in Staphylococcus aureus should have high sensitivity and specificity, yet provide results in a timely manner. The aim of this study was to evaluate the use of Quicolor (QC) ES(®) agar for the rapid detection of resistance in S. aureus. We evaluated 100 clinical S. aureus isolates. Resistance detection was performed using traditional microbiological methods. Methicillin resistance detection was evaluated using traditional and molecular microbiological methods. Traditional antibiotic susceptibility testing methods, such as disc diffusion, were conducted using QC ES and Mueller-Hinton (MH) media. The plates were incubated at 36 °C for 5, 6 and 24 h. Rapid results obtained using QC ES agar after 5 h of incubation were consistent with those using the overnight procedure with MH agar for 83 of the 100 S. aureus (including methicillin-susceptible S. aureus) strains. However, the correlation for oxacillin between MH (24 h) and QC ES (5 h) was not satisfactory (r = 0.770). The total agreement between QC ES and MH agar was 83% after 5 h, 89% after 6 h, and 94% after 24 h. The accurate and rapid detection of resistance in S. aureus is critical due to the associated therapeutic problems and infection control measures. We believe that the use of QC ES for S. aureus will reduce the delay in resistance detection, thus providing physicians and infection control practitioners with early information for better management.
Collapse
|
22
|
Lin C, Zhang Y, Zhou X, Yao B, Fang Q. Naked-eye detection of nucleic acids through rolling circle amplification and magnetic particle mediated aggregation. Biosens Bioelectron 2013; 47:515-9. [DOI: 10.1016/j.bios.2013.03.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/28/2013] [Accepted: 03/17/2013] [Indexed: 12/30/2022]
|
23
|
Lu X, Samuelson DR, Xu Y, Zhang H, Wang S, Rasco BA, Xu J, Konkel ME. Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Anal Chem 2013; 85:2320-7. [PMID: 23327644 DOI: 10.1021/ac303279u] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rapid detection and differentiation of methicillin-resistant Staphylococcus aureus (MRSA) are critical for the early diagnosis of difficult-to-treat nosocomial and community acquired clinical infections and improved epidemiological surveillance. We developed a microfluidics chip coupled with surface enhanced Raman scattering (SERS) spectroscopy (532 nm) "lab-on-a-chip" system to rapidly detect and differentiate methicillin-sensitive S. aureus (MSSA) and MRSA using clinical isolates from China and the United States. A total of 21 MSSA isolates and 37 MRSA isolates recovered from infected humans were first analyzed by using polymerase chain reaction (PCR) and multilocus sequence typing (MLST). The mecA gene, which refers resistant to methicillin, was detected in all the MRSA isolates, and different allelic profiles were identified assigning isolates as either previously identified or novel clones. A total of 17 400 SERS spectra of the 58 S. aureus isolates were collected within 3.5 h using this optofluidic platform. Intra- and interlaboratory spectral reproducibility yielded a differentiation index value of 3.43-4.06 and demonstrated the feasibility of using this optofluidic system at different laboratories for bacterial identification. A global SERS-based dendrogram model for MRSA and MSSA identification and differentiation to the strain level was established and cross-validated (Simpson index of diversity of 0.989) and had an average recognition rate of 95% for S. aureus isolates associated with a recent outbreak in China. SERS typing correlated well with MLST indicating that it has high sensitivity and selectivity and would be suitable for determining the origin and possible spread of MRSA. A SERS-based partial least-squares regression model could quantify the actual concentration of a specific MRSA isolate in a bacterial mixture at levels from 5% to 100% (regression coefficient, >0.98; residual prediction deviation, >10.05). This optofluidic platform has advantages over traditional genotyping for ultrafast, automated, and reliable detection and epidemiological surveillance of bacterial infections.
Collapse
Affiliation(s)
- Xiaonan Lu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7520, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hwang KY, Kwon SH, Jung SO, Namkoong K, Jung WJ, Kim JH, Suh KY, Huh N. Solid phase DNA extraction with a flexible bead-packed microfluidic device to detect methicillin-resistant Staphylococcus aureus in nasal swabs. Anal Chem 2012; 84:7912-8. [PMID: 22908991 DOI: 10.1021/ac3016533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have developed a bead-packed microfluidic device with a built-in flexible wall to automate extraction of nucleic acids from methicillin-resistant Staphylococcus aureus (MRSA) in nasal swabs. The flexible polydimethylsiloxane (PDMS) membrane was designed to manipulate the surface-to-volume ratio (SVR) of bead-packed chambers in the range of 0.05 to 0.15 (μm(-1)) for a typical solid phase extraction protocol composed of binding, washing, and eluting. In particular, the pneumatically assisted close packing of beads led to an invariant SVR (0.15 μm(-1)) even with different bead amounts (10-16 mg), which allowed for consistent operation of the device and improved capture efficiency for bacteria cells. Furthermore, vigorous mixing by asynchronous membrane vibration enabled ca. 90% DNA recovery with ca. 10 μL of liquid solution from the captured cells on the bead surfaces. The full processes to detect MRSA in nasal swabs, i.e., nasal swab collection, prefiltration, on-chip DNA extraction, and real-time polymerase chain reaction (PCR) amplification, were successfully constructed and carried out to validate the capability to detect MRSA in nasal swab samples. This flexible microdevice provided an excellent analytical PCR detection sensitivity of ca. 61 CFU/swab with 95% confidence interval, which turned out to be higher than or similar to that of the commercial DNA-based MRSA detection techniques. This excellent performance would be attributed to the capability of the flexible bead-packed microdevice to enrich the analyte from a large initial sample (e.g., 1 mL) into a microscale volume of eluate (e.g., 10 μL). The proposed microdevice will find many applications as a solid phase extraction method toward various sample-to-answer systems.
Collapse
Affiliation(s)
- Kyu-Youn Hwang
- In-Vitro Diagnostics Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Adiguzel Y, Kulah H. CMOS cell sensors for point-of-care diagnostics. SENSORS (BASEL, SWITZERLAND) 2012; 12:10042-66. [PMID: 23112587 PMCID: PMC3472815 DOI: 10.3390/s120810042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/06/2012] [Accepted: 07/21/2012] [Indexed: 12/12/2022]
Abstract
The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- METU-MEMS Research and Application Center, Middle East Technical University, Ankara 06800, Turkey
| | - Haluk Kulah
- METU-MEMS Research and Application Center, Middle East Technical University, Ankara 06800, Turkey
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; E-Mail:
| |
Collapse
|
26
|
Ho SSY, Chua C, Gole L, Biswas A, Koay E, Choolani M. Same-day prenatal diagnosis of common chromosomal aneuploidies using microfluidics-fluorescence in situ hybridization. Prenat Diagn 2012; 32:321-8. [DOI: 10.1002/pd.2946] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sherry S. Y. Ho
- Department of Laboratory Medicine; National University Hospital; Singapore Singapore
| | - Cuiwen Chua
- Department of Laboratory Medicine; National University Hospital; Singapore Singapore
| | - Leena Gole
- Department of Laboratory Medicine; National University Hospital; Singapore Singapore
| | - Arijit Biswas
- Obstetrics and Gynaecology; National University of Singapore; Singapore Singapore
| | - Evelyn Koay
- Department of Laboratory Medicine; National University Hospital; Singapore Singapore
- Pathology; National University of Singapore; Singapore Singapore
| | - Mahesh Choolani
- Obstetrics and Gynaecology; National University of Singapore; Singapore Singapore
| |
Collapse
|
27
|
Sandhu S, Schouten JA, Thompson J, Davis M, Bugg TDH. Detection of Staphylococcus aureus cell walls by enzyme-linked immunoassay using antibodies prepared from a semi-synthetic peptidoglycan precursor. Analyst 2012; 137:1130-6. [DOI: 10.1039/c2an16036f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|