1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Wang G, Guo J, Zou J, Lei Z. CeO 2 nanocages with tetra-enzyme mimetic activities for dual-channel ratiometric colorimetric detection of microcystins-LR. Anal Chim Acta 2024; 1306:342599. [PMID: 38692792 DOI: 10.1016/j.aca.2024.342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy. RESULTS CeO2 nanocages (CeO2 NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO2 NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO2 NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL-1) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained. SIGNIFICANCE This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.
Collapse
Affiliation(s)
- Guodong Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
3
|
Hu X, Wang Z, Ye X, Xie P, Liu Y. Analyzing MC-LR distribution characteristics in natural lakes by a novel fluorescence technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123123. [PMID: 38081380 DOI: 10.1016/j.envpol.2023.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
The death of aquatic and terrestrial organisms caused by cyanobacterial blooms has been a topic of considerable concern since the 19th century. Microcystin-LR (MC-LR) produced by cyanobacterial blooms threaten natural ecosystems and human health. Therefore, establishing an effective monitoring and early warning system to detect MC-LR in water bodies is crucial. However, rapidly and intuitively assessing the distribution traits of MC-LR in lakes is a challenging task due to the complexities and expenses associated with conventional detection methods. To overcome these technical limitations, we introduce a novel and effective method for evaluating the distribution of MC-LR in lakes. This method is achieved by using a fluorescence probe (BAD) technology, marking the first application of this technology in evaluating the distribution of MC-LR in natural lake environments. The probe BAD is endowed with unique functions through clever functionalization modification. Experimental results exhibit that BAD has different fluorescence signals at various lake sampling points. The correlation analysis of fluorescence data and physicochemical indicators determines that the fluorescence data of the probe exhibit good correlation with MC-LR, implying that BAD is capable of detecting MC-LR in lakes. Moreover, the introduction of fluorescence technology to achieve the intuitive distribution of MC-LR in the entire plateau lake. This study provides a new method for evaluating the distribution of MC-LR in plateau lakes. It opens a new avenue for exploring the relationship between cyanobacterial blooms and MC-LR in natural waters.
Collapse
Affiliation(s)
- Xiangyu Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Xiao Ye
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
4
|
Li B, Qi J, Liu F, Zhao R, Arabi M, Ostovan A, Song J, Wang X, Zhang Z, Chen L. Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin. Nat Commun 2023; 14:6553. [PMID: 37848423 PMCID: PMC10582162 DOI: 10.1038/s41467-023-42244-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Fluorescence analysis is a fast and sensitive method, and has great potential application in trace detection of environmental toxins. However, many important environmental toxins are non-fluorescent substances, and it is still a challenge to construct a fluorescence detection method for non-fluorescent substances. Here, by means of charge transfer effect and smart molecular imprinting technology, we report a sensitive indirect fluorescent sensing mechanism (IFSM) and microcystin (MC-RR) is selected as a model target. A molecular imprinted thin film is immobilized on the surface of zinc ferrite nanoparticles (ZnFe2O4 NPs) by using arginine, a dummy fragment of MC-RR. By implementation of IFSM on the paper-based microfluidic chip, a versatile platform for the quantitative assay of MC-RR is developed at trace level (the limit of detection of 0.43 μg/L and time of 20 min) in real water samples without any pretreatment. Importantly, the proposed IFSM can be easily modified and extended for the wide variety of species which lack direct interaction with the fluorescent substrate. This work offers the potential possibility to meet the requirements for the on-site analysis and may explore potential applications of molecularly imprinted fluorescent sensors.
Collapse
Affiliation(s)
- Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
| | - Feng Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Jinming Song
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| |
Collapse
|
5
|
Guo J, Wang G, Zou J, Lei Z. DNA controllable peroxidase-like activity of Ti 3C 2 nanosheets for colorimetric detection of microcystin-LR. Anal Bioanal Chem 2023:10.1007/s00216-023-04745-0. [PMID: 37198360 DOI: 10.1007/s00216-023-04745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The peroxidase-like activity of Ti3C2 nanosheets (Ti3C2 NSs) was evaluated by catalytic oxidation of colorless o-phenylenediamine (OPD) into orange-yellow 2,3-diaminophenazine (DAP) with the aid of H2O2. The catalytic behavior followed the typical Michaelis-Menten kinetics. Systematic studies about the catalytic activity of Ti3C2 NSs including cytochrome C (Cyt C) electron transfer experiments, radical capture experiments, and fluorescence analysis were conducted, revealing that the catalytic mechanism of Ti3C2 NSs was attributed to nanozyme-accelerated electron transfer between substrates and nanozyme-promoted generation of active species (superoxide anion free radical (·O2-) and holes (h+)). Single-stranded DNA (ssDNA) inhibited the peroxidase-like activity of Ti3C2 NSs, and the reduced catalytic activity was ascribed to DNA-hindered substrate accessibility to nanozyme surface. Based on the DNA controllable peroxidase-mimicking activity of Ti3C2 NSs, taking microcystin-LR (MC-LR) aptamer as an example, a label-free colorimetric aptasensor was proposed for the sensitive detection of MC-LR. The colorimetric aptasensor showed a wide linear range (0.01-60 ng mL-1), low limit of detection (6.5 pg mL-1), and high selectivity. The practicality of the colorimetric aptasensor was demonstrated by detecting different levels of MC-LR in spiked real water samples; satisfactory recoveries (97.2-102.1%) and low relative standard deviations (1.16-3.72%) were obtained.
Collapse
Affiliation(s)
- Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Guodong Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| |
Collapse
|
6
|
Lee G, Cho Y, Ok G. Improved analysis of THz metamaterials for glucose sensing based on modified Lorentz dispersion model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122519. [PMID: 36812756 DOI: 10.1016/j.saa.2023.122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/29/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Resonant structures, such as metamaterials, which can focus electromagnetic fields on a localized spot, are essential to perform label-free detection with high sensitivity in the terahertz (THz) range. Moreover, the refractive index (RI) of a sensing analyte is the most important aspect in the optimization of the characteristics of a highly sensitive resonant structure. However, in previous studies, the sensitivity of metamaterials was calculated while considering the RI of an analyte as a constant value. Consequently, the result for a sensing material with a specific absorption spectrum was inaccurate. To solve this problem, this study developed a modified Lorentz model. Split-ring resonator-based metamaterials were fabricated to verify the model, and the glucose-sensing range from 0 to 500 mg/dL was measured using a commercial THz time-domain spectroscopy system. In addition, a finite-difference time-domain simulation was implemented based on the modified Lorentz model and fabrication design of the metamaterials. The calculation results were compared with the measurement results and were found to be consistent.
Collapse
Affiliation(s)
- Gyuseok Lee
- Smart Food Manufacturing Project Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Gyeongsik Ok
- Smart Food Manufacturing Project Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
7
|
Cho HH, Jung DH, Heo JH, Lee CY, Jeong SY, Lee JH. Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19785-19806. [PMID: 37067786 DOI: 10.1021/acsami.3c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides. Notably, many researchers have been interested in AuNP that detect water pollutants with high sensitivity and selectivity, while offering no adverse environmental issues in terms of AuNP use. This review provides a representative overview of AuNP-based colorimetric sensors for detecting several water pollutants. In particular, we emphasize the advantages of AuNP as colorimetric transducers for water pollutant detection in terms of their low toxicity, high stability, facile processability, and unique optical properties. Next, we discuss the status quo and future prospects of AuNP-based colorimetric sensors for the detection of water pollutants. We believe that this review will promote research and development of AuNP as next-generation colorimetric transducers for water pollutant detection.
Collapse
Affiliation(s)
- Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Do Hyeon Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Chae Yeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Yun Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Yang X, Huang R, Xiong L, Chen F, Sun W, Yu L. A Colorimetric Aptasensor for Ochratoxin A Detection Based on Tetramethylrhodamine Charge Effect-Assisted Silver Enhancement. BIOSENSORS 2023; 13:bios13040468. [PMID: 37185543 PMCID: PMC10136965 DOI: 10.3390/bios13040468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
A novel colorimetric aptasensor based on charge effect-assisted silver enhancement was developed to detect ochratoxin A (OTA). To achieve this objective, gold nanoparticles (AuNPs), which can catalyze silver reduction and deposition, were used as the carrier of the aptamers tagged with a positively charged tetramethylrhodamine (TAMRA). Due to the mutual attraction of positive and negative charges, the TAMRA attracted and retained the silver lactate around the AuNPs. Thus, the chance of AuNP-catalyzed silver reduction was increased. The charge effect-assisted silver enhancement was verified by tagging different base pair length aptamers with TAMRA. Under optimized conditions, the as-prepared OTA aptasensor had a working range of 1 × 102-1 × 106 pg mL-1. The detection limit was as low as 28.18 pg mL-1. Moreover, the proposed aptasensor has been successfully applied to determine OTA in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lulu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Feng Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Luo X, Zhang S, Xia Z, Tan R, Li Q, Qiao L, He Y, Zhang G, Xu Z. A combined surface-enhanced Raman spectroscopy (SERS)/colorimetric approach for the sensitive detection of malondialdehyde in biological samples. Anal Chim Acta 2023; 1241:340803. [PMID: 36657875 DOI: 10.1016/j.aca.2023.340803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Variations of malondialdehyde (MDA) level in biological samples often induce pathological changes, which is associated with various diseases. Here, we developed a combined surface-enhanced Raman spectroscopy (SERS) and colorimetric strategy for MDA quantitation. The methodology is based on the condensation reaction between 4-aminothiophenol (4-ATP)-modified Au nanoflowers (Au NFs) with the aldehyde groups of MDA, which causes the aggregation of the Au NFs and a concomitant change in the solution color from purple to blue and shifts in the local surface plasmon resonance band to longer wavelengths compared with monodisperse NFs. Additionally, after the condensation reaction, a new Raman peak ascribable to the CN vibration appeared at 1630 cm-1. The intensity of this peak was directly related to the concentration of MDA in solution, which allowed establishing the quantitative measurement of MDA based on SERS. The developed SERS assay displayed satisfactory sensitivity and selectivity with a broad linear range from 1.0 × 10-12 to 1.0 × 10-7 M and a low detection limit (∼3.6 × 10-13 M), outperforming other reported optical and electrochemical methods. Furthermore, the use of 4-ATP-modified Au NF probes to monitor MDA in human serum demonstrates the applicability of this combined SERS/colorimetric approach in a real environment.
Collapse
Affiliation(s)
- Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Shutong Zhang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhichao Xia
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Rui Tan
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Qiuju Li
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yi He
- School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Zhihong Xu
- School of Science, Xihua University, Chengdu, 610039, PR China.
| |
Collapse
|
10
|
Zahraee H, Mehrzad A, Abnous K, Chen CH, Khoshbin Z, Verdian A. Recent Advances in Aptasensing Strategies for Monitoring Phycotoxins: Promising for Food Safety. BIOSENSORS 2022; 13:56. [PMID: 36671891 PMCID: PMC9856083 DOI: 10.3390/bios13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Phycotoxins or marine toxins cause massive harm to humans, livestock, and pets. Current strategies based on ordinary methods are long time-wise and require expert operators, and are not reliable for on-site and real-time use. Therefore, it is urgent to exploit new detection methods for marine toxins with high sensitivity and specificity, low detection limits, convenience, and high efficiency. Conversely, biosensors can distinguish poisons with less response time and higher selectivity than the common strategies. Aptamer-based biosensors (aptasensors) are potent for environmental monitoring, especially for on-site and real-time determination of marine toxins and freshwater microorganisms, and with a degree of superiority over other biosensors, making them worth considering. This article reviews the designed aptasensors based on the different strategies for detecting the various phycotoxins.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| |
Collapse
|
11
|
Liu S, Xiao J, Min X, Tan Y, Ma F, Liu L. Ultrastructure distribution of microcystin-LR and its migration mechanism by nanoanalytical investigation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
13
|
Lan Y, He B, Tan CS, Ming D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. BIOSENSORS 2022; 12:bios12070477. [PMID: 35884280 PMCID: PMC9312806 DOI: 10.3390/bios12070477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Aptamers are a particular class of functional recognition ligands with high specificity and affinity to their targets. As the candidate recognition layer of biosensors, aptamers can be used to sense biomolecules. Aptasensors, aptamer-based biosensors, have been demonstrated to be specific, sensitive, and cost-effective. Furthermore, smartphone-based devices have shown their advantages in binding to aptasensors for point-of-care testing (POCT), which offers an immediate or spontaneous responding time for biological testing. This review describes smartphone-based aptasensors to detect various targets such as metal ions, nucleic acids, proteins, and cells. Additionally, the focus is also on aptasensors-related technologies and configurations.
Collapse
Affiliation(s)
- Ying Lan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Baixun He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| |
Collapse
|
14
|
Lei Z, Lei P, Guo J, Wang Z. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta 2022; 248:123607. [PMID: 35661001 DOI: 10.1016/j.talanta.2022.123607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The existence of cyanotoxins poses serious threats to human health, it is highly desirable to develop specific and sensitive methods for rapid detection of cyanotoxins in food and water. Due to the distinct advantages of aptamer including high specificity, good stability and easy preparation, various aptamer-based sensors (aptasensors) have been proposed to promote the detection of cyanotoxins. In this review, we summarize recent advance in optical and electrochemical aptasensors for cyanotoxins sensing by integrating with versatile nanomaterials or innovative sensing strategies, such as colorimetric aptasensors, fluorescent aptasensors, surface enhancement Raman spectroscopy-based aptasensors, voltammetric aptasensors, electrochemical impedance spectroscopy-based aptasensors and photoelectrochemical aptasensors. We highlight the accomplishments and advancements of aptasensors with improved performance. Furthermore, the current challenges and future prospects in cyanotoxins detection are discussed from our perspectives, which we hope to provide more ideas for future researchers.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Peng Lei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
15
|
Li D, Zhao L, Qian J, Liu H, You J, Cheng Z, Yu F. SERS based Y-shaped aptasensor for early diagnosis of acute kidney injury. RSC Adv 2022; 12:15910-15917. [PMID: 35733690 PMCID: PMC9135001 DOI: 10.1039/d2ra02813a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering the pivotal role of biomarkers in plasma, the development of biomarker specific sensing platforms is of great significance to achieve accurate diagnosis and monitor the occurrence and progress in acute kidney injury (AKI). In this paper, we develop a promising surface-enhanced Raman scattering-based aptasensor for duplex detection of two protein biomarkers in AKI. Exploiting the base-pairing specificity of nucleic acids to form a Y-shaped self-assembled aptasensor, the MGITC labelled gold nanoparticles will be attached to the surface of magnetic beads. In the presence of specific AKI-related biomarkers, the gold nanoparticles will detach from magnetic beads into the supernatant, thus leading to a SERS signal increase, which can be used for the highly sensitive analysis of target biomarkers. In addition, the limit of detection calculated for each biomarker indicates that the SERS-based aptasensor can well meet the detection requirements in clinical applications. Finally, the generality of this sensor in the early diagnosis of AKI is confirmed by using a rat model and spiked plasma samples. This sensing platform provides a facile and general route for sensitive SERS detection of AKI-related biomarkers, which offers great promising utility for in vitro and accurate practical bioassay in AKI early diagnosis.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 PR China
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
| | - Linlu Zhao
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Jin Qian
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Heng Liu
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 PR China
| | - Ziyi Cheng
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Fabiao Yu
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| |
Collapse
|
16
|
A Simple and Selective Colorimetric Aptasensor for Detection of Toxins Microcystin-LR in Fish Tissue Using a Truncated Aptamer. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Bilibana MP, Citartan M, Fuku X, Jijana AN, Mathumba P, Iwuoha E. Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: Current progress, opportunities, and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113249. [PMID: 35104779 DOI: 10.1016/j.ecoenv.2022.113249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility. Because of their excellent properties, aptamer-functionalized hybrid nanomaterials conjugates are one of several remarkable agents. Several isolated aptamer sequences for algal toxins are addressed in this review, as well as aptasensor and decontamination aptamer functionalized metal nanoparticle-derived hybrid nanocomposites applications. In addition, we present diverse aptamer-functionalized hybrid nanomaterial conjugates designs and their applications for sensing and decontamination.
Collapse
Affiliation(s)
- Mawethu Pascoe Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Xolile Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Abongile Nwabisa Jijana
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Penny Mathumba
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| |
Collapse
|
18
|
Zhang H, Li B, Liu Y, Chuan H, Liu Y, Xie P. Immunoassay technology: Research progress in microcystin-LR detection in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127406. [PMID: 34689091 DOI: 10.1016/j.jhazmat.2021.127406] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins. Therefore, the fast, sensitive, and accurate determination of MC-LR plays an important role in the health of humans and animals. Immunoassay refers to a method that uses the principle of immunology to determine the content of the tested substance in a sample using the tested substance as an antigen or antibody. In analytical applications, the immunoassay technology could use the specific recognition of antibodies for MC-LR detection. In this review, we firstly highlight the immunoassay detection of MC-LR over the past two decades, including classical enzyme-link immunosorbent assay (ELISA), modern immunoassay with optical signal, and modern immunoassay with electrical signal. Among these detection methods, the water environment was used as the main detection system. The advantages and disadvantages of the different detection methods were compared and analyzed, and the principles and applications of immunoassays in water samples were elaborated. Furthermore, the current challenges and developmental trends in immunoassay were systematically introduced to enhance MC-LR detection performance, and some critical points were given to deal with current challenges. This review provides novel insight into MC-LR detection based on immunoassay method.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
19
|
Park H, Kim G, Seo Y, Yoon Y, Min J, Park C, Lee T. Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes. BIOSENSORS 2021; 11:525. [PMID: 34940282 PMCID: PMC8699174 DOI: 10.3390/bios11120525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| |
Collapse
|
20
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Vaz R, Valpradinhos B, Frasco MF, Sales MGF. Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds. SENSORS (BASEL, SWITZERLAND) 2021; 21:5784. [PMID: 34502675 PMCID: PMC8434157 DOI: 10.3390/s21175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Beatriz Valpradinhos
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Manuela F. Frasco
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Maria Goreti F. Sales
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| |
Collapse
|
22
|
Kim DM, Park JS, Jung SW, Yeom J, Yoo SM. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3191. [PMID: 34064431 PMCID: PMC8125509 DOI: 10.3390/s21093191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Localized surface plasmon resonance (LSPR)-based biosensors have recently garnered increasing attention due to their potential to allow label-free, portable, low-cost, and real-time monitoring of diverse analytes. Recent developments in this technology have focused on biochemical markers in clinical and environmental settings coupled with advances in nanostructure technology. Therefore, this review focuses on the recent advances in LSPR-based biosensor technology for the detection of diverse chemicals and biomolecules. Moreover, we also provide recent examples of sensing strategies based on diverse nanostructure platforms, in addition to their advantages and limitations. Finally, this review discusses potential strategies for the development of biosensors with enhanced sensing performance.
Collapse
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| |
Collapse
|
23
|
|
24
|
Suo T, Sohail M, Xie S, Li B, Chen Y, Zhang L, Zhang X. DNA nanotechnology: A recent advancement in the monitoring of microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123418. [PMID: 33265072 DOI: 10.1016/j.jhazmat.2020.123418] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The Microcystin-Leucine-Arginine (MC-LR) is the most toxic and widely distributed microcystin, which originates from cyanobacteria produced by water eutrophication. The MC-LR has deleterious effects on the aquatic lives and agriculture, and this highly toxic chemical could severely endanger human health when the polluted food was intaken. Therefore, the monitoring of MC-LR is of vital importance in the fields including environment, food, and public health. Utilizing the complementary base pairing between DNA molecules, DNA nanotechnology can realize the programmable and predictable regulation of DNA molecules. In analytical applications, DNA nanotechnology can be used to detect targets via target-induced conformation change and the nano-assemblies of nucleic acids. Compared with the conventional analytical technologies, DNA nanotechnology has the advantages of sensitive, versatile, and high potential in real-time and on-site applications. According to the molecular basis for recognizing MC-LR, the strategies of applying DNA nanotechnology in the MC-LR monitoring are divided into two categories in this review: DNA as a recognition element and DNA-assisted signal processing. This paper introduces state-of-the-art analytical methods for the detection of MC-LR based on DNA nanotechnology and provides critical perspectives on the challenges and development in this field.
Collapse
Affiliation(s)
- Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing 211166, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
25
|
Abstract
The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors' properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Analytical Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
26
|
A multicolor colorimetric assay for sensitive detection of sulfide ions based on anti-etching of triangular gold nanoplates. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Fang L, Liao X, Jia B, Shi L, Kang L, Zhou L, Kong W. Recent progress in immunosensors for pesticides. Biosens Bioelectron 2020; 164:112255. [DOI: 10.1016/j.bios.2020.112255] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
28
|
Wu P, Li S, Ye X, Ning B, Bai J, Peng Y, Li L, Han T, Zhou H, Gao Z, Ding P. Cu/Au/Pt trimetallic nanoparticles coated with DNA hydrogel as target-responsive and signal-amplification material for sensitive detection of microcystin-LR. Anal Chim Acta 2020; 1134:96-105. [PMID: 33059870 DOI: 10.1016/j.aca.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022]
Abstract
Sensitive and reliable analytical methods for monitoring of microcystin-LR (MC-LR) are urgently necessary due to its great harm to human health and aquatic organisms. In this work, a novel Cu/Au/Pt trimetallic nanoparticles (Cu/Au/Pt TNs)-encapsulated DNA hydrogel was prepared for colorimetric detection of MC-LR. The Cu/Au/Pt TNs were captured and released with precise control by the target-responsive 3D DNA hydrogels, which combined dual advantages of the target responsive DNA hydrogel and Cu/Au/Pt TNs of enhanced peroxidase-like activity. The DNA hydrogel network was constructed by hybridizing MC-LR aptamer with two complementary DNA strands on linear polyacrylamide chains. As long as MC-LR presented, the aptamer competitively binds with the MC-LR, causing the hydrogel to dissolve and release the preloaded Cu/Au/Pt TNs which could catalyze the reaction between H2O2 and TMB to produce color changes. In view of this sensitive strategy, this Cu/Au/Pt TNs-encapsulated DNA hydrogel-based colorimetric biosensor can achieve quantitative determination of MC-LR. The results showed that as-proposed colorimetric biosensor could sensitively detect MC-LR with a linear range of 4.0-10000 ng L-1 and a detection limit of 3.0 ng L-1. This work proved that the sensor had great potential to be applied in MC-LR detection and also provided the opportunity to develop colorimetric biosensor for other targets using this target-responsive and signal-amplification strategy.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Xiaosheng Ye
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
29
|
Tian M, Yuan Z, Liu Y, Lu C, Ye Z, Xiao L. Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level. Analyst 2020; 145:4737-4752. [PMID: 32500906 DOI: 10.1039/d0an00609b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasmonic nanoparticles with special localized surface plasmon resonance (LSPR) characters have been widely applied for optical sensing of various targets. With the combination of single nanoparticle imaging techniques, dynamic information of reactions and biological processes is obtained, facilitating the deep understanding of their principle and design of outstanding nanomaterials. In this review, we summarize the recently adopted optical analysis of diverse analytes based on plasmonic nanoparticles both in homogeneous solution and at the single-nanoparticle level. A brief introduction of LSPR is first discussed. Colorimetric and fluorimetric homogeneous detection examples by using different sensing mechanisms and strategies are provided. Single plasmonic nanoparticle-based analysis is concluded in two aspects: visualization of chemical reactions and understanding of biological processes. The basic sensing mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of plasmonic nanoparticle-based optical analysis systems.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhongju Ye
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Lehui Xiao
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
30
|
Kumar P, Rautela A, Kesari V, Szlag D, Westrick J, Kumar S. Recent developments in the methods of quantitative analysis of microcystins. J Biochem Mol Toxicol 2020; 34:e22582. [PMID: 32662914 DOI: 10.1002/jbt.22582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akhil Rautela
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vigya Kesari
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - David Szlag
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
31
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
32
|
Sharifi M, Hosseinali SH, Hossein Alizadeh R, Hasan A, Attar F, Salihi A, Shekha MS, Amen KM, Aziz FM, Saboury AA, Akhtari K, Taghizadeh A, Hooshmand N, El-Sayed MA, Falahati M. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta 2020; 212:120782. [DOI: 10.1016/j.talanta.2020.120782] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
|
33
|
Men D, Liu G, Xing C, Zhang H, Xiang J, Sun Y, Hang L. Dynamically Tunable Plasmonic Band for Reversible Colorimetric Sensors and Surface-Enhanced Raman Scattering Effect with Good Sensitivity and Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7494-7503. [PMID: 31944661 DOI: 10.1021/acsami.9b23172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A colorimetric sensor based on plasmonic nanoparticles (NPs) is a promising and convenient detection tool, but its reproducibility and adjustability remain a challenge because the NPs are mainly random and uncontrollable. Herein, a colorimetric sensor with good reversibility and reproducibility was prepared by embedding the two-dimensional (2D) Au NP arrays on the surface of the polyacrylamide hydrogel film to form 2D Au NP arrays attached a hydrogel composite. For this composite, with the change of the interspacing distance of Au NPs driven by the swelling-shrinking behavior of the hydrogel carrier, the diffraction peaks faded away and plasmonic coupling peaks appeared, accompanied by a series of obvious color changes (iridescence ↔ violet ↔ golden yellow ↔ red), which can be correlated to the applied water content. Importantly, the composite had good reproducibility as a result of a highly ordered array structure. Additionally, this colorimetric sensor with a dynamically tunable plasmonic band can be used as a high-quality surface-enhanced Raman scattering (SERS) substrate because the gap distance of the Au NPs can be uniformly controlled. We demonstrated that, as the active gap distance decreased, the SERS signals can be significantly intensified. When the water content reached 40%, this SERS substrate exhibited high sensitivity (10-10 M for 4-aminothiophenol and 10-9 M for thiram) and good reproducibility (relative standard deviation of <20%) using the excitation laser of 785 nm because of the small gap between two adjacent Au NPs and the highly ordered periodic structure. Such 2D Au NP arrays attached to a hydrogel composite could be a new strategy to obtain a high-quality colorimetric sensor and dynamic SERS substrate.
Collapse
Affiliation(s)
- Dandan Men
- Jiangxi Key Laboratory of Surface Engineering , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Guangqiang Liu
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering , Qufu Normal University , Qufu , Shandong 273165 , People's Republic of China
| | - Changchang Xing
- University of Science and Technology of China , Hefei , Anhui 230027 , People's Republic of China
| | - Honghua Zhang
- Jiangxi Key Laboratory of Surface Engineering , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Junhuai Xiang
- Jiangxi Key Laboratory of Surface Engineering , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Lifeng Hang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital , Southern Medical University , Guangzhou , Guangdong 518037 , People's Republic of China
| |
Collapse
|
34
|
Guan T, He J, Liu D, Liang Z, Shu B, Chen Y, Liu Y, Shen X, Li X, Sun Y, Lei H. Open Surface Droplet Microfluidic Magnetosensor for Microcystin-LR Monitoring in Reservoir. Anal Chem 2020; 92:3409-3416. [PMID: 31948225 DOI: 10.1021/acs.analchem.9b05516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishing rapid, simple, and in situ detection of microcystin-LR (MC-LR) in drinking water sources is of significant importance for human health. To ease the situation that current methods cannot address, an open surface droplet microfluidic magnetosensor was designed and validated to quantify MC-LR in reservoir water, which is capable of (1) MC-LR isolation via MC-LR antibody-conjugated magnetic beads, (2) parallel and multistep analytical procedures in 15-array power-free and reusable active droplet microfluidic chips, (3) immunoassay incubation and fluorescence excitation within a miniaturized multifunctional 3D-printing optosensing accessory, and (4) signal read-out and data analysis by a user-friendly Android app. The proposed smartphone-based fluorimetric magnetosensor exhibited a low limit of detection of 1.2 × 10-5 μg/L in the range of 10-4 μg/L to 100 μg/L. This integrated and high throughput platform was utilized to draw an MC-LR contamination map for six reservoirs distributed in the Pearl River delta, Guangdong Province. It promises to be a simple and successful quantification method for MC-LR field detection, bringing many benefits to rapid on-site screening.
Collapse
Affiliation(s)
- Tian Guan
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou 510642 , China
| | - Jianfei He
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Dayu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou 510180 , China
| | - Zaoqing Liang
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Bowen Shu
- Department of Laboratory Medicine, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou 510180 , China
| | - Yiping Chen
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , 430070 , China
| | - Yingju Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Xing Shen
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Xiangmei Li
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Yuanming Sun
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Hongtao Lei
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science , South China Agricultural University , Guangzhou 510642 , China.,Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou 510642 , China
| |
Collapse
|
35
|
Sahu D, Sarkar N, Mohapatra P, Swain SK. Nano Gold Hybrid Polyvinyl Alcohol Films for Sensing of Cu
2+
ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deepak Sahu
- Department of ChemistryVeer Surendra Sai University of Technology, Burla Sambalpur- 768018, Odisha India
| | - Niladri Sarkar
- Department of ChemistryVeer Surendra Sai University of Technology, Burla Sambalpur- 768018, Odisha India
| | - Priyaranjan Mohapatra
- Department of ChemistryVeer Surendra Sai University of Technology, Burla Sambalpur- 768018, Odisha India
| | - Sarat K Swain
- Department of ChemistryVeer Surendra Sai University of Technology, Burla Sambalpur- 768018, Odisha India
| |
Collapse
|
36
|
Zhang Y, Zhu Z, Teng X, Lai Y, Pu S, Pang P, Wang H, Yang C, Barrow CJ, Yang W. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator. Talanta 2019; 202:279-284. [DOI: 10.1016/j.talanta.2019.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
37
|
Li Z, Zhang S, Yu T, Dai Z, Wei Q. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone. Anal Chem 2019; 91:10448-10457. [PMID: 31192585 DOI: 10.1021/acs.analchem.9b00750] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing easy-to-use and miniaturized detectors is essential for in-field monitoring of environmentally hazardous substances, such as the cyanotoxins. We demonstrated a differential fluorescent sensor array made of aptamers and single-stranded DNA (ssDNA) dyes for multiplexed detection and discrimination of four common cyanotoxins with an ordinary smartphone within 5 min of reaction. The assay reagents were preloaded and dried in a microfluidic chip with a long shelf life over 60 days. Upon the addition of analyte solutions, competitive binding of cyanotoxin to the specific aptamer-dye conjugate occurred. A zone-specific and concentration-dependent reduction in the green fluorescence was observed as a result of the aptamer conformation change. The aptasensors are fully optimized by quantification of their dissociation constants, tuning the stoichiometric ratios of reaction mixtures, and implementation of an internal intensity correction step. The fluorescent sensor array allowed for accurate identification and measurement of four important cyanotoxins, including anatoxin-a (ATX), cylindrospermopsin (CYN), nodularin (NOD), and microcystin-LR (MC-LR), in parallel, with the limit of detection (LOD) down to a few nanomolar (<3 nM), which is close to the World Health Organization's guideline for the maximum concentration allowed in drinking water. The smartphone-based sensor platform also showed remarkable chemical specificity against potential interfering agents in water. The performance of the system was tested and validated with real lake water samples that were contaminated with trace levels of individual cyanotoxins as well as binary, ternary, and quaternary mixtures. Finally, a smartphone app interface has been developed for rapid on-site data processing and result display.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Shengwei Zhang
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Zhiming Dai
- Department of Electrical and Computer Engineering , North Carolina State University , 890 Oval Drive , Raleigh , North Carolina 27606 , United States
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
38
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
39
|
Wu Z, He D, Cui B, Jin Z. Ultrasensitive detection of microcystin-LR with gold immunochromatographic assay assisted by a molecular imprinting technique. Food Chem 2019; 283:517-521. [DOI: 10.1016/j.foodchem.2019.01.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/03/2023]
|
40
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
41
|
Ouyang S, Hu B, Zhou R, Liu D, Peng D, Li Z, Li Z, Jiao B, Wang L. Rapid and sensitive detection of nodularin-R in water by a label-free BLI aptasensor. Analyst 2019; 143:4316-4322. [PMID: 30101954 DOI: 10.1039/c8an00567b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Contamination of freshwater with nodularin-R (NOD-R) represents a significant global environmental and public health concern. However, ethical problems and technical difficulties surrounding the current detection methods for NOD-R necessitate further studies to devise appropriate alternatives within a regulatory monitoring regime. In this work, we employed an aptamer as a specific recognition element and developed a biolayer interferometry (BLI) biosensor platform for NOD-R detection. The aptasensor we propose displayed a broad detection range from 40 to 600 nM NOD-R (and a linear response range from 40 to 200 nM), and achieved a detection limit as low as 167 pM. In addition, the aptamer-based biosensor was shown to possess high selectivity, as well as good reproducibility and stability. We believe that this novel aptamer-based biosensor provides a potential alternative for the sensitive and rapid detection of NOD-R.
Collapse
Affiliation(s)
- Shengqun Ouyang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen XY, Ha W, Shi YP. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Talanta 2019; 194:475-484. [DOI: 10.1016/j.talanta.2018.10.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023]
|
43
|
Xie Y, Huang Y, Tang D, Cui H, Yang L, Cao H, Yun W. Sensitive colorimetric detection for lysozyme based on the capture of a fixed thiol-aptamer on gold nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj00016j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thiol-aptamer immobilized on gold nanoparticles enhances the stability of probes for detecting lysozyme with a LOD of 0.054 nM.
Collapse
Affiliation(s)
- Yuanyang Xie
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
- University of Chinese Academy of Science
| | - Yu Huang
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Dongyun Tang
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Hongliang Cui
- University of Chinese Academy of Science
- Beijing
- China
| | - Lizhu Yang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- Zhejiang
- China
| | - Haiyan Cao
- School of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing
- China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing
- China
| |
Collapse
|
44
|
Qin J, Sun X, Li D, Yan G. Phosphorescent immunosensor for simple and sensitive detection of microcystin-LR in water. RSC Adv 2019; 9:12747-12754. [PMID: 35515855 PMCID: PMC9063644 DOI: 10.1039/c9ra02141h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
A simple and sensitive Mn–ZnS quantum dot room-temperature phosphorescent immunosensor for detecting microcystin-LR was developed. This sensor adopted antigens and antibodies as recognition units and used Mn–ZnS RTP QDs as sensing materials to specifically bind with MC-LR. The structurally specific binding between the microcystin-LR antibody and MC-LR led to the aggregation of antibody-crosslinked QDs, and then the electrons of QDs would be transferred to the complex, leading to the phosphorescence quenching of QDs. The microcystin-LR antigen–antibody specific binding site was first analyzed. This phosphorescent immunosensor rapidly and sensitively detected microcystin-LR, with linear ranges of 0.2–1.5 μg L−1 and 1.5–20 μg L−1 and a detection limit of up to 0.024 μg L−1. Meanwhile, coexisting pollutants of microcystin-LR in water did not significantly interfere with microcystin-LR detection. The new sensor was applied to detect real water samples and showed high sensitivity and selectivity. A simple and sensitive Mn–ZnS quantum dot room-temperature phosphorescent immunosensor for detecting microcystin-LR was developed.![]()
Collapse
Affiliation(s)
- Jin Qin
- Shanxi Normal University
- Linfen
- China
| | | | | | | |
Collapse
|
45
|
He F, Liang L, Zhou S, Xie W, He S, Wang Y, Tlili C, Tong S, Wang D. Label-Free Sensitive Detection of Microcystin-LR via Aptamer-Conjugated Gold Nanoparticles Based on Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14825-14833. [PMID: 30021440 DOI: 10.1021/acs.langmuir.8b00945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A versatile and highly sensitive strategy for nanopore detection of microcystin-LR (MC-LR) is proposed herein based on the aptamer and host-guest interactions by employing a gold nanoparticle (AuNP) probe. The aptamer of MC-LR and its complementary DNA (cDNA) are respectively immobilized on AuNPs with distinct sizes (5 nm AuNPs for the aptamer and 20 nm for the cDNA), and the constructed polymeric AuNP network via the hybridization of the aptamer and cDNA was disintegrated upon the addition of MC-LR. The specific interactions between the aptamer and MC-LR disrupt and release the cDNA-AuNPs that were then removed by centrifugation, leaving the MC-LR-aptamer-AuNP species in the supernatant for subsequent nanopore determination. By monitoring the current blockade of released MC-LR-aptamer-AuNPs using a specific tailored nanopore (10 and 20 nm in diameter, generated by current dielectric breakdown), we could deduce the presence of MC-LR, as the bulky NP network could not pass through a nanopore with a relatively smaller size. We realized the detection of MC-LR with a concentration as low as 0.1 nM; additionally, we have proved the specificity of the interaction between the aptamer and MC-LR by replacing MC-LR with other congener toxins (MC-RR and MC-YR), chlorophyll (a component abundantly coexists in water), and the mixture of the four.
Collapse
Affiliation(s)
- Feng He
- School of Optical and Electrical Engineering , Changchun University of Science and Technology , Changchun , Jilin 130021 , P. R. China
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Shuo Zhou
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Chaker Tlili
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Shoufeng Tong
- School of Optical and Electrical Engineering , Changchun University of Science and Technology , Changchun , Jilin 130021 , P. R. China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| |
Collapse
|
46
|
A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR. Food Chem 2018; 278:197-202. [PMID: 30583362 DOI: 10.1016/j.foodchem.2018.11.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/13/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
We developed a novel aptasensor based on surface enhanced Raman spectroscopy (SERS) and applied it for highly sensitive detection of microcystin-LR (MC-LR). In this work, MC-LR aptamer and its corresponding complementary DNA fragments (cDNA) were conjugated to gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), respectively. Then, MC-LR aptamer-AuNPs and cDNA-MNPs conjugates were used as signal probes and capture probes, respectively. The proposed assay exhibited a linearity range from 0.01 to 200 ng/mL with the limit of detection (LOD) of 0.002 ng/mL. In addition, the reliability of the novel approach was validated by detecting different levels of MC-LR spiked in tap water samples. Overall, the novel aptasensor paves a new way for rapid and accurate determination of MC-LR and can be referred to detect other hazardous substances in water products.
Collapse
|
47
|
Bostan HB, Taghdisi SM, Bowen JL, Demertzis N, Rezaee R, Panahi Y, Tsatsakis AM, Karimi G. Determination of microcystin-LR, employing aptasensors. Biosens Bioelectron 2018; 119:110-118. [DOI: 10.1016/j.bios.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023]
|
48
|
Liu YB, Zhai TT, Liang YY, Wang YB, Xia XH. Gold core-satellite nanostructure linked by oligonucleotides for detection of glutathione with LSPR scattering spectrum. Talanta 2018; 193:123-127. [PMID: 30368280 DOI: 10.1016/j.talanta.2018.09.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
We demonstrated a sensitive method for detection of glutathione (GSH) based on LSPR scattering spectrum using gold core-satellite nanostructure linked by T-Hg2+-T base pair. The core-satellite assembly caused coupling between plasmonic nanoparticles, which inducing distinct change of LSPR peak wavelength. As the interaction between Hg2+ and GSH, the core-satellite nanostructure would be disassembled, which accompanied with spectral blue-shift of the scattering spectrum. By using this method, GSH could be quantitatively detected, and the detection limits can reach to 0.1 µM.
Collapse
Affiliation(s)
- Ying-Bo Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Ting-Ting Zhai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China.
| | - Yan-Yan Liang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China.
| |
Collapse
|
49
|
Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, Wang Z. Advances in aptasensors for the detection of food contaminants. Analyst 2018; 141:3942-61. [PMID: 27265444 DOI: 10.1039/c6an00952b] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food safety is a global health objective, and foodborne diseases represent a major crisis in health. Techniques that are simple and suitable for fast screening to detect and identify pathogenic factors in the food chain are vital to ensure food safety. At present, a variety of analytical methods have been reported for the detection of pathogenic agents. Whereas the sensitivity of detection and quantification are still important challenges, we expect major advances from new assay formats and synthetic bio-recognition elements, such as aptamers. Owing to the specific folding capability of aptamers in the presence of an analyte, aptasensors have substantially and successfully been exploited for the detection of a wide range of small and large molecules (e.g., toxins, antibiotics, heavy metals, bacteria, viruses) at very low concentrations. Here, we review the use of aptasensors for the development of highly sensitive and affordable detection tools for food analysis.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shaoliang Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Huajie Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Liling Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hua Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
50
|
Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins. SENSORS 2018; 18:s18072367. [PMID: 30037056 PMCID: PMC6068809 DOI: 10.3390/s18072367] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
Aptasensors have a great potential for environmental monitoring, particularly for real-time on-site detection of aquatic toxins produced by marine and freshwater microorganisms (cyanobacteria, dinoflagellates, and diatoms), with several advantages over other biosensors that are worth considering. Freshwater monitoring is of vital importance for public health, in numerous human activities, and animal welfare, since these toxins may cause fatal intoxications. Similarly, in marine waters, very effective monitoring programs have been put in place in many countries to detect when toxins exceed established regulatory levels and accordingly enforce shellfish harvesting closures. Recent advances in the fields of aptamer selection, nanomaterials and communication technologies, offer a vast array of possibilities to develop new imaginative strategies to create improved, ultrasensitive, reliable and real-time devices, featuring unique characteristics to produce and amplify the signal. So far, not many strategies have been used to detect aquatic toxins, mostly limited to the optic and electrochemical sensors, the majority applied to detect microcystin-LR using a target-induced switching mode. The limits of detection of these aptasensors have been decreasing from the nM to the fM order of magnitude in the past 20 years. Aspects related to sensor components, performance, aptamers sequences, matrices analyzed and future perspectives, are considered and discussed.
Collapse
|