1
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
2
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
3
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
4
|
Naikoo GA, Arshad F, Hassan IU, Awan T, Salim H, Pedram MZ, Ahmed W, Patel V, Karakoti AS, Vinu A. Nanomaterials-based sensors for the detection of COVID-19: A review. Bioeng Transl Med 2022; 7:e10305. [PMID: 35599642 PMCID: PMC9110902 DOI: 10.1002/btm2.10305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Fareeha Arshad
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Israr U. Hassan
- College of Engineering, Dhofar UniversitySalalahSultanate of Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Mona Z. Pedram
- Faculty of Mechanical Engineering‐Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnUK
| | - Vaishwik Patel
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajay S. Karakoti
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajayan Vinu
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| |
Collapse
|
5
|
Xu L, Ramadan S, Rosa BG, Zhang Y, Yin T, Torres E, Shaforost O, Panagiotopoulos A, Li B, Kerherve G, Kim DK, Mattevi C, Jiao LR, Petrov PK, Klein N. On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. SENSORS & DIAGNOSTICS 2022; 1:719-730. [PMID: 35923775 PMCID: PMC9280445 DOI: 10.1039/d2sd00076h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation; relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications.
Collapse
Affiliation(s)
- Lizhou Xu
- Department of Materials, Imperial College LondonLondonSW7 2AZUK,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang UniversityHangzhou311200China
| | - Sami Ramadan
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | | | - Yuanzhou Zhang
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Tianyi Yin
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Elias Torres
- Graphenea SemiconductorPaseo Mikeletegi 83San Sebastián20009Spain
| | - Olena Shaforost
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | | | - Bing Li
- Department of Brain Sciences, Imperial College LondonLondonW12 0BZUK,Care Research & Technology Centre, UK Dementia Research InstituteW12 0BZUK,Institute for Materials Discovery, University College LondonRoberts BuildingLondonWC1E 7JEUK
| | | | - Dong Kuk Kim
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Cecilia Mattevi
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Long R. Jiao
- Department of Hepatobiliary Surgery, Division of Surgery & Cancer, Imperial College LondonHammersmith Hospital Campus, Du Cane RoadLondonW12 0NNUK
| | - Peter K. Petrov
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Norbert Klein
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| |
Collapse
|
6
|
Syamila N, Syahir A, Sulaiman Y, Ikeno S, Tan WS, Ahmad H, Ahmad Tajudin A. Bio-nanogate manipulation on electrode surface as an electrochemical immunosensing strategy for detecting anti-hepatitis B surface antigen. Bioelectrochemistry 2022; 143:107952. [PMID: 34600402 DOI: 10.1016/j.bioelechem.2021.107952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
The diagnosis of hepatitis B virus (HBV) and monitoring of the vaccination efficiency against HBV require real-time analysis. The presence of antibody against hepatitis B virus surface antigen (anti-HBsAg) as a result of HBV infection and/or immunization may indicate individual immune status towards HBV. This study investigated the ability of a bio-nanogate-based displacement immunosensing strategy in detecting anti-HBsAg antibody, via nonspecific-binding between polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) and the 'antigenic determinant' region (aD) of HBsAg. For this purpose, maltose binding protein harbouring the aD region (MBP-aD) was synthesized as a bioreceptor and immobilized on the screen-printed carbon electrode (SPCE). Following that, PAMAM-Au was deposited on MBP-aD, forming the 'gate' and was used as a monitoring agent. Under optimal conditions, the high specificity of anti-HBsAg antibody towards MBP-aD displaced PAMAM-Au causing the decrement of anodic peak in differential pulse voltammetry (DPV) analysis. The signal changes were proportionally related to the concentration of anti-HBsAg antibody, in a range of 1 - 1000 mIU/mL with a limit of detection (LOD) of 2.5 mIU/mL. The results also showed high specificity and selectivity of the immunosensor platform in detecting anti-HBsAg antibody both in spiked buffer and human serum samples.
Collapse
Affiliation(s)
- Noor Syamila
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amir Syahir
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
8
|
|
9
|
Han C, Li Q, Ji H, Xing W, Zhang L, Zhang L. Aptamers: The Powerful Molecular Tools for Virus Detection. Chem Asian J 2021; 16:1298-1306. [PMID: 33851522 DOI: 10.1002/asia.202100242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Indexed: 01/23/2023]
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides selected by the technique of systematic evolution of ligands by exponential enrichment (SELEX). Aptamers have been demonstrated to bind various targets from small-molecule to cells or even tissues in the way of antibodies. Thus, they are called chemical antibodies. We summarize and evaluate recent developments in aptamer-based sensors (for short aptasensors) for virus detection in this review. These aptasensors are mainly classified into optical and electronic aptasensors based on the type of transducer. Nowadays, the smartphone has become the most widely used mobile device with billions of users worldwide. Considering the ongoing COVID-19 outbreak, smartphone-based aptasensors for a portable and point-of-care test (POCT) of COVID-19 detection will be of great importance in the future.
Collapse
Affiliation(s)
- Cong Han
- State Key Laboratory of Medicinal Chemical biology, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Qian Li
- State Key Laboratory of Medicinal Chemical biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Haishuo Ji
- State Key Laboratory of Medicinal Chemical biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenping Xing
- State Key Laboratory of Medicinal Chemical biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Limin Zhang
- Department of Internal Medicine, Leling Hospital of Traditional Chinese Medicine, Shandong, 253600, P. R. China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical biology, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, Kukushkin V, Zavyalova E. SERS-Based Colloidal Aptasensors for Quantitative Determination of Influenza Virus. Int J Mol Sci 2021; 22:1842. [PMID: 33673314 PMCID: PMC7918581 DOI: 10.3390/ijms22041842] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Development of sensitive techniques for rapid detection of viruses is on a high demand. Surface-enhanced Raman spectroscopy (SERS) is an appropriate tool for new techniques due to its high sensitivity. DNA aptamers are short structured oligonucleotides that can provide specificity for SERS biosensors. Existing SERS-based aptasensors for rapid virus detection had several disadvantages. Some of them lacked possibility of quantitative determination, while others had sophisticated and expensive implementation. In this paper, we provide a new approach that combines rapid specific detection and the possibility of quantitative determination of viruses using the example of influenza A virus.
Collapse
Affiliation(s)
- Dmitry Gribanyov
- Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Andrei Olenin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Georgii Lisichkin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | - Vladimir Kukushkin
- Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| |
Collapse
|
11
|
Xiao S, Wang S, Wang X, Xu P. Nanoporous gold: A review and potentials in biotechnological and biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202000291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sa Xiao
- State Key Laboratory of Microbial Technology Shandong University Qingdao PR China
| | - Shuangjue Wang
- State Key Laboratory of Microbial Technology Shandong University Qingdao PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology Shandong University Qingdao PR China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai PR China
| |
Collapse
|
12
|
Xu L, Li D, Ramadan S, Li Y, Klein N. Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron 2020; 170:112673. [PMID: 33038584 PMCID: PMC7528898 DOI: 10.1016/j.bios.2020.112673] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023]
Abstract
Currently the world is being challenged by a public health emergency caused by the coronavirus pandemic (COVID-19). Extensive efforts in testing for coronavirus infection, combined with isolating infected cases and quarantining those in contact, have proven successful in bringing the epidemic under control. Rapid and facile screening of this disease is in high demand. This review summarises recent advances in strategies reported by international researchers and engineers concerning how to tackle COVID-19 via rapid testing, mainly through nucleic acid- and antibody- testing. The roles of biosensors as powerful analytical tools are emphasized for the detection of viral RNAs, surface antigens, whole viral particles, antibodies and other potential biomarkers in human specimen. We critically review in depth newly developed biosensing methods especially for in-field and point-of-care detection of SARS-CoV-2. Additionally, this review describes possible future strategies for virus rapid detection. It helps researchers working on novel sensor technologies to tailor their technologies in a way to address the challenge for effective detection of COVID-19.
Collapse
Affiliation(s)
- Lizhou Xu
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Danyang Li
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Sami Ramadan
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Norbert Klein
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
13
|
Samson R, Navale GR, Dharne MS. Biosensors: frontiers in rapid detection of COVID-19. 3 Biotech 2020; 10:385. [PMID: 32818132 PMCID: PMC7417775 DOI: 10.1007/s13205-020-02369-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid community-spread of novel human coronavirus 2019 (nCOVID19 or SARS-Cov2) and morbidity statistics has put forth an unprecedented urge for rapid diagnostics for quick and sensitive detection followed by contact tracing and containment strategies, especially when no vaccine or therapeutics are known. Currently, quantitative real-time polymerase chain reaction (qRT-PCR) is being used widely to detect COVID-19 from various types of biological specimens, which is time-consuming, labor-intensive and may not be rapidly deployable in remote or resource-limited settings. This might lead to hindrance in acquiring realistic data of infectivity and community spread of SARS-CoV-2 in the population. This review summarizes the existing status of current diagnostic methods, their possible limitations, and the advantages of biosensor-based diagnostics over the conventional ones for the detection of SARS-Cov-2. Novel biosensors used to detect RNA-viruses include CRISPR-Cas9 based paper strip, nucleic-acid based, aptamer-based, antigen-Au/Ag nanoparticles-based electrochemical biosensor, optical biosensor, and Surface Plasmon Resonance. These could be effective tools for rapid, authentic, portable, and more promising diagnosis in the current pandemic that has affected the world economies and humanity. Present challenges and future perspectives of developing robust biosensors devices for rapid, scalable, and sensitive detection and management of COVID-19 are presented in light of the test-test-test theme of the World Health Organization (WHO).
Collapse
Affiliation(s)
- Rachel Samson
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Chemical, Laboratory, National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Chemical, Laboratory, National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Chemical, Laboratory, National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| |
Collapse
|
14
|
Yao L, Zheng L, Cai G, Wang S, Wang L, Lin J. A Rapid and Sensitive Salmonella Biosensor Based on Viscoelastic Inertial Microfluidics. SENSORS 2020; 20:s20092738. [PMID: 32403342 PMCID: PMC7248794 DOI: 10.3390/s20092738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/03/2023]
Abstract
Salmonella is a main cause of foodborne illnesses and rapid screening of Salmonella is the key to prevent Salmonella outbreaks, however available detection methods either require a long time, or need complex pretreatment, or have low sensitivity. In this study, a microfluidic biosensor was developed for Salmonella detection using viscoelastic inertial microfluidics for separating magnetic bacteria from unbound magnetic nanoparticles (MNPs) and enzyme catalytic colorimetry for amplifying biological signals. The polyclonal antibodies and horseradish peroxidase (HRP) modified MNPs were first used to specifically capture Salmonella to form magnetic HRP-bacteria. Both magnetic HRP-bacteria and unbound MNPs were magnetically separated from background and resuspended in viscoelastic polyvinylpyrrolidone solution as sample flow. When sample flow was injected with polyvinylpyrrolidone sheath flow into a T-shaped microchannel, larger-sized magnetic HRP-bacteria could penetrate the sample flow, however smaller-sized MNPs remained in the sample flow due to weaker inertial lift force and elastic lift force, resulting in continuous-flow separation of magnetic HRP-bacteria. Finally, magnetic HRP-bacteria were collected and concentrated to catalyze tetramethyl benzidine, and absorbance was measured to determine the bacteria. This biosensor was able to detect Salmonella as low as 30 CFU/mL in 1 h and featured the advantages of shorter time due to a one-step immunoreaction, easier extension due to only one antibody and one label, and lower cost due to less expensive materials.
Collapse
|
15
|
Interaction study of peptide-PAMAM as potential bio-nanogate for detecting anti-hepatitis B surface antigen. Colloids Surf B Biointerfaces 2019; 185:110623. [PMID: 31735420 DOI: 10.1016/j.colsurfb.2019.110623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
Bio-nanogate involves synthesized or natural molecules as a 'gate' towards bioreceptors and responds upon the presence of targeted analytes in nanoscale dimension. Development of bio-nanogate improves analyte selectivity and signal response across various types of biosensors. The versatility of PAMAM dendrimers to form conjugates with guest molecules, such as proteins can be utilized in forming a bio-nanogate. PAMAM interaction with peptide bioreceptor for antibody detection is of interest in this study. This study investigated the interaction of synthesized immunogenic 'a' determinant (aD) region of hepatitis B virus surface antigen (HBsAg) with PAMAM G4 and anti-HBsAg antibody, as a potential bio-nanogate for anti-HBsAg detection. The aD peptide fused with maltose binding protein (MBP), was confirmed with Western blotting. Nano-Differential Scanning Fluorimetry (nano-DSF) study revealed that the interaction of MBP-aD with anti-HBsAg indicated a higher thermal stability as compared to its interaction with PAMAM G4. Electrochemical impedance spectroscopy showed that a higher binding constant of MBP-aD interaction with anti-HBsAg (0.92 μM-1) was observed at maximum saturation, as compared with PAMAM G4 (0.07 μM-1). Thermodynamic parameters demonstrated that MBP-aD interacted with anti-HBsAg and PAMAM G4, through van der Waals and hydrogen bonding. These analyses suggest that the weak interaction of MBP-aD and PAMAM G4 may form a potential bio-nanogate. It is hypothesized that the presence of anti-HBsAg has a higher affinity towards MBP-aD which may displace PAMAM G4 in the anti-HBsAg detection system. This interaction study is crucial as an initial platform of using peptide-PAMAM as a bio-nanogate in an antibody detection system.
Collapse
|
16
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Kukushkin VI, Ivanov NM, Novoseltseva AA, Gambaryan AS, Yaminsky IV, Kopylov AM, Zavyalova EG. Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One 2019; 14:e0216247. [PMID: 31022287 PMCID: PMC6483365 DOI: 10.1371/journal.pone.0216247] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Highly sensitive and rapid technology of surface enhanced Raman scattering (SERS) was applied to create aptasensors for influenza virus detection. SERS achieves 106−109 times signal amplification, yielding excellent sensitivity, whereas aptamers to hemagglutinin provide a specific recognition of the influenza virus. Aptamer RHA0385 was demonstrated to have essentially broad strain-specificity toward both recombinant hemagglutinins and the whole viruses. To achieve high sensitivity, a sandwich of primary aptamers, influenza virus and secondary aptamers was assembled. Primary aptamers were attached to metal particles of a SERS substrate, and influenza viruses were captured and bound with secondary aptamers labelled with Raman-active molecules. The signal was affected by the concentration of both primary and secondary aptamers. The limit of detection was as low as 1 · 10−4 hemagglutination units per probe as tested for the H3N2 virus (A/England/42/72). Aptamer-based sensors provided recognition of various influenza viral strains, including H1, H3, and H5 hemagglutinin subtypes. Therefore, the aptasensors could be applied for fast and low-cost strain-independent determination of influenza viruses.
Collapse
Affiliation(s)
- Vladimir I. Kukushkin
- Institute of Solid State Physics RAS, Chernogolovka, Moscow district, Russian Federation
| | - Nikita M. Ivanov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, Moscow, Russian Federation
| | - Igor V. Yaminsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail:
| |
Collapse
|
18
|
Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Anal Chim Acta 2019; 1053:139-147. [DOI: 10.1016/j.aca.2018.11.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
|
19
|
Abstract
Aptamers are single-stranded RNA or DNA oligonucleotides which have specific three-dimensional (3D) structures for high affinity and specific recognition to their target. In diagnostic and detection assays, aptamers represent an alternative to antibodies as recognition agents and offer advantages, such as reduced cost, rapid and reproducible synthesis, controllable modification, and improved stability. Aptamers are favorably used in biosensors as sensitive and selective bio-receptors coupled with a variety of transducers such as optical, mass-sensitive, and electrochemical sensors, the so-called aptasensors. We report the development of several types of aptasensors for rapid and specific detection of avian influenza virus (AIV) H5N1. DNA aptamers with high affinity and specificity against AIV H5N1 were immobilized on the electrode surface and then incorporated into different transducers such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM) and electrochemical transducer. The target viruses were captured by the immobilized aptamers resulting in a detectable signal. The fabrication of aptasensors, detection principles, and their applications for AIV H5N1 detection are addressed.
Collapse
Affiliation(s)
- Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, 230 Engineering Hall, Fayetteville, AR, 72701, USA.
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, 230 Engineering Hall, Fayetteville, AR, 72701, USA
| |
Collapse
|
20
|
Carlson K, Misra M, Mohanty S. Developments in Micro- and Nanotechnology for Foodborne Pathogen Detection. Foodborne Pathog Dis 2018; 15:16-25. [DOI: 10.1089/fpd.2017.2309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Krista Carlson
- Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah
| | - Manoranjan Misra
- Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah
| | - Swomitra Mohanty
- Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah
| |
Collapse
|
21
|
Ribes À, Santiago‐Felipe S, Bernardos A, Marcos MD, Pardo T, Sancenón F, Martínez‐Máñez R, Aznar E. Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen 2017; 6:653-659. [PMID: 29046860 PMCID: PMC5641899 DOI: 10.1002/open.201700106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 01/05/2023] Open
Abstract
Aptamers have been used as recognition elements for several molecules due to their great affinity and selectivity. Additionally, mesoporous nanomaterials have demonstrated great potential in sensing applications. Based on these concepts, we report herein the use of two aptamer-capped mesoporous silica materials for the selective detection of ochratoxin A (OTA). A specific aptamer for OTA was used to block the pores of rhodamine B-loaded mesoporous silica nanoparticles. Two solids were prepared in which the aptamer capped the porous scaffolds by using a covalent or electrostatic approach. Whereas the prepared materials remained capped in water, dye delivery was selectively observed in the presence of OTA. The protocol showed excellent analytical performance in terms of sensitivity (limit of detection: 0.5-0.05 nm), reproducibility, and selectivity. Moreover, the aptasensors were tested for OTA detection in commercial foodstuff matrices, which demonstrated their potential applicability in real samples.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
| | - Sara Santiago‐Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Teresa Pardo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de ValènciaUniversitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)50018ZaragozaSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica de València, Instituto de Investigación Sanitaria La Fe46022ValenciaSpain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe Felipe46022ValenciaSpain
| |
Collapse
|
22
|
Moulick A, Richtera L, Milosavljevic V, Cernei N, Haddad Y, Zitka O, Kopel P, Heger Z, Adam V. Advanced nanotechnologies in avian influenza: Current status and future trends - A review. Anal Chim Acta 2017; 983:42-53. [PMID: 28811028 PMCID: PMC7094654 DOI: 10.1016/j.aca.2017.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
In the last decade, the control of avian influenza virus has experienced many difficulties, which have caused major global agricultural problems that have also led to public health consequences. Conventional biochemical methods are not sufficient to detect and control agricultural pathogens in the field due to the growing demand for food and subsidiary products; thus, studies aiming to develop potent alternatives to conventional biochemical methods are urgently needed. In this review, emerging detection systems, their applicability to diagnostics, and their therapeutic possibilities in view of nanotechnology are discussed. Nanotechnology-based sensors are used for rapid, sensitive and cost-effective diagnostics of agricultural pathogens. The application of different nanomaterials promotes interactions between these materials and the virus, which enables researchers to construct portable electroanalytical biosensing analyser that should effectively detect the influenza virus. The present review will provide insights into the guidelines for future experiments to develop better techniques to detect and control influenza viruses.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
23
|
Ribes À, Aznar E, Bernardos A, Marcos MD, Amorós P, Martínez-Máñez R, Sancenón F. Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamer-Capped Mesoporous Silica Nanoparticles. Chemistry 2017; 23:8581-8584. [PMID: 28498545 DOI: 10.1002/chem.201701024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/21/2022]
Abstract
Mesoporous silica nanoparticles loaded with rhodamine B and capped with a bisphenol A aptamer were used for the selective and sensitive detection of this lethal chemical. The pores of the nanoparticles are selectively opened in the presence of bisphenol A (through its selective coordination with the aptamer) with subsequent rhodamine B delivery. With this capped material a limit of detection as low as 3.5 μm of bisphenol A was measured.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM)., Universitat Politècnica de València, Universitat de València, Camí de Vera s/N, 46022, Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN)
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM)., Universitat Politècnica de València, Universitat de València, Camí de Vera s/N, 46022, Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN)
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM)., Universitat Politècnica de València, Universitat de València, Camí de Vera s/N, 46022, Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN)
| | - M Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM)., Universitat Politècnica de València, Universitat de València, Camí de Vera s/N, 46022, Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN).,Departamento de química, Universitat Politècnica de València, Camí de Vera s/N, 46022, Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM)., Universitat Politècnica de València, Universitat de València, Camí de Vera s/N, 46022, Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN).,Departamento de química, Universitat Politècnica de València, Camí de Vera s/N, 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM)., Universitat Politècnica de València, Universitat de València, Camí de Vera s/N, 46022, Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN).,Departamento de química, Universitat Politècnica de València, Camí de Vera s/N, 46022, Valencia, Spain
| |
Collapse
|
24
|
Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:219-230. [PMID: 27575283 DOI: 10.1016/j.nano.2016.08.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/24/2016] [Accepted: 08/11/2016] [Indexed: 01/30/2023]
Abstract
Nanotechnology is increasingly playing important roles in various fields including virology. The emerging use of metal or metal oxide nanoparticles in virus targeting formulations shows the promise of improved diagnostic or therapeutic ability of the agents while uniquely enhancing the prospects of targeted drug delivery. Although a number of nanoparticles varying in composition, size, shape, and surface properties have been approved for human use, the candidates being tested or approved for clinical diagnosis and treatment of viral infections are relatively less in number. Challenges remain in this domain due to a lack of essential knowledge regarding the in vivo comportment of nanoparticles during viral infections. This review provides a broad overview of recent advances in diagnostic, prophylactic and therapeutic applications of metal and metal oxide nanoparticles in human immunodeficiency virus, hepatitis virus, influenza virus and herpes virus infections. Types of nanoparticles commonly used and their broad applications have been explained in this review.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Nanotechnology Research Centre, SRM University, Kattankulathur, India; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, USA.
| |
Collapse
|
25
|
van den Kieboom CH, van der Beek SL, Mészáros T, Gyurcsányi RE, Ferwerda G, de Jonge MI. Aptasensors for viral diagnostics. Trends Analyt Chem 2015; 74:58-67. [PMID: 32287539 PMCID: PMC7112930 DOI: 10.1016/j.trac.2015.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We discuss progress in aptamer-based detection of viruses. We consider the use of aptasensors for point-of-care diagnostics of viruses. Aptamers have distinct advantages over antibodies for virus recognition. There is strong demand for multiplexed diagnostic measurement of pathogens.
Novel viral diagnostic tools need to be affordable, fast, accurate and easy to use with sensitivity and specificity equivalent or superior to current standards. At present, viral diagnostics are based on direct detection of viral components or indirect detection by measuring antibodies generated in response to viral infection. While sensitivity of detection and quantification are still important challenges, we expect major advances from new assay formats and synthetic binding molecules, such as aptamers. Compared to traditional antibody-based detection, aptamers could provide faster adaptation to continuously evolving virus strains and higher discriminating capacity between specific virus serotypes. Aptamers are very stable and easily modifiable, so are ideal molecules for detection and chemical sensing applications. Here, we review the use of aptasensors for detection of viral pathogens and consider the feasibility of aptasensors to become standard devices for point-of-care diagnostics of viruses.
Collapse
Affiliation(s)
- Corné H van den Kieboom
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.,MTA-BME Research Group for Technical Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Róbert E Gyurcsányi
- MTA-BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Acquah C, Danquah MK, Agyei D, Moy CKS, Sidhu A, Ongkudon CM. Deploying aptameric sensing technology for rapid pandemic monitoring. Crit Rev Biotechnol 2015; 36:1010-1022. [PMID: 26381238 DOI: 10.3109/07388551.2015.1083940] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.
Collapse
Affiliation(s)
- Caleb Acquah
- a Curtin Sarawak Research Institute, Curtin University , Sarawak 98009 , Malaysia.,b Department of Chemical Engineering , Curtin University , Sarawak 98009 , Malaysia
| | - Michael K Danquah
- b Department of Chemical Engineering , Curtin University , Sarawak 98009 , Malaysia
| | - Dominic Agyei
- c Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University , Geelong-Waurn Ponds , Australia
| | - Charles K S Moy
- d Faculty of Engineering and Science , Curtin University , Sarawak 98009 , Malaysia
| | - Amandeep Sidhu
- a Curtin Sarawak Research Institute, Curtin University , Sarawak 98009 , Malaysia.,e Faculty of Health Sciences , Curtin University , Perth 6102 , Australia , and
| | - Clarence M Ongkudon
- f Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu , Sabah, 88400 , Malaysia
| |
Collapse
|
27
|
Lum J, Wang R, Hargis B, Tung S, Bottje W, Lu H, Li Y. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. SENSORS 2015; 15:18565-78. [PMID: 26230699 PMCID: PMC4570336 DOI: 10.3390/s150818565] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
In this research a DNA aptamer, which was selected through SELEX (systematic evolution of ligands by exponential enrichment) to be specific against the H5N1 subtype of the avian influenza virus (AIV), was used as an alternative reagent to monoclonal antibodies in an impedance biosensor utilizing a microfluidics flow cell and an interdigitated microelectrode for the specific detection of H5N1 AIV. The gold surface of the interdigitated microelectrode embedded in a microfluidics flow cell was modified using streptavidin. The biotinylated aptamer against H5N1 was then immobilized on the electrode surface using biotin-streptavidin binding. The target virus was captured on the microelectrode surface, causing an increase in impedance magnitude. The aptasensor had a detection time of 30 min with a detection limit of 0.0128 hemagglutinin units (HAU). Scanning electron microscopy confirmed the binding of the target virus onto the electrode surface. The DNA aptamer was specific to H5N1 and had no cross-reaction to other subtypes of AIV (e.g., H1N1, H2N2, H7N2). The newly developed aptasensor offers a portable, rapid, low-cost alternative to current methods with the same sensitivity and specificity.
Collapse
Affiliation(s)
- Jacob Lum
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Billy Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Walter Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Huaguang Lu
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|