1
|
Yu X, Tang B, Li W, Wang D, Sun T, Zhang L, Liu Y. Two Stable Pillar-Layered Zn-LMOFs for Highly Fluorescence Sensing of Inorganic Pollutants and Nitro Aromatic Compounds in Water. Inorg Chem 2024; 63:18820-18829. [PMID: 39324750 DOI: 10.1021/acs.inorgchem.4c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Luminescent metal-organic frameworks (LMOFs) are a potential class of functional materials for the photoluminescent detection of a wide range of analytes as well as for the detection of pollutants in wastewater. Herein, by using the pillar-layered strategy, two new luminescence Zn-LMOFs (JLU-MOF222 and JLU-MOF223) were successfully solvothermal synthesized. The 2D layers are both consisting of Zn2+ and TPHC [TPHC = (1,1':2',1″-terphenyl)-3,3″,4,4',4″,5'-hexacarboxylic acid] ligands and then pillared by the different N-donor ligands to form the 3D Zn-LMOFs with fsh topology. Benefiting from the uncoordinated carboxylate sites, uncoordinated N atom, or -NH2 group in the pillaring ligands and excellent stability in pH = 2-13 aqueous phase, JLU-MOF222 and JLU-MOF223 not only can sensitively detect trace amounts of inorganic pollutants (Fe3+, Cr2O72-) and nitro aromatic compounds TNP and 2,4-DNP (TNP = 2,4,6- trinitrophenol, 2,4-DNP = 2,4-dinitrophenol) through luminescence quenching but also exhibit high selectivity of other anti-interference competing analytes. The two new Zn-LMOFs can be used as potential luminescent sensors for pollutant detection in water due to their high KSV and low limit of detection (LOD).
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baobing Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiantian Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Sharifi H, Elter M, Seehafer K, Smarsly E, Hemmateenejad B, Bunz UHF. Paper and nylon based optical tongues with poly(p-phenyleneethynylene)-fluorophores efficiently discriminate nitroarene-based explosives and pollutants. Talanta 2024; 276:126222. [PMID: 38728805 DOI: 10.1016/j.talanta.2024.126222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Discrimination of nitroarenes with hydrophobic dyes in a polar (H2O) environment is difficult but possible via a lab-on-chip, with polymeric dyes immobilized on paper or nylon membranes. Here arrays of 12 hydrophobic poly(p-phenyleneethynylene)s (PPEs), are assembled into a chemical tongue to detect/discriminate nitroarenes in water. The changes in fluorescence image of the PPEs when interacting with solutions of the nitroarenes were recorded and converted into color difference maps, followed by cluster analysis methods. The variable selection method for both paper and nylon devices selects a handful of PPEs at different pH-values that discriminate nitroaromatics reliably. The paper-based chemical tongue could accurately discriminate all studied nitroarenes whereas the nylon-based devices represented distinguishable optical signature for picric acid and 2,4,6-trinitrotoluene (TNT) with high accuracy.
Collapse
Affiliation(s)
- Hoda Sharifi
- Chemistry Department, Shiraz University, Shiraz, 71454, Iran; Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Maximilian Elter
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Emanuel Smarsly
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | | | - Uwe H F Bunz
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Soleimani S, Jannesari A, Yousefzadi M, Ghaderi A, Shahdadi A. Fouling-Resistant Behavior of Hydrophobic Surfaces Based on Poly(dimethylsiloxane) Modified by Green rGO@ZnO Nanocomposites. ACS APPLIED BIO MATERIALS 2024; 7:2794-2808. [PMID: 38593040 DOI: 10.1021/acsabm.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In line with global goals to solve marine biofouling challenges, this study proposes an approach to developing a green synthesis inspired by natural resources for fouling-resistant behavior. A hybrid antifouling/foul release (HAF) coating based on poly(dimethylsiloxane) containing a green synthesized nanocomposite was developed as an environmentally friendly strategy. The nanocomposites based on graphene oxide (GO) and using marine sources, leaves, and stems of mangroves (Avicennia marina), brown algae (Polycladia myrica), and zinc oxide were compared. The effectiveness of this strategy was checked first in the laboratory and then in natural seawater. The performance stability of the coatings after immersion in natural seawater was also evaluated. With the lowest antifouling (17.95 ± 0.7%) and the highest defouling (51.2 ± 0.9%), the best fouling-resistant performance was for the coatings containing graphene oxide reduced with A. marina stem/zinc oxide (PrGZS) and graphene oxide reduced with A. marina leaves/zinc oxide with 50% multiwall carbon nanotubes (PrGZHC50), respectively. Therefore, the HAF coatings can be considered as developed and eco-friendly HAF coatings for the maritime industry.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Adnan Shahdadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
4
|
Li N, Pang Y, Wang W, Yan X, Jiang P, Yu S. Performance and mechanism of graphene oxide removal from aqueous solutions by calcite: adsorption isotherms, thermodynamics, and kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8519-8537. [PMID: 38180648 DOI: 10.1007/s11356-023-31692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
The flow of graphene oxide (GO) into natural water systems can adversely affect water environments and ecosystems. In this study, the adsorption effect of calcite on GO under different conditions was studied using calcite as adsorbent. Meanwhile, characterized by a combination of microscopic experiments, including SEM, TEM, XRD, FTIR, Raman, XPS, and AFM, additional research on the performance and the mechanism of GO sorption by calcite was conducted. The findings indicated that the highest adsorption efficiency was observed at a temperature of 303 K, pH 3, a mass of 90 mg of calcite, with an initial concentration of 60 mg L-1 GO, resulting in a 95% adsorption rate. The adsorption isotherm conformed to the model of Langmuir and Temkin, and it is a heat absorption process dominated by monolayer adsorption. The thermodynamic analysis showed that the adsorption was spontaneous and heat-absorbing. The adsorption kinetics conformed to the pseudo-second-order kinetic model, and the sorption procedure is chemisorption. In conclusion, calcite has a good sorption capacity for GO, which can provide a reference for the removal of GO in the aqueous environment.
Collapse
Affiliation(s)
- Na Li
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yingdi Pang
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Wei Wang
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Xinyu Yan
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ping Jiang
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Shimeng Yu
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
5
|
Arman A, Sağlam Ş, Üzer A, Apak R. A novel electrochemical sensor based on phosphate-stabilized poly-caffeic acid film in combination with graphene nanosheets for sensitive determination of nitro-aromatic energetic materials. Talanta 2024; 266:125098. [PMID: 37639871 DOI: 10.1016/j.talanta.2023.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
This work offers a novel approach and sensor electrode for electrocatalytic reduction of nitro-aromatic explosives (NAEs). This sensor was created by combining electrochemically reduced graphene nanosheets (GNSs) -through cyclic voltammetric reduction of a graphene oxide colloidal solution- with phosphate-stabilized poly-caffeic acid (pCAF) film-modified glassy carbon electrode (GCE). The poly-caffeic acid-modified nonconductive electrode was stabilized with a H2PO4-/HPO42- phosphate buffer at pH 7 and made conductive. The novel electrode, called phosphate stabilized-GC/GNSs/pCAF, was characterized by electrochemical methods and scanning electron microscopy (SEM). The sensor exhibited high performance for trinitrotoluene (TNT) detection with a linear response between 50 and 500 μg L- 1 and a detection limit of 6 μg L-1. In addition to TNT, precise determinations of NAEs such as 2,4-dinitrotoluene (2,4-DNT), tetryl (2,4,6-trinitrophenyl methyl nitramine), trinitro phenol (TNP or picric acid; PA), 2,4-dinitrophenol (2,4-DNP), and 4-amino dinitrotoluene (4A-DNT, an aerobic bacterial degradation product of TNT) were made using the developed sensor electrode and DPV technique. Simultaneous quantification of TNT and DNT was performed with the aid of a computational technique known as multiple linear regression (MLR). The optimized electrode was resistant to interference effects. Satisfactory results on real samples were obtained by applying the modified electrode to the determination of TNT, tetryl, and TNP in contaminated soil. The validation of the proposed method was made against a literature LC-MS/MS method. A statistical comparison of the obtained results was provided using F- and Student's t-tests.
Collapse
Affiliation(s)
- Aysu Arman
- Institute of Graduate Studies, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey; Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Şener Sağlam
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Ayşem Üzer
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Reşat Apak
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay St. No:112, 06670, Çankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Liu X, Zhang H, Huang Z, Cheng Z, Li T. A highly sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) using a peptide-functionalized silicon nanowire array sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2082-2087. [PMID: 37070764 DOI: 10.1039/d3ay00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A highly sensitive and specific detection of 2,4,6-trinitrotoluene (TNT), a typical nitrated aromatic explosive, was demonstrated by a silicon nanowire (SiNW) array sensor. The SiNW array devices were self-assembled and functionalized with the anti-TNT peptide to obtain unique sensitivity toward TNT. Also, the effect of the biointerfacing linker's chemistry and Debye screening with varied ionic strength of phosphate buffer solution (PBS) on TNT binding response signals were investigated. The optimization of the peptide-functionalized SiNW array sensor showed high sensitivity for TNT with a detection limit of 0.2 fM, the highest sensitivity reported to date. These initial promising results may help accelerate the development of portable sensors for femtomolar level TNT detection.
Collapse
Affiliation(s)
- Xingqi Liu
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hongpeng Zhang
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
| | - Zhiping Huang
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
| | - Zhenxing Cheng
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
| | - Tie Li
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
7
|
Wang Z, Dai Y, Zhou X, Liu Z, Liu W, Huang L, Yuan M, Cui S, He X. Fabrication of flexible AuNPs@ polyimide heating chips for in situ explosives SERS sensing in nature samples. Talanta 2023; 258:124460. [PMID: 36958100 DOI: 10.1016/j.talanta.2023.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
In this study, highly sensitive flexible AuNPs@ polyimide SERS heating chips (APHC) were fabricated for in situ collecting and detecting TNT. Large-scale AuNPs arrays were synthesized by liquid-liquid interface self-assembly and transferred to polyimide heating film as SERS substrates. 4-ATP and AgNPs functionalized on APHC were used as capture means and signal amplifiers, combining with TNT to form the AuNPs-TNT-AgNPs "sandwich" structure. This flexible APHC chip showed high sensitivity as enhancement factor was 5.5×105, and good repeatability and stability (RSD<10%). It was applied to detect TNT solutions with a low concentration of 10-9 M, and showed a good linear response in the range from 10-5 to 10-9 M (R2 = 0.986). In addition, the detection method also had good selectivity and no response to various TNT analogs. More important, combing with the thermal enrichment strategy, TNT dispersed in environmental samples such as soil, fruit and clothing would be enriched as vapor then collected and detected by APHC. This APHC device shows great potential for in situ sensing platforms, due to its sensitivity, high efficiency, and excellent portability.
Collapse
Affiliation(s)
- Zihan Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yu Dai
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xin Zhou
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - ZhongPing Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Wei Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Longjin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Meiyu Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xuan He
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China.
| |
Collapse
|
8
|
Liu W, Qiao J, Gu J, Liu Y. Hydrogen-Bond-Connected 2D Zn-LMOF with Fluorescent Sensing for Inorganic Pollutants and Nitro Aromatic Explosives in the Aqueous Phase. Inorg Chem 2023; 62:1272-1278. [PMID: 36621952 DOI: 10.1021/acs.inorgchem.2c04155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a novel luminescent Zn-LMOF, JLU-MOF109 ([Zn(PBBA)(H2O)]·3DMF·2H2O, PBBA = 4,4'-(2,6-pyrazinediyl)bis[benzoic acid], DMF = N,N-dimethylformamide), was successfully synthesized under solvothermal conditions. Zinc ions are connected by PBBA ligands to form two-dimensional (2D) layers, and the layers are further propped up through hydrogen-bonding interactions. JLU-MOF109 exhibits good sensitivity to inorganic pollutants, Fe3+ and Cr2O72-, as well as nitro aromatic explosives, 2,4,6-trinitrophenol and 2,4-dinitrophenol. JLU-MOF109 exhibits high Ksv (at 104 M-1 level) and low limit of detection values (∼10-6 mol/L) for the abovementioned hazardous pollutants, which is better than a majority of previously reported MOF-based fluorescent sensors. With good stability in the aqueous phase, JLU-MOF109 can serve as a promising chemical sensor for pollutant detection in wastewater.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junyi Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Wu H, Yang L, Sun W, Yang P, Xing H. Facile preparation of mesoporous silica coated nitrogen doped carbon dots for sensitive detection of picric acid. RSC Adv 2022; 12:33696-33705. [PMID: 36505676 PMCID: PMC9685500 DOI: 10.1039/d2ra04878g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
In this work, a nanocomposite suitable for long-term storage was constructed for efficient and highly selective detection of picric acid (PA). For this purpose, nitrogen-doped carbon dots (N-CDs) were synthesized by a simple hydrothermal reaction one-step method, and the synthesized nitrogen-doped carbon dots were loaded into amine-modified mesoporous silica nanoparticles (MSN-NH2) to form N-CDs@MSN-NH2 nanocomposites. The as-synthesized N-CDs@MSN-NH2 was detected by X-ray photoelectron spectroscopy (XPS) and the Fourier transform infrared (FT-IR) analysis methods. After being coated with MSNs, the as-synthesized N-CDs@MSN-NH2 exhibits excellent photo-stability in storage for 60 days at room temperature. Furthermore, PA can significantly quench the fluorescence signal of N-CDs@MSN-NH2 through the fluorescence resonance energy transfer (FRET) effect, while other metal ions and nitro compounds only cause little change. The a-synthesized composites were used to detect PA with a detection limit of 50 nM in an aqueous solution. These results indicate that the synthesized composites have promise for application in PA detection in aqueous solution.
Collapse
Affiliation(s)
- Hongbo Wu
- School of Chemical Engineering, Anhui University of Science & TechnologyHuainan 232001China
| | - Liu Yang
- School of Chemical Engineering, Anhui University of Science & TechnologyHuainan 232001China
| | - Wei Sun
- School of Chemical Engineering, Anhui University of Science & TechnologyHuainan 232001China
| | - Ping Yang
- School of Chemical Engineering, Anhui University of Science & TechnologyHuainan 232001China
| | - Honglong Xing
- School of Chemical Engineering, Anhui University of Science & TechnologyHuainan 232001China
| |
Collapse
|
10
|
Lombardi JR. The Theory of Surface-Enhanced Raman Spectroscopy on Organic Semiconductors: Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2737. [PMID: 36014602 PMCID: PMC9415012 DOI: 10.3390/nano12162737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Drawing on a theoretical expression previously derived for general semiconductor substrates, we examine the surface-enhancement of the Raman signal (SERS) when the substrate is chosen to be monolayer graphene. The underlying theory involves vibronic coupling, originally proposed by Herzberg and Teller. Vibronic coupling of the allowed molecular transitions with the charge-transfer transitions between the molecule and the substrate has been shown to be responsible for the SERS enhancement in semiconductor substrates. We then examine such an expression for the Raman enhancement in monolayer graphene, which is dependent on the square of the derivative of the density of states of the graphene. On integration, we find that the discontinuity of the density-of-states function leads to a singularity in the SERS intensity. Knowledge of the location of this resonance allows us to maximize the Raman intensity by careful alignment of the doping level of the graphene substrate with the charge-transfer transition.
Collapse
Affiliation(s)
- John R Lombardi
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
11
|
Yang J, Wang T, Gao W, Zhu C, Sha P, Dong P, Wu X. The novel sandwich composite structure: a new detection strategy for the ultra-sensitive detection of cyclotrimethylenetrinitramine (RDX). NANOTECHNOLOGY 2022; 33:355707. [PMID: 35580555 DOI: 10.1088/1361-6528/ac7059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
This study presents a novel sandwich composite structure that was designed for the ultra-sensitive detection of cyclotrimethylenetrinitramine (RDX). Au nanorod arrays (Au NRAs) were prepared and bound to 10-7M 6-MNA as adsorption sites for RDX, while Au nanorods (Au NRs) were modified using 10-5M 6-MNA as SERS probes. During detection, RDX molecules connect the SERS probe to the surface of the Au NRAs, forming a novel type of Au NRAs-RDX-Au NRs 'sandwich' composite structure. The electromagnetic coupling effect between Au NRs and Au NRAs is enhanced due to the molecular level of the connection spacing, resulting in new 'hot spots'. Meanwhile, Au NRAs and Au NRs have an auto-enhancement effect on 6-MNA. In addition, the presence of charge transfer in the formed 6-MNA-RDX complex induced chemical enhancement. The limits of detection of RDX evaluated by Raman spectroscopy using 6-MNA were as low as 10-12mg ml-1(4.5 × 10-15M) with good linear correlation between 10-12and 10-8mg ml-1(correlation coefficientR2 = 0.9985). This novel sandwich composite structure accurately detected RDX contamination in drinking water and on plant surfaces in an environment with detection limits as low as 10-12mg ml-1and 10-8mg ml-1.
Collapse
Affiliation(s)
- Jie Yang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
12
|
Serafinelli C, Fantoni A, Alegria ECBA, Vieira M. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. BIOSENSORS 2022; 12:bios12040225. [PMID: 35448285 PMCID: PMC9029226 DOI: 10.3390/bios12040225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
In SERS analysis, the specificity of molecular fingerprints is combined with potential single-molecule sensitivity so that is an attractive tool to detect molecules in trace amounts. Although several substrates have been widely used from early on, there are still some problems such as the difficulties to bind some molecules to the substrate. With the development of nanotechnology, an increasing interest has been focused on plasmonic metal nanoparticles hybridized with (2D) nanomaterials due to their unique properties. More frequently, the excellent properties of the hybrids compounds have been used to improve the drawbacks of the SERS platforms in order to create a system with outstanding properties. In this review, the physics and working principles of SERS will be provided along with the properties of differently shaped metal nanoparticles. After that, an overview on how the hybrid compounds can be engineered to obtain the SERS platform with unique properties will be given.
Collapse
Affiliation(s)
- Caterina Serafinelli
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| | - Alessandro Fantoni
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
| | - Elisabete C. B. A. Alegria
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Manuela Vieira
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
13
|
Song C, Ye B, Xu J, Chen J, Shi W, Yu C, An C, Zhu J, Zhang W. Large-Area Nanosphere Self-Assembly Monolayers for Periodic Surface Nanostructures with Ultrasensitive and Spatially Uniform SERS Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104202. [PMID: 34877766 DOI: 10.1002/smll.202104202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Colloidal lithography provides a rapid and low-cost approach to construct 2D periodic surface nanostructures. However, an impressive demonstration to prepare large-area colloidal template is still missing. Here, a high-efficient and flexible technique is proposed to fabricate self-assembly monolayers consisting of orderly-packed polystyrene spheres at air/water interface via ultrasonic spray. This "non-contact" technique exhibits great advantages in terms of scalability and adaptability due to its renitent interface dynamic balance. More importantly, this technique is not only competent for self-assembly of single-sized polystyrene spheres, but also for binary polystyrene spheres, completely reversing the current hard situation of preparing large-area self-assembly monolayers. As a representative application, hexagonal-packed silver-coated silicon nanorods array (Si-NRs@Ag) is developed as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with very low limit-of-detection for selective detection of explosive 2,4,6-trinitrotoluene down to femtomolar (10-14 m) range. The periodicity and orderliness of the array allow hot spots to be designed and constructed in a homogeneous fashion, resulting in an incomparable uniformity and reproducibility of Raman signals. All these excellent properties come from the Si-NRs@Ag substrate based on the ordered structure, open surface, and wide-range electric field, providing a robust, consistent, and tunable platform for molecule trapping and SERS sensing for a wide range of organic molecules.
Collapse
Affiliation(s)
- Changkun Song
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Baoyun Ye
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan, 030051, P. R. China
| | - Jianyong Xu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Junhong Chen
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Wei Shi
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Chunpei Yu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Chongwei An
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan, 030051, P. R. China
| | - Junwu Zhu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Wenchao Zhang
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| |
Collapse
|
14
|
Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles. Talanta 2022; 238:122990. [PMID: 34857323 DOI: 10.1016/j.talanta.2021.122990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/04/2023]
Abstract
The on site/in field detection of explosives has become a rising priority for homeland security and counter-terrorism measures. This work presents the sensitive detection of nitroaromatic explosives using glassy carbon/multi-walled carbon nanotubes/polyethyleneimine (GC/MWCNTs/PEI) electrode coated with gold nanoparticles (AuNPs). MWCNTs and PEI could be well dispersed in ethanol/water solution, giving rise to a thin and homogeneous film on GCE. The GC/MWCNTs/PEI electrode was electrochemically modified with AuNPs and used for the differential pulse voltammetric (DPV) detection of nitroaromatics. The enhanced detection sensitivities were achieved through π-π and charge-transfer (CT) interactions between the electron-deficient nitroaromatic explosives and donor amine groups in PEI to which gold nanoparticles were linked, providing increased analyte affinity toward the modified GCE. Calibration curves of current intensity versus concentration were linear in the range of 0.05-8 mg L-1 for TNT, 0.2-4 mg L-1 for 2,4-dinitrotoluene (DNT), 1-20 mg L-1 for 2,4-dinitrophenol (2,4-DNP), 0.25-10 mg L-1 for picric acid (PA), and 0.05-4 mg L-1 for 2,4,6-trinitrophenyl-N-methylnitramine (tetryl) with detection limits (LOD) of 15 μg L-1, 45 μg L-1, 135 μg L-1, 30 μg L-1, and 12 μg L-1, respectively. The proposed method was successfully applied to the analysis of nitroaromatics in synthetic explosive mixtures and military composite explosives (comp B and octol). The electrochemical method was not affected by possible interferents of electroactive camouflage materials and common soil ions. Method validation was performed against the reference LC-MS method on TNT and PA-contaminated clay soil samples separately.
Collapse
|
15
|
Gao W, Wang T, Zhu C, Sha P, Dong P, Wu X. A 'sandwich' structure for highly sensitive detection of TNT based on surface-enhanced Raman scattering. Talanta 2022; 236:122824. [PMID: 34635214 DOI: 10.1016/j.talanta.2021.122824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022]
Abstract
Ultra-sensitive detection of 2,4,6-trinitrotoluene (TNT) plays an important role in society security and human health. The Raman probe molecule p-aminothiophenol (PATP) can interact with TNT in three ways to form a TNT-PATP complex. In this paper, a 'sandwich' structure was developed to detect TNT with high sensitivity. Au nano-pillar arrays (AuNPAs) substrates modified by low-concentration PATP through Au-S bonds were acted as capture probe for TNT. Meanwhile, Ag nano-particles (AgNPs) modified by PATP at higher concentration were employed as tags for surface-enhanced Raman scattering (SERS). The formation of the TNT-PATP complex is not only the means by which AuNPAs substrates recognize and capture TNT, but also links the SERS tags to TNT, forming an AuNPAs-TNT-AgNPs 'sandwich' structure. The Raman signal of PATP was greatly enhanced mainly because novel 'hot spots' formed between the AuNPAs and AgNPs of the 'sandwich' structure. The Raman signal of PATP was further amplified by the chemical enhancement effect induced by the TNT-PATP complex formation. Based on this mechanism, the limit of detection (LOD) of TNT was determined from the Raman signal of PATP. The LOD reached 10-9 mg/mL (4.4 × 10-12 M), much lower than that suggested by the US Environmental Protection Agency (88 nM). Moreover, TNT was selectively detected over several TNT analogues 2,4-dinitrotoluene (DNT), p-nitrotoluene (NT) and hexogen (RDX). Finally, the 'sandwich' structure was successfully applied to TNT detection in environmental water and sand.
Collapse
Affiliation(s)
- Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China.
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
16
|
Chen L, Cheng Z, Peng X, Qiu G, Wang L. Eu-Doped MOF-based high-efficiency fluorescent sensor for detecting 2,4-dinitrophenol and 2,4,6-trinitrophenol simultaneously. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:44-51. [PMID: 34889337 DOI: 10.1039/d1ay01747k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitroaromatic explosives pose a great threat to the environment and human safety. It is very important to design simple, highly efficient and multifunctional sensors for detecting nitroaromatic explosives. However, a few sensors can determine multicomponent nitroaromatic explosives simultaneously. Eu functionalized MOF-253 (Eu@MOF-253) hybrid material was synthesized using the post-synthetic modification method. The introduction of Eu3+ in MOF-253 caused the fluorescence peak of the ligand to show a distinct red-shift due to its polarization enhancement effect in the presence of 2,4-DNP. The emission and excitation spectra of the Eu@MOF-253 sensor showed overlap with the ultraviolet-visible (UV-vis) absorption spectra of the representative nitroaromatic explosives 2,4-dinitrophenol (2,4-DNP) and 2,4,6-trinitrophenol (TNP). Therefore, it is feasible to discriminate and quantify TNP and 2,4-DNP simultaneously. As proposed, the Eu@MOF-253 luminescent sensor was highly sensitive and selective towards TNP and 2,4-DNP. The other coexisting nitroaromatic explosives did not interfere with the determination. Upon addition of TNP, the fluorescence of the Eu@MOF-253 sensor decreased dramatically and showed an excellent quenching constant (Ksv) of 1.58 × 106. The fluorescence intensities of the Eu@MOF-253 sensor presented good linear relationships with concentrations of TNP and 2,4-DNP ranging from 0.01-100 μM and 0.01-25 μM, respectively. Low limits of detection (LOD) for both 2,4-DNP and TNP were approximately 10 nM. The determination mechanism is mainly ascribed to the internal filtration effect (IFE) and electron transfer. This work provides a practical method for the highly efficient determination of nitroaromatic explosives.
Collapse
Affiliation(s)
- Lili Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| | - Zihan Cheng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| | - Xinyue Peng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| | - Guoqiao Qiu
- Department of Visual Communication, Shanghai Institute of Technology, 120 Caobao Road, Shanghai 200235, P. R. China.
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| |
Collapse
|
17
|
Monolayered graphene oxide as a protective barrier on polycrystalline copper substrate against thermal oxidation for a long duration. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Şen FB, Bener M, Apak R. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism. J Fluoresc 2021; 31:989-997. [PMID: 33880706 DOI: 10.1007/s10895-021-02731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Sensitive and selective detection of nitroaromatic explosives is an important issue in regard to human health, environment, public security and military issues. In this study, a simple and sensitive fluorescence quenching - based assay utilizing Rhodamine 110 as fluorophore probe was developed for the determination of trinitrotoluene (TNT). This sensitive fluorometric method could measure the decrease in fluorescence of Rhodamine 110 (λex = 490 nm, λem = 521 nm) owing to the primary amine groups of Rhodamine 110 (different from other rhodamines) capable of donor-acceptor interaction with TNT. The resulting TNT-amine complex can strongly quench the fluorescence emission of Rhodamine 110 by fluorescence resonance energy transfer (FRET) which occurs as the excited Rhodamine 110 fluorophore (donor) transfers its energy to TNT (acceptor) by non-radiative dipole-dipole interaction. Fluorescence quenching varied linearly with TNT concentration, with LOD and the LOQ of 0.71 and 2.38 mg L- 1 TNT, respectively. Similar explosives, common soil ions, and possible camouflage materials were found not to interfere with the proposed method, offering significant advantages with its easy methodology, low-cost, sensitivity, and rapidity of analysis. FRET mechanism based on dye donor-TNT acceptor interaction.
Collapse
Affiliation(s)
- Furkan Burak Şen
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mustafa Bener
- Faculty of Science, Department of Chemistry, Istanbul University, Fatih, 34126, Istanbul, Turkey
| | - Reşat Apak
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| |
Collapse
|
19
|
Amicucci C, D’Andrea C, de Angelis M, Banchelli M, Pini R, Matteini P. Cost Effective Silver Nanowire-Decorated Graphene Paper for Drop-On SERS Biodetection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1495. [PMID: 34200106 PMCID: PMC8229787 DOI: 10.3390/nano11061495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
The use of SERS for real-world bioanalytical applications represents a concrete opportunity, which, however, is being largely delayed by the inadequacy of existing substrates used to collect SERS spectra. In particular, the main bottleneck is their poor usability, as in the case of unsupported noble metal colloidal nanoparticles or because of the need for complex or highly specialized fabrication procedures, especially in view of a large-scale commercial diffusion. In this work, we introduce a graphene paper-supported plasmonic substrate for biodetection as obtained by a simple and rapid aerosol deposition patterning of silver nanowires. This substrate is compatible with the analysis of small (2 μL) analyte drops, providing stable SERS signals at sub-millimolar concentration and a detection limit down to the nanogram level in the case of hemoglobin. The presence of a graphene underlayer assures an even surface distribution of SERS hotspots with improved stability of the SERS signal, the collection of well-resolved and intense SERS spectra, and an ultra-flat and photostable SERS background in comparison with other popular disposable supports.
Collapse
Affiliation(s)
- Chiara Amicucci
- “Nello Carrara” Institute of Applied Physics (IFAC), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.A.); (C.D.); (M.d.A.); (M.B.); (R.P.)
- Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50134 Florence, Italy
| | - Cristiano D’Andrea
- “Nello Carrara” Institute of Applied Physics (IFAC), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.A.); (C.D.); (M.d.A.); (M.B.); (R.P.)
| | - Marella de Angelis
- “Nello Carrara” Institute of Applied Physics (IFAC), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.A.); (C.D.); (M.d.A.); (M.B.); (R.P.)
| | - Martina Banchelli
- “Nello Carrara” Institute of Applied Physics (IFAC), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.A.); (C.D.); (M.d.A.); (M.B.); (R.P.)
| | - Roberto Pini
- “Nello Carrara” Institute of Applied Physics (IFAC), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.A.); (C.D.); (M.d.A.); (M.B.); (R.P.)
| | - Paolo Matteini
- “Nello Carrara” Institute of Applied Physics (IFAC), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.A.); (C.D.); (M.d.A.); (M.B.); (R.P.)
| |
Collapse
|
20
|
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119174. [PMID: 33234478 DOI: 10.1016/j.saa.2020.119174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Enhancement of Raman intensity due to the electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity traditionally associated with Raman spectroscopy. Furthermore, activation of metallic screen-printed electrodes (SPEs) by electrochemical route leads to the reproducible generation of nanostructures with excellent SERS properties. EC-SERS procedure proposed in this work for the detection of several pesticides (thiram, imidacloprid and chlorpyrifos) with different nature, uses gold SPEs as SERS substrates, but also includes a preconcentration step as the initial and essential stage. Taking into account the small volume of solution employed, only 60 µL, the preconcentration cannot be performed for more than 15 min in order to ensure the proper contact of the solution with WE, RE and CE. Furthermore, selected temperature, 34 °C, is not very high to allow the exhaustive control of the drop volume. Optimization of preconcentration parameters (time and temperature) displays a crucial step, particularly in the detection of low concentrations of pesticides, because it will provide higher Raman intensity in EC-SERS experiments. After the initial step, gold SPEs were electrochemically activated by cyclic voltammetry, allowing the detection of very low concentration (µg·L-1) of pesticides due to the generation of fresh nanostructures with SERS effect.
Collapse
Affiliation(s)
- David Ibáñez
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain.
| | - María Begoña González-García
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain
| | - David Hernández-Santos
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain
| | - Pablo Fanjul-Bolado
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain.
| |
Collapse
|
21
|
Arabpour A, Dan S, Hashemipour H. Preparation and optimization of novel graphene oxide and adsorption isotherm study of methylene blue. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Wu J, Feng Y, Zhang L, Wu W. Nanocellulose-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohydr Polym 2020; 248:116766. [DOI: 10.1016/j.carbpol.2020.116766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
|
23
|
To KC, Ben-Jaber S, Parkin IP. Recent Developments in the Field of Explosive Trace Detection. ACS NANO 2020; 14:10804-10833. [PMID: 32790331 DOI: 10.1021/acsnano.0c01579] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Explosive trace detection (ETD) technologies play a vital role in maintaining national security. ETD remains an active research area with many analytical techniques in operational use. This review details the latest advances in animal olfactory, ion mobility spectrometry (IMS), and Raman and colorimetric detection methods. Developments in optical, biological, electrochemical, mass, and thermal sensors are also covered in addition to the use of nanomaterials technology. Commercially available systems are presented as examples of current detection capabilities and as benchmarks for improvement. Attention is also drawn to recent collaborative projects involving government, academia, and industry to highlight the emergence of multimodal screening approaches and applications. The objective of the review is to provide a comprehensive overview of ETD by highlighting challenges in ETD and providing an understanding of the principles, advantages, and limitations of each technology and relating this to current systems.
Collapse
Affiliation(s)
- Ka Chuen To
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Sultan Ben-Jaber
- Department of Science and Forensics, King Fahad Security College, Riyadh 13232, Saudi Arabia
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| |
Collapse
|
24
|
Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been reported to be able to quickly and non-destructively identify target analytes. SERS substrate with high sensitivity and selectivity gave SERS technology a broad application prospect. This contribution aims to provide a detailed and systematic review of the current state of research on SERS-based explosive sensors, with particular attention to current research advances. This review mainly focuses on the strategies for improving SERS performance and the SERS substrates with different dimensions including zero-dimensional (0D) nanocolloids, one-dimensional (1D) nanowires and nanorods, two-dimensional (2D) arrays, and three-dimensional (3D) networks. The effects of elemental composition, the shape and size of metal nanoparticles, hot-spot structure and surface modification on the performance of explosive detection are also reviewed. In addition, the future development tendency and application of SERS-based explosive sensors are prospected.
Collapse
Affiliation(s)
- Jingjing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
26
|
Babar D, Garje SS. Nitrogen and Phosphorus Co-Doped Carbon Dots for Selective Detection of Nitro Explosives. ACS OMEGA 2020; 5:2710-2717. [PMID: 32095694 PMCID: PMC7033677 DOI: 10.1021/acsomega.9b03234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Abstract
In this work, a highly selective and sensitive method has been developed for the detection of trinitrophenol (TNP), which is a dangerous explosive. For this purpose, N and P co-doped carbon dots (NP-Cdots) have been used. Synthesis of N and P co-doped carbon dots has been carried out by a simple and quick method. X-ray photoelectron spectroscopy analysis was carried out to detect the doping of N and P. These carbon dots are insoluble in water (inNP-Cdots). These carbon dots were functionalized by treating them with conc. HNO3 so that they become water-soluble (wsNP-Cdots). These dots were characterized by different analytical techniques such as IR, UV-vis, and fluorescence spectroscopy. The as-prepared wsNP-Cdots have good fluorescence properties. The average diameter of wsNP-Cdots is found to be 5.7 nm with an interlayer spacing (d-spacing) of 0.16 nm. The as-prepared wsNP-Cdots are highly sensitive and selective toward TNP, as observed using a fluorescence quenching technique. The quenching constant for TNP is found to be very high (8.06 × 104 M-1), which indicates its high quenching ability. The limit of detection is found to be 23 μM.
Collapse
Affiliation(s)
- Dipak
Gorakh Babar
- Department of Chemistry, University
of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098, India
| | - Shivram S. Garje
- Department of Chemistry, University
of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098, India
| |
Collapse
|
27
|
Mesoporous g-C3N4/β-CD nanocomposites modified glassy carbon electrode for electrochemical determination of 2,4,6-trinitrotoluene. Talanta 2020; 208:120410. [DOI: 10.1016/j.talanta.2019.120410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022]
|
28
|
Britto Hurtado R, Cortez-Valadez M, Aragon-Guajardo J, Cruz-Rivera J, Martínez-Suárez F, Flores-Acosta M. One-step synthesis of reduced graphene oxide/gold nanoparticles under ambient conditions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
29
|
He X, Liu Y, Liu Y, Cui S, Liu W, Li Z. Controllable fabrication of Ag-NP-decorated porous ZnO nanosheet arrays with superhydrophobic properties for high performance SERS detection of explosives. CrystEngComm 2020. [DOI: 10.1039/c9ce01430f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient hydrophobic condensation surface was developed and used as an ultrasensitive and stable SERS sensor based on ZnO–Ag hybrid mesoporous nanosheet (MNS) arrays for natural explosive sample detection.
Collapse
Affiliation(s)
- Xuan He
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yu Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yi Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Sheng Cui
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites
- Nanjing Tech University
- Nanjing 210009
- China
| | - Wei Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Zhongbo Li
- Key Laboratory of Materials Physics
- Anhui, Key Laboratory of Nanomaterials and Nanostructures
- Institute of Solid State Physics
- Chinese Academy of Sciences
- Hefei
| |
Collapse
|
30
|
Jadoon T, Carter-Fenk K, Siddique MBA, Herbert JM, Hussain R, Iqbal S, Iqbal J, Ayub K. Silver clusters tune up electronic properties of graphene nanoflakes: A comprehensive theoretical study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Wang J, Qiu C, Mu X, Pang H, Chen X, Liu D. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta 2019; 210:120631. [PMID: 31987213 DOI: 10.1016/j.talanta.2019.120631] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022]
Abstract
Quantitative analysis of organic pollutants in environmental water is an important issue for ecological environment and human health. In this paper, the quantitative analysis of rhodamine 6G (R6G) and p-nitrophenol (PNP) is performed by the surface enhanced Raman scattering (SERS) technology. The enhancement of Raman signals is achieved on the surface of an electrochemically roughened nano-Au film. The SERS performance depends on the microstructure of roughened nano-Au films, which is affected by the thickness of Au films and electrochemical roughening parameters. The structure-dependence of SERS performance is validated by finite element simulation of local electromagnetic field distribution. An obvious SERS effect of R6G with an enhancement factor of 108 is obtained on the roughened nano-Au film. A sensitive SERS detection of R6G with a linear range of 10-9-10-5 M and a detection limit of 10-11 M is realized. Moreover, a wide linear range of 10-9-10-3 M is obtained for the detection of PNP. The roughened nano-Au film is an effective substrate for the SERS detection of organic pollutants with high reproducibility and good stability. Therefore, the electrochemical technology in this study is expected to be a very promising method for the fabrication of high-performance SERS substrate.
Collapse
Affiliation(s)
- Jiangcai Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Cuicui Qiu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China; Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin, 300300, China.
| | - Xijiao Mu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hua Pang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Xinchun Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Dameng Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China; Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin, 300300, China.
| |
Collapse
|
32
|
Silver A, Kitadai H, Liu H, Granzier-Nakajima T, Terrones M, Ling X, Huang S. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E516. [PMID: 30986978 PMCID: PMC6523487 DOI: 10.3390/nano9040516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
Graphene is a two-dimensional (2D) material consisting of a single sheet of sp² hybridized carbon atoms laced in a hexagonal lattice, with potentially wide usage as a Raman enhancement substrate, also termed graphene-enhanced Raman scattering (GERS), making it ideal for sensing applications. GERS improves upon traditional surface-enhanced Raman scattering (SERS), combining its single-molecule sensitivity and spectral fingerprinting of molecules, and graphene's simple processing and superior uniformity. This enables fast and highly sensitive detection of a wide variety of analytes. Accordingly, GERS has been investigated for a wide variety of sensing applications, including chemical- and bio-sensing. As a derivative of GERS, the use of two-dimensional materials other than graphene for Raman enhancement has emerged, which possess remarkably interesting properties and potential wider applications in combination with GERS. In this review, we first introduce various types of 2D materials, including graphene, MoS₂, doped graphene, their properties, and synthesis. Then, we describe the principles of GERS and comprehensively explain how the GERS enhancement factors are influenced by molecular and 2D material properties. In the last section, we discuss the application of GERS in chemical- and bio-sensing, and the prospects of such a novel sensing method.
Collapse
Affiliation(s)
- Alexander Silver
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Hikari Kitadai
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
- The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
33
|
Arshad A, Wang H, Bai X, Jiang R, Xu S, Wang L. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:16-22. [PMID: 30077892 DOI: 10.1016/j.saa.2018.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Rapid, reliable, onsite approaches for detection trace level of trinitrotoluene (TNT) is a pressing necessity for both homeland security and environmental protection. To this end, hydrophilic amine(-NH2) protected Au@Ag nanoparticles (NPs) were developed and fabricated as colorimetric paper sensor for delicate detection of TNT. The as-developed nanoprobe selectively reacts with TNT through classic Meisenheimer complex formation by means of charge transfer process from an electron-rich NH2 group of β-cysteamine to an electron-deficient nitro group on TNT. Due to the absence of this particular interaction of other nitroaromatics, the proposed probe is highly selective for TNT detection with a better linear range (0-20 μg/mL) and limit of detection (LOD) of 0.35 μg/mL. The present work provides a novel and facile strategy to fabricate colorimetric paper sensors with rapid and selective recognition ability for label free analysis of TNT.
Collapse
Affiliation(s)
- Anila Arshad
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xilin Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
34
|
Li H, Huang C, Li Y, Yang W, Liu F. Electrocatalytic reduction of trace nitrobenzene using a graphene-oxide@polymerized-manganese-porphyrin composite. RSC Adv 2019; 9:22523-22530. [PMID: 35519463 PMCID: PMC9066764 DOI: 10.1039/c9ra02932j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
A more stable composite of graphene oxide encapsulated by the polymerized porphyrins realize the electrocatalytic reduction of nitrobenzene to nitrosobenzene.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Can Huang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yingying Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Weijun Yang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Fan Liu
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
35
|
|
36
|
Wang Z, Wu S, Colombi Ciacchi L, Wei G. Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst 2018; 143:5074-5089. [PMID: 30280724 DOI: 10.1039/c8an01266k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is one of the important techniques for sensing applications in biological analysis, disease diagnosis, environmental science, and food safety. Graphene provides an excellent nanoplatform for SERS sensing due to its two-dimensional flat structure, uniform electronic and photonic properties, excellent mechanical stability, atomic uniformity, and high biocompatibility. In this review, we summarize recent advances in the fabrication of various graphene-based nanoplatforms for SERS sensing. We present the strategies, such as self-assembly, in situ synthesis, one-pot synthesis, liquid phase reduction, and biomimetic synthesis, for the fabrication of graphene-based hybrid metallic and alloy nanoplatforms, and then demonstrate the potential applications of graphene-based nanoplatforms for the SERS sensing of ions, organic dyes, pesticides, bacteria, DNA, proteins, cells, and other chemicals in great detail. In addition, we also discuss the future development of this interesting research field and provide several perspectives. This work will be helpful for readers to understand the fabrication and sensing mechanisms of graphene-based SERS sensing nanoplatforms; meanwhile, it will promote the development of new materials and novel methods for high performance sensing and biosensing applications.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, 246011 Anqing, China
| | | | | | | |
Collapse
|
37
|
He K, Zeng Z, Chen A, Zeng G, Xiao R, Xu P, Huang Z, Shi J, Hu L, Chen G. Advancement of Ag-Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800871. [PMID: 29952105 DOI: 10.1002/smll.201800871] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.
Collapse
Affiliation(s)
- Kai He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, P. R. China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, P. R. China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Jiangbo Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
38
|
Li Y, Lu R, Shen J, Han W, Sun X, Li J, Wang L. Electrospun flexible poly(bisphenol A carbonate) nanofibers decorated with Ag nanoparticles as effective 3D SERS substrates for trace TNT detection. Analyst 2018; 142:4756-4764. [PMID: 29168853 DOI: 10.1039/c7an01639e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A flexible 3D hybrid PC/Ag surface-enhanced Raman scattering (SERS) substrate was fabricated through the combination of electrospinning and in situ chemical reduction. Due to the rough surface morphology and the intricate 3D structure, a high density of Raman "hotspots" was formed at the junctions of cross-linked nanofibers, resulting in excellent sensitivity to a probe molecule (4-aminothiophenol). The nanofibers were modified with l-cysteine to capture TNT molecules by the formation of a Meisenheimer complex, after which positively charged 4-ATP-labelled AgNPs were introduced to the system, which both generated more hotspots and led to a linear relationship between the TNT concentration and the SERS intensity of the labelled molecules. As a result, a good linear response ranging from 10-8 to 10-12 M was achieved, and the detection limit for TNT was as low as 2.05 × 10-13 M. This strategy demonstrates an ultra-sensitive approach for the detection of trace amounts of TNT, and a promising method for the detection of many other analogous explosives.
Collapse
Affiliation(s)
- Yi Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kong L, Mayorga-Martinez CC, Guan J, Pumera M. Fuel-Free Light-Powered TiO 2/Pt Janus Micromotors for Enhanced Nitroaromatic Explosives Degradation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22427-22434. [PMID: 29916690 DOI: 10.1021/acsami.8b05776] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitroaromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) and 2,4-dinitrotoluene (2,4-DNT) are two common nitroaromatic compounds in ammunition. Their leakage leads to serious environmental pollution and threatens human health. It is important to remove or decompose them rapidly and efficiently. In this work, we present that light-powered TiO2/Pt Janus micromotors have high efficiency for the "on-the-fly" photocatalytic degradation of 2,4-DNT and 2,4,6-TNT in pure water under UV irradiation. The redox reactions, induced by photogenerated holes and electrons on the TiO2/Pt Janus micromotor surfaces, produce a local electric field that propels the micromotors as well as oxidative species that are able to photodegrade 2,4-DNT and 2,4,6-TNT. Furthermore, the moving TiO2/Pt Janus micromotors show an efficient degradation of nitroaromatic compounds as compared to the stationary ones thanks to the enhanced mixing and mass transfer in the solution by movement of these micromotors. Such fuel-free light-powered micromotors for explosive degradation are expected to find a way to environmental remediation and security applications.
Collapse
Affiliation(s)
- Lei Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , People's Republic of China
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , People's Republic of China
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Czech Republic
| |
Collapse
|
40
|
Madhu C, Roy B, Makam P, Govindaraju T. Bicomponent β-sheet assembly of dipeptide fluorophores of opposite polarity and sensitive detection of nitro-explosives. Chem Commun (Camb) 2018; 54:2280-2283. [DOI: 10.1039/c8cc00158h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent hydrogels formed by the bicomponent β-sheet co-assembly of dipeptide–pyrene amphiphiles of opposite polarity provide a 3D microenvironment to detect toxic nitro-explosives.
Collapse
Affiliation(s)
- Chilakapati Madhu
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Pandeeswar Makam
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
41
|
Lai H, Xu F, Zhang Y, Wang L. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. J Mater Chem B 2018; 6:4008-4028. [DOI: 10.1039/c8tb00902c] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene-based SERS substrates are classified and introduced, and their applications in biosensing-related fields are reviewed.
Collapse
Affiliation(s)
- Huasheng Lai
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Fugang Xu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yue Zhang
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|
42
|
Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. NANOSCALE 2017; 9:16459-16466. [PMID: 29063930 DOI: 10.1039/c7nr05057g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been widely utilised as a sensitive analytical technique for the detection of trace levels of organic molecules. The detection of organic compounds in the gas phase is particularly challenging due to the low concentration of adsorbed molecules on the surface of the SERS substrate. This is particularly the case for explosive materials, which typically have very low vapour pressures, limiting the use of SERS for their identification. In this work, silver nanocubes (AgNCs) were developed as a highly sensitive SERS substrate with very low limit-of-detection (LOD) for explosive materials down to the femtomolar (10-15 M) range. Unlike typical gold-based nanostructures, the AgNCs were found suitable for the detection of both aromatic and aliphatic explosives, enabling detection with high specificity at low concentration. SERS studies were first carried out using a model analyte, Rhodamine-6G (Rh-6G), as a probe molecule. The SERS enhancement factor was estimated as 8.71 × 1010 in this case. Further studies involved femtomolar concentrations of 2,4-dinitrotoluene (DNT) and nanomolar concentrations of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), as well as vapour phase detection of DNT.
Collapse
Affiliation(s)
- Sultan Ben-Jaber
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | - William J Peveler
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | - Raul Quesada-Cabrera
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | - Christian W O Sol
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Ioannis Papakonstantinou
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Ivan P Parkin
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| |
Collapse
|
43
|
Liu Y, Tzeng N, Liu Y, Junk T. Normal mode analysis of isotopic shifts in Raman spectrum of TNT-d5. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Yuan Y, Panwar N, Yap SHK, Wu Q, Zeng S, Xu J, Tjin SC, Song J, Qu J, Yong KT. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
|
46
|
Hassanzadeh J, Khataee A, Bagheri N, Lotfi R. Sensitive chemiluminescence determination method for 2,4,6-trinitrotoluene based on the catalytic activity of amine-capped gold nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c6nj02324j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TNT can efficiently quench the high intensity CL emission of a rhodamine B–KMnO4–EDA capped AuNP CL system.
Collapse
Affiliation(s)
- Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| | - Nafiseh Bagheri
- Department of Chemistry
- Faculty of Science
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Roya Lotfi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-16471 Tabriz
| |
Collapse
|
47
|
Avaz S, Roy RB, Mokkapati VRSS, Bozkurt A, Pandit S, Mijakovic I, Menceloglu YZ. Graphene based nanosensor for aqueous phase detection of nitroaromatics. RSC Adv 2017. [DOI: 10.1039/c7ra03860g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitroaromatics sensor composed of monolayer graphene and molecularly imprinted chitosan thin film was fabricated and responded selectively against imprinted nitrotriazolone.
Collapse
Affiliation(s)
- S. Avaz
- Sabanci University
- Faculty of Engineering and Natural Sciences
- 34956 Tuzla
- Turkey
| | - R. B. Roy
- Sabanci University
- Faculty of Engineering and Natural Sciences
- 34956 Tuzla
- Turkey
| | - V. R. S. S. Mokkapati
- Chalmers University of Technology
- Department of Biology and Biological Engineering
- Division of Systems and Synthetic Biology
- Goteborg
- Sweden
| | - A. Bozkurt
- Sabanci University
- Faculty of Engineering and Natural Sciences
- 34956 Tuzla
- Turkey
| | - Santosh Pandit
- Chalmers University of Technology
- Department of Biology and Biological Engineering
- Division of Systems and Synthetic Biology
- Goteborg
- Sweden
| | - Ivan Mijakovic
- Chalmers University of Technology
- Department of Biology and Biological Engineering
- Division of Systems and Synthetic Biology
- Goteborg
- Sweden
| | - Y. Z. Menceloglu
- Sabanci University
- Faculty of Engineering and Natural Sciences
- 34956 Tuzla
- Turkey
- Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence
| |
Collapse
|
48
|
Zheng L, Yang LL, Xing NN, Pan Y, Ji HX, Wei J, Guan W. Highly selective detection of nitrotoluene based on novel lanthanide-containing ionic liquids. RSC Adv 2017. [DOI: 10.1039/c7ra06300h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two novel rare-earth ionic liquids demonstrate high selectivity toward nitrotoluene in the presence of other aromatic compounds.
Collapse
Affiliation(s)
- Ling Zheng
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Li-Li Yang
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Nan-Nan Xing
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yi Pan
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Hong-Xiang Ji
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Jie Wei
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Wei Guan
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
- School of Environmental Science
| |
Collapse
|
49
|
Yang T, Yu R, Chen H, Yang R, Wang S, Luo X, Jiao K. Electrochemical preparation of thin-layered molybdenum disulfide-poly(m-aminobenzenesulfonic acid) nanocomposite for TNT detection. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Pham XH, Hahm E, Kim HM, Shim S, Kim TH, Jeong DH, Lee YS, Jun BH. Silver Nanoparticle-Embedded Thin Silica-Coated Graphene Oxide as an SERS Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E176. [PMID: 28335304 PMCID: PMC5245191 DOI: 10.3390/nano6100176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
A hybrid of Ag nanoparticle (NP)-embedded thin silica-coated graphene oxide (GO@SiO₂@Ag NPs) was prepared as a surface-enhanced Raman scattering (SERS) substrate. A 6 nm layer of silica was successfully coated on the surface of GO by the physical adsorption of sodium silicate, followed by the hydrolysis of 3-mercaptopropyl trimethoxysilane. Ag NPs were introduced onto the thin silica-coated graphene oxide by the reduction of Ag⁺ to prepare GO@SiO₂@Ag NPs. The GO@SiO₂@Ag NPs exhibited a 1.8-fold enhanced Raman signal compared to GO without a silica coating. The GO@SiO₂@Ag NPs showed a detection limit of 4-mercaptobenzoic acid (4-MBA) at 0.74 μM.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Seongbo Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Tae Han Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 151-742, Korea.
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|