1
|
Zhu K, Wang L, Xiao Y, Zhang X, You G, Chen Y, Wang Q, Zhao L, Zhou H, Chen G. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives. J Nanobiotechnology 2024; 22:336. [PMID: 38880905 PMCID: PMC11180412 DOI: 10.1186/s12951-024-02606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Kai Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lijun Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yao Xiao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyong Zhang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guoxing You
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuzhi Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Quan Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lian Zhao
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Gan Chen
- Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
2
|
Wen R, Wu X, Tian J, Lu J. A colorimetric aptasensor for CA125 determination based on dual catalytic performance of CeO 2 nanozyme confined in macroporous silica foam. Mikrochim Acta 2023; 190:470. [PMID: 37971689 DOI: 10.1007/s00604-023-06046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
A portable colorimetric aptasensor was constructed based on the dual catalytic performance of CeO2 nanozyme to determine carbohydrate antigen 125 (CA125). Firstly, CeO2 nanozyme was synthesized by calcination and ultrasonically dispersed in a macroporous silica foam (MSF) to form CeO2@MSF. Then the aptamer of CA125 (apt) and complementary DNA (c-DNA) were successively assembled on the CeO2@MSF to construct a CeO2@MSF/apt/c-DNA colorimetric aptasensor, which exhibited excellent oxidase-mimic performance and phosphatase-mimic activity simultaneously. In the presence of CA125, the apt specifically binds to target CA125, and the single-strand c-DNA leaves the CeO2@MSF/apt surface, which is catalytically hydrolyzed by exonuclease I. The produced phosphate ions inhibit the phosphatase-mimic activity of CeO2 nanozyme. Thus, the absorbance at 652 nm of 3,3',5,5'-tetramethylbenzidine solution containing ascorbic acid-2-phosphate increases with the concentration of CA125. The response is linearly related to the logarithm of CA125 concentration from 1.0 to 10.0 U/mL under optimal experimental conditions. Based on this, the constructed colorimetric aptasensor has a high sensitivity, good selectivity, and high accuracy for CA125 determination in real human serum sample.
Collapse
Affiliation(s)
- Ruiting Wen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xingyang Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jiuying Tian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Jusheng Lu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Ma Y, Zhang Q, Dai Z, Li J, Li W, Fu C, Wang Q, Yin W. Structural optimization and prospect of constructing hemoglobin oxygen carriers based on hemoglobin. Heliyon 2023; 9:e19430. [PMID: 37809714 PMCID: PMC10558499 DOI: 10.1016/j.heliyon.2023.e19430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
The current global shortage of organ resources, the imbalance in donor-recipient demand and the increasing number of high-risk donors make organ preservation a necessity to consider appropriate storage options. The current method of use often has risks such as blood group mismatch, short shelf life, and susceptibility. HBOCs have positive effects such as anti-apoptotic, anti-inflammatory, antioxidant and anti-proliferative, which have significant advantages in organ storage. Therefore, it is the common pursuit of researchers to design and synthesize HBOCs with safety, ideal oxygen-carrying capacity, easy storage, etc. that are widely applicable and optimal for different organs. There has been a recent advancement in understanding HBOCs mechanisms, which is discussed in this review.
Collapse
Affiliation(s)
- Yuexiang Ma
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qi Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zheng Dai
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jing Li
- Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wenxiu Li
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chuanqing Fu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
4
|
Zhang G, Han Y, Liu Z, Fan L, Guo Y. Triple Amplification Ratiometric Electrochemical Aptasensor for CA125 Based on H-Gr/SH-β-CD@PdPtNFs. Anal Chem 2023; 95:1294-1300. [PMID: 36576891 DOI: 10.1021/acs.analchem.2c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A triple-amplified and ratiometric electrochemical aptasensor for CA125 was designed based on hemin-graphene/SH-β-cyclodextrin@PdPt nanoflower (H-Gr/SH-β-CD@PdPtNF) composites and an exonuclease I (Exo I)-assisted strategy. In the nanocomposite, hemin acts as an internal reference signal owing to the reversible heminox/heminred pair. PdPtNFs can significantly improve the electron transfer rate. SH-β-CD can efficiently enrich quercetin probes through host-guest recognition and increase the second indicator signal. In the presence of CA125, due to the specific binding between the aptamer and CA125, the conformational change of dsDNA (designed by the CA125 aptamer and its complementary DNA) results in the release of quercetin embedded in dsDNA. Subsequently, the free quercetin and DNA fragments are enriched on the H-Gr/SH-β-CD@PdPtNF-modified electrode. Thus, an enhanced oxidation peak from quercetin (IQ) and a reduced peak from hemin (Ihemin) can indicate the same biological identification event. In addition, the recycling amplification of CA125 by Exo I can effectively assist the increase of the quercetin signal. The value of IQ/Ihemin is linear with the concentration of CA125 in the range from 6.0 × 10-4 to 1.0 × 103 ng/mL, and the limit of detection is 1.4 × 10-4 ng/mL. The recovery of CA125 in human blood serum samples was from 99.2 to 104.4%. The proposed sensor is sensitive and reliable, which provides an avenue for the development of triple amplification and ratiometric signal strategies for detecting tumor markers in clinical diagnostics.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China.,Department of Basic Courses, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
5
|
Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. BIOSENSORS 2023; 13:99. [PMID: 36671934 PMCID: PMC9856029 DOI: 10.3390/bios13010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. In this review, a diverse range of optical and electrochemical means of detecting CA-125 are reviewed. Furthermore, an applicable comparison of their performance and sensitivity is provided, several commercial detection kits are investigated, and their applications are compared and discussed to determine whether they are applicable and accurate enough.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
7
|
Dai H, Huang Z, Liu X, Bi J, Shu Z, Xiao A, Wang J. Colorimetric ELISA based on urease catalysis curcumin as a ratiometric indicator for the sensitive determination of aflatoxin B1 in grain products. Talanta 2022; 246:123495. [DOI: 10.1016/j.talanta.2022.123495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022]
|
8
|
An Y, Dong S, Chen H, Guan L, Huang T. Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemical immune platform for amplifying detection performance of CA125. Bioelectrochemistry 2022; 147:108201. [DOI: 10.1016/j.bioelechem.2022.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
|
9
|
Wearable transdermal colorimetric microneedle patch for Uric acid monitoring based on peroxidase-like polypyrrole nanoparticles. Anal Chim Acta 2022; 1212:339911. [DOI: 10.1016/j.aca.2022.339911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023]
|
10
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
11
|
Aghayan M, Mahmoudi A, Sazegar MR, Adhami F. A novel colorimetric sensor for naked-eye detection of cysteine and Hg 2+ based on "on-off" strategy using Co/Zn-grafted mesoporous silica nanoparticles. Dalton Trans 2021; 50:13345-13356. [PMID: 34608914 DOI: 10.1039/d1dt02084f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an attempt to explore the significance of inorganic mimetic enzymes as sensors, this study introduces a naked-eye analytical sensing platform for the detection of L-cysteine (cys), mercury ions (Hg2+) based on (turn off/turn-on) catalytic activity of zinc and cobalt grafted mesoporous silica nanoparticles (MSNs). To this end, Zn-MSN and Co/Zn-MSN catalysts were synthesized and characterized using XRD, FT-IR, FESEM, TEM, and nitrogen adsorption-desorption methods. Then, using the intrinsic peroxidase-like activity of as-synthesized samples, the oxidation reactions of the chromogenic substrate (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)) was designed using H2O2, which produced green colored cation radical of ABTS. Considering the high peroxidase-like activity of Co/Zn-MSN in comparison to Zn-MSN, it was employed to detect cys and then Hg2+. The results indicated that the strong interaction between cys and Co/Zn-MSN was proved by a limit of detection (LOD) down to 0.24 nM and the linear relationship from 0.8-50 nM (turn off). Given the fact that Hg2+ has a high-affinity tendency to combine with cys, we were suggested a novel colorimetric path for sensing of Hg2+ in the presence of cys (turn on). Based on this method, LOD was found 0.17 nM with the linear range of 0.57-50 nM. Taken together, results showed that the as-prepared catalysts are superior to other nanoparticles as a sensor to measure the target molecules in biological monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Ali Mahmoudi
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Forogh Adhami
- Dep. of chemistry, Faculty of science, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH), Shahre rey Branch, Tehran, Iran
| |
Collapse
|
12
|
Omer WE, Abdelbar MF, El-Kemary NM, Fukata N, El-Kemary MA. Cancer antigen 125 assessment using carbon quantum dots for optical biosensing for the early diagnosis of ovarian cancer. RSC Adv 2021; 11:31047-31057. [PMID: 35498938 PMCID: PMC9041374 DOI: 10.1039/d1ra05121k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorometric quantification of biological molecules is a key feature used in many biosensing studies. Fluorescence resonance energy transfer (FRET) using highly fluorescent quantum dots offers highly sensitive detection of the in-proximity wide variety of analyst molecules. In this contribution, we report the use of carbon quantum dots (CDs) for the ultrasensitive optical biosensing of cancer antigen 125 (CA-125) in the early malignant stage. This approach is based on monitoring the quenching of CDs luminescence at 535 nm by CA-125 after excitation at 425 nm and pH 10. The calibration of this method was performed in the concentration range of CA-125 from 0.01 to 129 U ml−1 (R2 = 0.99) with a detection limit of 0.66 U ml−1, which matches remarkably with the standard chemiluminometric method in control and real patient samples. The sensing mechanism for cancer antigen 125 assessment was discussed on the basis of fluorescence quenching of CDs and time-resolved photoluminescence spectroscopy. The current method is easy, sensitive, cost-effective and provides a wide range of validity, which helps in overcoming the limitations of high cost and time consumption exhibited by many other traditional clinical assays for CA-125 quantification. Fluorometric quantification of biological molecules is a key feature used in many biosensing studies.![]()
Collapse
Affiliation(s)
- Walaa E Omer
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University 33516 Kafr Elsheikh Egypt
| | - Mostafa F Abdelbar
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University 33516 Kafr Elsheikh Egypt .,International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
| | - Nesma M El-Kemary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Kafrelsheikh University 33516 Kafr Elsheikh Egypt
| | - Naoki Fukata
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Kafrelsheikh University 33516 Kafr Elsheikh Egypt.,Graduate School of Pure and Applied Sciences, University of Tsukuba Tsukuba Ibaraki 305-8573 Japan
| | - Maged A El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University 33516 Kafr Elsheikh Egypt
| |
Collapse
|
13
|
Liu X, Wang K, Cao B, Shen L, Ke X, Cui D, Zhong C, Li W. Multifunctional Nano-Sunflowers with Color-Magnetic-Raman Properties for Multimodal Lateral Flow Immunoassay. Anal Chem 2021; 93:3626-3634. [DOI: 10.1021/acs.analchem.0c05354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Bo Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Lisong Shen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, People’s Republic of China
| | - Xing Ke
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, People’s Republic of China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Chunmei Zhong
- Zhejiang Orient Gene Biotech Co., Ltd., 3787 East Yangguang Avenue, Anji 313300 Zhejiang, People’s Republic of China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
14
|
Biswas S, Lan Q, Xie Y, Sun X, Wang Y. Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3295-3302. [PMID: 33400479 DOI: 10.1021/acsami.0c14946] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a nanocomposite of Zr-trimesic acid MOF (MOF-808) with carbon nanotube (CNT) was synthesized through an in situ formation of MOF-808 on the activated CNT. The synthesized materials were characterized by powder X-ray diffraction, transmission electron microscopy, X-ray photoluminescence spectroscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, and Raman spectroscopy. The protein compatible nature with high surface area and electrocatalytic ability of MOF-808 was utilized to construct an immunosensor for ultra low-level detection of the ovarian cancer biomarker, carbohydrate antigen 125 (CA 125). The mutual benefit of each constituent of the MOF-808/CNT composite was capable of producing highly enhanced electrochemical properties. A glassy carbon electrode modified with MOF-808/CNT was used as a platform to fabricate a label-free electrochemical immunosensor. The antibody binding sites of MOF-808/CNT were enriched by functionalization with streptavidin. The immunosensor exhibited two linear determination ranges of 0.001-0.1 and 0.1-30 ng·mL-1, and the calculated limit of detection was 0.5 pg·mL-1 (S/N 3). The immunosensor showed excellent reproducibility and selectivity. The patient serum sample analysis was cross-verified with the electrochemiluminescence method with a relative error of 105-110%.
Collapse
Affiliation(s)
- Sudip Biswas
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qingchun Lan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yao Xie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xin Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yang Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
15
|
Jiang C, Huang Y, He T, Huang P, Lin J. A dual-round signal amplification strategy for colorimetric/photoacoustic/fluorescence triple read-out detection of prostate specific antigen. Chem Commun (Camb) 2020; 56:4942-4945. [PMID: 32239063 DOI: 10.1039/d0cc01086c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The detection of prostate specific antigen (PSA) is extremely important for the early diagnosis of prostate cancer. Herein, we report a dual-round signal amplification strategy for colorimetric/fluorescence/photoacoustic triple read-out detection of PSA using a silica coated Au@Ag core-shell nanorod (denoted Au@Ag@SiO2) based enzyme-linked immunosorbent assay (ELISA) system. In the presence of PSA, monoclonal primary antihuman PSA antibody (Ab1) captured PSA and was subsequently recognized by the secondary antihuman PSA detection antibody (Ab2) which was conjugated with glucose oxidase (GOx) functionalized magnetic beads (MBs) for signal amplification, then GOx catalyses the addition of glucose to generate hydrogen peroxide that etches the silver layer in Au@Ag@SiO2, thus producing abundant Ag+ to realize the second signal amplification. With the degradation of the silver layer, an obvious color change (green-to-pink) of the Au@Ag@SiO2 solution could be observed by the naked eye and its surface plasmon resonance (SPR) absorption had a red-shift, enhancing photoacoustic signal read-out at 780 nm. Additionally, the released Ag+ was caught by a Ag+-fluorescent probe (Ag+-FP) for enhanced fluorescence signal read-out. These results suggested that this ELISA system achieves a triple read-out detection of PSA. This work provides a promising strategy for multiple read-out detection of biomarkers, which has great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Chao Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Yan Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Chen D, Li J. Ultrasmall Au nanoclusters for bioanalytical and biomedical applications: the undisclosed and neglected roles of ligands in determining the nanoclusters' catalytic activities. NANOSCALE HORIZONS 2020; 5:1355-1367. [PMID: 32986047 DOI: 10.1039/d0nh00207k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Significantly different from conventional Au nanoparticles, ultrasmall Au nanoclusters (NCs) consisting of several to about a hundred Au atoms with a size below 2 nm exhibit a strong quantum confinement effect, and possess an intriguing molecular-like highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) transition, quantized charging, intrinsic chirality, and special fluorescence properties, as well as high catalytic activities. In virtue of their unique molecular-like electronic structure, remarkable physicochemical properties, mild preparation conditions and good biocompatibility, Au NCs have been having a profound impact on bioanalytical and biomedical applications, such as biosensing, biological imaging, cell markers, drug delivery, photodynamic/photothermal therapy, and biomedical toxicology. As an indispensable part of Au NCs, shell ligands not only stabilize and protect the structure of Au NCs, but also have an important influence on the structure and biocatalytic activities of Au NCs. Nevertheless, the effect of shell ligands on the biocatalytic activities of Au NCs has not been paid much attention or even ignored. In this Focus article, thus, the structure and biocatalytic activities of Au NCs are discussed from the perspective of the shell ligands. Particular emphasis is directed to the discussion and exploration of the undisclosed and neglected roles of shell ligands in the biocatalytic activities of Au NCs, which are of fundamental importance to the unraveling of charge transfer behaviors and biocatalytic processes of Au NCs. In addition, the future directions to explore the mechanism of shell ligands affecting the biocatalytic activities of Au NCs, such as surface ligand engineering of Au NCs, advanced surface/interface in situ characterization techniques, theoretical analysis, and the nanobiology of Au NCs, are also put forward.
Collapse
Affiliation(s)
- Da Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, Zhejiang, China.
| | | |
Collapse
|
17
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
18
|
Mahato K, Purohit B, Kumar A, Chandra P. Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-Dendroids and graphene oxide nanocomposite. Biosens Bioelectron 2020; 148:111815. [DOI: 10.1016/j.bios.2019.111815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
|
19
|
Wang X, Song S, Zhang H. A redox interaction-engaged strategy for multicomponent nanomaterials. Chem Soc Rev 2020; 49:736-764. [DOI: 10.1039/c9cs00379g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review article focuses on the redox interaction-engaged strategy that offers a powerful way to construct multicomponent nanomaterials with precisely-controlled size, shape, composition and hybridization of nanostructures.
Collapse
Affiliation(s)
- Xiao Wang
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
20
|
Ma F, Yuan CW, Liu JN, Cao JH, Wu DY. Colorimetric Immunosensor Based on Au@g-C 3N 4-Doped Spongelike 3D Network Cellulose Hydrogels for Detecting α-Fetoprotein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19902-19912. [PMID: 31074952 DOI: 10.1021/acsami.9b06769] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A colorimetric immunoassay is a powerful tool for detecting tumor markers, with outstanding advantages of visualization and convenience. This study designed a colorimetric immunoassay using the antibody/antigen to control the catalytic activity to be "switched on/off". This system, where Au NPs (18.5 ± 3.9 nm) were loaded on the g-C3N4 nanosheets that were fixed in a three-dimensional porous cellulose hydrogel, was used as a binding site for the antibody/antigen. After being incubated with an antibody of a cancer marker, the turned-off catalytic sites on Au NPs in Au@g-C3N4/microcrystalline cellulose hydrogels would not be "turned on" until the corresponding antigen was added. The number of the recovered Au active sites was related to the amount of the antigen added. The Fourier transform infrared and X-ray photoelectron spectroscopy measurements did not detect the existence of Au-S bonds. Catalyzed by the turned-on Au NPs, 4-nitrophenol was reduced to 4-aminophenol accompanied by a color fading. The color and the absorption spectrum changes in the process were used as the colorimetric quantitative basis for immunoassays. The colorimetric immunoassay showed a linear relationship with the liver cancer marker (α-fetoprotein, AFP) in the range of 0.1-10 000 ng/mL with the detection limit of 0.46 ng/mL. In addition, 4-nitrophenol had a significant color fading when the AFP concentration exceeded the healthy human threshold. The clinical patient's serum test results obtained from the developed colorimetric immunosensor were consistent with those obtained from the commercial enzyme-linked immunosorbent assay. Furthermore, the immunosensor exhibited a good selectivity, repeatability, and stability, which demonstrated its potential for practical diagnostic application.
Collapse
Affiliation(s)
- Fang Ma
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chun-Wang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital , Capital Medical University , 08 Xitoutiao, Youwai Street , Fengtai District, Beijing 100069 , P. R. China
| | - Jian-Ni Liu
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
| |
Collapse
|
21
|
Fe3O4@PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I. Colloids Surf B Biointerfaces 2019; 177:105-111. [DOI: 10.1016/j.colsurfb.2019.01.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 01/26/2019] [Indexed: 11/21/2022]
|
22
|
Liu L, Hao Y, Deng D, Xia N. Nanomaterials-Based Colorimetric Immunoassays. NANOMATERIALS 2019; 9:nano9030316. [PMID: 30818816 PMCID: PMC6473401 DOI: 10.3390/nano9030316] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/05/2023]
Abstract
Colorimetric immunoassays for tumor marker detection have attracted considerable attention due to their simplicity and high efficiency. With the achievements of nanotechnology and nanoscience, nanomaterials-based colorimetric immunoassays have been demonstrated to be promising alternatives to conventional colorimetric enzyme-linked immunoassays. This review is focused on the progress in colorimetric immunoassays with the signal amplification of nanomaterials, including nanomaterials-based artificial enzymes to catalyze the chromogenic reactions, analyte-induced aggregation or size/morphology change of nanomaterials, nanomaterials as the carriers for loading enzyme labels, and chromogenic reactions induced by the constituent elements released from nanomaterials.
Collapse
Affiliation(s)
- Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
23
|
Fang Q, Sun Y, Duan J, Bai L, Xu K, Xiong Q, Xu H, Leung KCF, Hui A, Xuan S. ZIF-8 self-etching method for Au/polydopamine hybrid cubic microcapsules with modulated nanostructures. CrystEngComm 2019. [DOI: 10.1039/c9ce01426h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-step strategy combining in situ redox-oxidation polymerization and a ZIF-8 sacrifice template is reported for constructing Au/PDA cubic microcapsules.
Collapse
Affiliation(s)
- Qunling Fang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Yuhang Sun
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Jinyu Duan
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Linfeng Bai
- CAS Key Laboratory of Mechanical Behavior and Design of Materials
- Department of Modern Mechanics
- CAS Center for Excellence in Complex System Mechanics
- University of Science and Technology of China
- Hefei 230027
| | - Kezhu Xu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Qinshan Xiong
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Huajian Xu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- PR China
| | | | - Ailing Hui
- Engineering Research Center of Bio-process, Ministry of Education
- Hefei University of Technology
- Hefei
- China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials
- Department of Modern Mechanics
- CAS Center for Excellence in Complex System Mechanics
- University of Science and Technology of China
- Hefei 230027
| |
Collapse
|
24
|
Prereduction-promoted enhanced growth of silver nanoparticles for ultrasensitive colorimetric detection of alkaline phosphatase and carbohydrate antigen 125. Talanta 2018; 189:129-136. [DOI: 10.1016/j.talanta.2018.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
|
25
|
Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Jia H, Tian Q, Xu J, Lu L, Ma X, Yu Y. Aerogels prepared from polymeric β-cyclodextrin and graphene aerogels as a novel host-guest system for immobilization of antibodies: a voltammetric immunosensor for the tumor marker CA 15–3. Mikrochim Acta 2018; 185:517. [DOI: 10.1007/s00604-018-3056-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022]
|
27
|
Liang XL, Bao N, Luo X, Ding SN. CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis. Biosens Bioelectron 2018; 117:145-152. [DOI: 10.1016/j.bios.2018.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
|
28
|
Affiliation(s)
- Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Amplified electrochemiluminescence detection of CEA based on magnetic Fe 3O 4@Au nanoparticles-assembled Ru@SiO 2 nanocomposites combined with multiple cycling amplification strategy. Biosens Bioelectron 2018; 118:115-121. [PMID: 30059865 DOI: 10.1016/j.bios.2018.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022]
Abstract
In this work, we designed a new strategy for ultrasensitive detection of CEA based on efficient electrochemiluminescence (ECL) quenching of Ru(bpy)32+-doped SiO2 nanocomposite by ferrocene using target recycling amplification technique. A large number of Ru@SiO2 ECL signal probe were firstly assembled on the novel magnetic core-shell Fe3O4@Au nanoparticles (NPs), then the ferrocene-labeled ECL quenching probe (Fc-probe) was linked to the magnetic NPs. Finally, numerous DNA1 sequences were produced by target CEA-triggered multiple recycling amplification and displaced the Fc-probe on the magnetic NPs, leading to significantly enhanced ECL signal for CEA detection. Because of the designed cascade signal amplification strategy, the newly developed method achieved a wide linear range of 10 fg/mL to 10 ng/mL with a low detection limit of 3.5 fg/mL. Furthermore, taking advantages of the magnetic Fe3O4@Au NPs for carring abundant signal probes, sensing target and ECL detection, the developed ECL strategy is convenient, rapid and displayed high sensitivity for CEA detection, which has great potential for analyzing the clinical samples in practical disease diagnosis applications.
Collapse
|
30
|
An X, Chai W, Deng X, Chen H, Ding G. A bioinspired polydopamine approach toward the preparation of gold-modified magnetic nanoparticles for the magnetic solid-phase extraction of steroids in multiple samples. J Sep Sci 2018; 41:2774-2782. [PMID: 29722147 DOI: 10.1002/jssc.201800080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/12/2022]
Abstract
In this work, a simple, facile, and sensitive magnetic solid-phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high-performance liquid chromatography analysis. Gold-modified Fe3 O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8-500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20-0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.
Collapse
Affiliation(s)
- Xuehan An
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Weibo Chai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xiaojuan Deng
- Analysis Center, Tianjin University, Tianjin, P. R. China
| | - Hui Chen
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Guosheng Ding
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China.,Analysis Center, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
31
|
Kang T, Li C, Du T, Wu Y, Yang Y, Liu X, Zhang Q, Xu X, Gou M. A biomimetic nanoparticle-enabled toxoid vaccine against melittin. Int J Nanomedicine 2018; 13:3251-3261. [PMID: 29910613 PMCID: PMC5987856 DOI: 10.2147/ijn.s156346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Melittin, the main active peptide ingredient of bee venom, can cause severe cell membrane lysis due to its robust interaction with negatively charged phospholipids. So far, no effective anti-melittin vaccine has been developed to protect people from undesired melittin intoxication. Methods Herein, we prepared a polydiacetylene (PDA) nanoparticle with cell membrane-mimic surface to complex melittin, forming an anti-melittin vaccine (PDA–melittin). Results PDA nanoparticles could effectively combine with melittin and neutralize its toxicity. PDA–melittin nanocomplex is demonstrated to enhance melittin uptake by DCs and stimulate strong melittin-specific immunity. Mice immunized with PDA–melittin nanocomplex showed higher survival rate after exposion to melittin than untreated mice. Conclusion The PDA–melittin nanocomplex can efficiently and safely generate a specific immunity against melittin to protect body from melittin intoxication, providing a new method with potential clinical application for the treatment of melittin intoxication.
Collapse
Affiliation(s)
- Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujiao Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuping Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qianqian Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoping Xu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Chongqing 402160, People's Republic of China
| |
Collapse
|
32
|
Wang Q, Zhang R, You G, Hu J, Li P, Wang Y, Zhang J, Wu Y, Zhao L, Zhou H. Influence of polydopamine-mediated surface modification on oxygen-release capacity of haemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:484-492. [DOI: 10.1080/21691401.2018.1459636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Quan Wang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ruirui Zhang
- National Centre for Nanoscience and Technology, Beijing, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jilin Hu
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Penglong Li
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yan Wu
- National Centre for Nanoscience and Technology, Beijing, People’s Republic of China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Adhikari S, Eswar NK, Sangita S, Sarkar D, Madras G. Investigation of nano Ag-decorated SiC particles for photoelectrocatalytic dye degradation and bacterial inactivation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Sun Y, Li D, Yang H, Guo X. Fabrication of Fe3O4@polydopamine@polyamidoamine core–shell nanocomposites and their application for Cu(ii) adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj01815d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe3O4@PDA@PAMAM nanocomposites were fabricated with a polydopamine assisted method, possessing excellent magnetic properties and high adsorption capacity for Cu(ii).
Collapse
Affiliation(s)
- Yukun Sun
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Dongyun Li
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou
- China
| | - Hui Yang
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xingzhong Guo
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
35
|
Liu Y, Cai M, Wu W, Fang Y, She P, Xu S, Li J, Zhao K, Xu J, Bao N, Deng A. Multichannel electroanalytical devices for competitive ELISA of phenylethanolamine A. Biosens Bioelectron 2018; 99:21-27. [DOI: 10.1016/j.bios.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
|
36
|
Zhang J, Zhao Q, Wu Y, Zhang B, Peng W, Piao J, Zhou Y, Gao W, Gong X, Chang J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens Bioelectron 2017; 97:26-33. [DOI: 10.1016/j.bios.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
37
|
Kim JW, Heu W, Jeong S, Kim HS. Genetically functionalized ferritin nanoparticles with a high-affinity protein binder for immunoassay and imaging. Anal Chim Acta 2017; 988:81-88. [PMID: 28916107 DOI: 10.1016/j.aca.2017.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
Molecular detection of target molecules with high sensitivity and specificity is of great significance in bio and medical sciences. Here, we present genetically functionalized ferritin nanoparticles with a high-affinity protein binder, and their utility as a signal generator in a variety of immunoassays and imaging. As a high-affinity protein binder, human IgG-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was used. The repebody was genetically fused to the N-terminal heavy-chain ferritin, and the resulting subunits were self-assembled to the repebody-ferritin nanoparticles composed of 24 subunits. The repebody-ferritin nanoparticles were shown to have a three-order of magnitude higher binding affinity toward human IgG than free repebody mainly owing to a decreased dissociation rate constant. The repebody-ferritin nanoparticles were conjugated with fluorescent dyes, and the resulting nanoparticles were used for western blotting, cell imaging, and flow cytometric analysis. The dye-labeled repebody-ferritin nanoparticles were shown to generate about 3-fold stronger fluorescent signals in immunoassays than monovalent repebody. The repebody-functionalized ferritin nanoparticles can be effectively used for sensitive and specific immunoassays and imaging in many areas.
Collapse
Affiliation(s)
- Jong-Won Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Woosung Heu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Sukyo Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea.
| |
Collapse
|
38
|
Kohantorabi M, Gholami MR. AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4‐nitrophenol: Studies of kinetics and mechanism. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3806] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mona Kohantorabi
- Department of ChemistrySharif University of Technology Tehran 11365‐11155 Iran
| | | |
Collapse
|
39
|
Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron 2017; 96:308-316. [PMID: 28525848 DOI: 10.1016/j.bios.2017.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023]
Abstract
CA125, is a marker in the clinical diagnosis of several cancers and currently is the best serum-based tumor marker for ovarian cancer. Here, we developed an ultrasensitive antibody-ssDNA aptamer sandwich-type fluorescence immunosensor for CA125 detection. Based on a novel signal amplification strategy the carbon dots (CDs) functionalized with aptamer (CD-aptamer) used as detection probe and PAMAM-Dendrimers/AuNPs was used for covalent attachment of CA125-antibody and completing the sandwich assay method. By measuring of fluorescence resonance energy transfer (FRET) signals between CDs and AuNPs as nanoquenchers, the fluorescence signal quenched during sandwich complex formed between anti-CA125, CA125 and CDs-Aptamer and decreasing of fluorescence response signal is related to CA125 concentrations. Under optimal conditions, the immunosensor exhibited an extremely low calculated detection limit of 0.5fg/mL with wide linear range 1.0fg/mL to 1.0ng/mL of CA 125. The application of the immunosensor for CA125 detection in serum samples and measuring of ovarian-cancer cells was also investigated. The immunosensor revealed good sensitivity and specificity with ovarian cell concentrations from 2.5×103 to 2×104cells/mL with correlation coefficient of 0.9937 and detection limit of 400cells/mL (4 cell in 10μL), indicating potential application of immunosensor in clinical monitoring of tumor biomarkers. Furthermore, the cell viability was not changed upon treatment with CDs probe during 24h, showing the low cytotoxicity of the probe. More importantly, CDs-antibody hybrid was achieved in selective imaging of the cancer cells over the OVCAR-3 line cells, implying its potential applications in biosensing, as well as in cancer diagnosis.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Fardin Fathi
- Cellular and Molecular Reserch Center , Kurdistan University of Medical Sciences, 66177-13446 Sananandaj, Iran
| | - Saman Bahrami
- Cellular and Molecular Reserch Center , Kurdistan University of Medical Sciences, 66177-13446 Sananandaj, Iran
| |
Collapse
|
40
|
Multifunctional nanoparticles for protein detections in thin channels. Biosens Bioelectron 2017; 90:153-158. [DOI: 10.1016/j.bios.2016.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 01/29/2023]
|
41
|
Wang Q, Zhang R, Lu M, You G, Wang Y, Chen G, Zhao C, Wang Z, Song X, Wu Y, Zhao L, Zhou H. Bioinspired Polydopamine-Coated Hemoglobin as Potential Oxygen Carrier with Antioxidant Properties. Biomacromolecules 2017; 18:1333-1341. [PMID: 28323418 DOI: 10.1021/acs.biomac.7b00077] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative side reaction is one of the major factors hindering the development of hemoglobin-based oxygen carriers (HBOCs). To avoid the oxidative toxicity, we designed and synthesized polydopamine-coated hemoglobin (Hb-PDA) nanoparticles via simple one-step assemblage without any toxic reagent. Hb-PDA nanoparticles showed oxidative protection of Hb by inhibiting the generation of methemoglobin (MetHb) and ferryl (Fe IV) Hb, as well as excellent antioxidant properties by scavenging free radicals and reactive oxygen species (ROS). Interestingly, the scavenging rate of Hb-PDA nanoparticles for ABTS+ radical is at most 89%, while for DPPH radical it reaches 49%. In addition, Hb-PDA efficiently reduced the intracellular H2O2-induced ROS generation. Moreover, Hb-PDA nanoparticles exhibited high oxygen affinity, low effect on blood constituents, and low cytotoxicity. The results indicate that polydopamine-coated hemoglobin might be a promising approach for constructing novel oxygen carriers with the capacity to reduce oxidative side reaction.
Collapse
Affiliation(s)
- Quan Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Ruirui Zhang
- National Center for Nanoscience and Technology , 100190 Beijing, People's Republic of China.,Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing, People's Republic of China
| | - Mingzi Lu
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Guoxing You
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Ying Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Gan Chen
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Caiyan Zhao
- National Center for Nanoscience and Technology , 100190 Beijing, People's Republic of China
| | - Zhen Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Xiang Song
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Yan Wu
- National Center for Nanoscience and Technology , 100190 Beijing, People's Republic of China
| | - Lian Zhao
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Hong Zhou
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| |
Collapse
|
42
|
Xiao L, Zhu A, Xu Q, Chen Y, Xu J, Weng J. Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi 2Se 3 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6931-6940. [PMID: 28164701 DOI: 10.1021/acsami.6b15750] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The colorimetric biosensors have attracted intensive interest; however, their relatively low sensitivity limits their applications in clinic detection. Herein, we develop an effective colorimetric biosensor based on highly catalytic active Au nanoparticle-decorated Bi2Se3 (Au/Bi2Se3) nanosheets. Au/Bi2Se3 nanosheets are facilely synthesized by simply sonicating Au precursor with the as-synthesized Bi2Se3 nanosheets in aqueous solution. Because of the low redox potential and typical topological insulating properties, Bi2Se3 nanosheets is capable of providing and accumulating electrons on its surface. Such unique properties of Bi2Se3 nanosheets contribute to strong synergistic catalytic effects with Au nanoparticles, particularly when Au/Bi2Se3 nanosheets are utilized for catalyzing the reduction of 4-nitrophenol (4-NP) by NaBH4 (K = 386.67 s-1g-1). The excellent catalytic activity of Au/Bi2Se3 nanosheets can be "switched off" upon treatment of antibody of cancer biomarker such as anticarcinoembryonic antibody (anti-CEA). Addition of the corresponding antigen such as cancer biomarker carcinoembryonic antibody (CEA) can successively help "switch on" the catalytic activity of Au/Bi2Se3 nanosheets, where the resuming degree however depends on the antigen concentration. This cancer biomarker depended catalytic behavior therefore allows Au/Bi2Se3 nanosheets to be employed as a colorimetric sensor for detection of a particular cancer biomarker, for the reduction of 4-nitrophenol (4-NP) by NaBH4 itself involves apparent color change. The sensor shows high sensitivity and selectivity for the cancer biomarker, even for a concentration as low as 160 pg/mL for CEA, which fully satisfies the requirement for real clinical applications. The developed colorimetric sensor shows good generality for detection of different types of cancer biomarkers, such as α-fetoprotein (AFP) and prostate-specific antigen (PSA). Furthermore, real clinic sample analyzing result shows that the prepared biosensor is efficient for detection of CEA, providing an alternative method in cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | - Ying Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University , Guangzhou 510282, China
| | | | | |
Collapse
|
43
|
Wang Q, Zhang X, Huang L, Zhang Z, Dong S. One-Pot Synthesis of Fe 3O 4 Nanoparticle Loaded 3D Porous Graphene Nanocomposites with Enhanced Nanozyme Activity for Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7465-7471. [PMID: 28125774 DOI: 10.1021/acsami.6b16034] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel one-pot strategy is proposed to fabricate 3D porous graphene (3D GN) decorated with Fe3O4 nanoparticles (Fe3O4 NPs) by using hemin as iron source. During the process, graphene oxide was simultaneously reduced and self-assembled to form 3D graphene hydrogel while Fe3O4 NPs synthesized from hemin distributed uniformly on 3D GN. The preparation process is simple, facile, economical, and green. The obtained freeze-dried product (3D GH-5) exhibits outstanding peroxidase-like activity. Compared to the traditional 2D graphene-based nanocomposites, the introduced 3D porous structure dramatically improved the catalytic activity, as well as the catalysis velocity and its affinity for substrate. The high catalytic activity could be ascribed to the formation of Fe3O4 NPs and 3D porous graphene structures. Based on its peroxidase-like activity, 3D GH-5 was used for colorimetric determination of glucose with a low detection limit of 0.8 μM.
Collapse
Affiliation(s)
- Qingqing Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
- College of Chemistry, Jilin University , Changchun 130012, PR China
| | - Xueping Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University , Changchun 130012, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| |
Collapse
|
44
|
Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Mikrochim Acta 2017; 184:855-861. [DOI: 10.1007/s00604-016-2069-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Lin C, Wu G, Li H, Geng Y, Xie G, Yang J, Liu B, Jin J. Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. NANOSCALE 2017; 9:1834-1839. [PMID: 28116372 DOI: 10.1039/c6nr09739a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We reported a facile and scalable salt-templated approach to produce monodisperse Rh nanoparticles (NPs) on ultrathin carbon nanosheets with the assistance of calcination under inert gas. More importantly, in spite of the essentially poor ORR activity of Rh/C, the acquired Rh/C hybrid nanosheets display a comparable ORR activity to the optimal commercial Pt/C catalyst, which may be due to the extra-small size of Rh NPs and the 2D defect-rich amorphous carbon nanosheets that can facilitate the charge transfer and reactive surface exposure. Moreover, Rh/C nanosheets present the optimal current density and best durability with the minimum decline during the entire test, so that ∼93% activity after 20 000 s is achieved, indicating a good lifetime for ORR. In contrast, commercial Pt/C and commercial Rh/C exhibited worse durability, so that ∼74% and ∼85% activities after 20 000 s are maintained. What's more, in the model system of reduction of 4-nitrophenol (4-NP), the kinetic constant k for Rh/C nanosheets is 3.1 × 10-3, which is 4.5 times than that of the commercial Rh/C catalyst, revealing that our Rh/C hybrid nanosheets can be potentially applied in industrial catalytic hydrogenation. This work opens a novel and facile way for the rest of the precious metal NPs to be supported on ultrathin carbon nanosheets for heterogeneous catalysis.
Collapse
Affiliation(s)
- Chong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China. and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Guanghao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Huiqin Li
- College of Chemistry & Chemical Engineering, Baoji University of Arts & Sciences, Baoji, 721013, P. R. China
| | - Yanmin Geng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Jianhui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Jian Jin
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| |
Collapse
|
46
|
Shao L, Zhang R, Lu J, Zhao C, Deng X, Wu Y. Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1226-1236. [PMID: 28004583 DOI: 10.1021/acsami.6b11209] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The integration of different therapies into a single nanoplatform has shown great promise for synergistic tumor treatment. Herein, mesoporous silica (MS) coated polydopamine functionalized reduced graphene oxide (pRGO) further modified with hyaluronic acid (HA) (pRGO@MS-HA) has been utilized as a versatile nanoplatform for synergistic targeted chemo-photothermal therapy against cancer. A facile and green chemical method is adopted for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) by using mussel inspired dopamine (DA) to enhance biocompatibility and the photothermal effect. Then, it was coated with mesoporous silica (MS) (pRGO@MS) to enhance doxorubicin (DOX) loading and be further modified with the targeting moieties hyaluronic acid (HA). The pH-dependent and near-infrared (NIR) laser irradiation-triggered DOX release from pRGO@MS(DOX)-HA is observed, which could enhance the chemo-photothermal therapy effect. In vitro experimental results confirm that pRGO@MS(DOX)-HA exhibits good dispersibility, excellent photothermal property, remarkable tumor cell killing efficiency, and specificity to target tumor cells. In vivo antitumor experiments further demonstrated that pRGO@MS(DOX)-HA could exhibit an excellent synergistic antitumor efficacy, which is much more distinct than any monotherapy. This work presents a novel nanoplatform which could load chemotherapy drugs with high efficiency and be used as light-mediated photothermal cancer therapy agent.
Collapse
Affiliation(s)
- Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Ruirui Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Zhongguancun, Beiertiao, Beijing 100190, P. R. China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
47
|
Ding L, Qin Z, Xiang C, Zhou G. Novel fluorescent organic nanoparticles as a label-free biosensor for dopamine in serum. J Mater Chem B 2017; 5:2750-2756. [DOI: 10.1039/c6tb03077g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent organic nanoparticles composed of an organic dye and a triblock copolymer have been constructed and utilized as a fluorescent biosensor for dopamine.
Collapse
Affiliation(s)
- Lu Ding
- Lab of Advanced Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200438
- P. R. China
| | - Zhenwen Qin
- Lab of Advanced Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200438
- P. R. China
| | - Chunlan Xiang
- Lab of Advanced Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200438
- P. R. China
| | - Gang Zhou
- Lab of Advanced Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200438
- P. R. China
| |
Collapse
|
48
|
Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2010-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Gao Z, Qiu Z, Lu M, Shu J, Tang D. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosens Bioelectron 2016; 89:1006-1012. [PMID: 27825528 DOI: 10.1016/j.bios.2016.10.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/29/2022]
Abstract
This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer.
Collapse
Affiliation(s)
- Zhuangqiang Gao
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Zhenli Qiu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Minghua Lu
- Institute of Environmental and Analytical Science, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, PR China.
| | - Jian Shu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
50
|
Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron 2016; 87:558-565. [PMID: 27611475 DOI: 10.1016/j.bios.2016.08.101] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 01/06/2023]
Abstract
A hybrid structure of graphene-gold nanoparticles (Grp-Au NPs) was designed as a new nanoprobe for colorimetric immunoassays. This hybrid structure was prepared using chloroauric acid, sodium formate and Grp flakes at room temperature. Au NPs attached strongly onto the Grp surface, and their size was controlled by varying the sodium formate concentration. The Raman intensity of the Grp-Au NP hybrids was significantly enhanced at 1567cm-1 and 2730cm-1 compared with those of pristine Grp because of the electronic interaction between Au NPs and Grp. The Grp-Au NPs with a hybrid structure catalyzed the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) with H2O2, developing a blue color in aqueous solution. This catalytic activity was utilized to detect norovirus-like particles (NoV-LPs) in human serum. The enhanced colorimetric response was monitored using Ab-conjugated-Grp-Au NPs and found to depend on the NoV-LP concentration, exhibiting a linear response from 100pg/mL to 10μg/mL. The limit of detection (LOD) of this proposed method was 92.7pg/mL, 112 times lower than that of a conventional enzyme-linked immunosorbent assay (ELISA). The sensitivity of this test was also 41 times greater than that of a commercial diagnostic kit. The selectivity of the Grp-Au NPs was tested with other viruses, and no color changes were observed. Therefore, the proposed system will facilitate the utilization of the intrinsic peroxidase-like activity of Grp-Au NPs in medical diagnostics. We believe that the engineered catalytic Grp-Au NP hybrids could find potential applications in the future development of biocatalysts and bioassays.
Collapse
|