1
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
2
|
Hafeez S, Khanam A, Cao H, Chaplin BP, Xu W. Novel Conductive and Redox-Active Molecularly Imprinted Polymer for Direct Quantification of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:871-877. [PMID: 39156924 PMCID: PMC11325644 DOI: 10.1021/acs.estlett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes. When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP's redox-active moieties (TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L-1. PEDOT-TEMPO-MIP also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1% among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the groundwork for developing compact PFAS sensors.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aysha Khanam
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Brian P. Chaplin
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., 14, Chicago, Illinois 60607, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
3
|
Yang Y, Liu X, Mu B, Meng S, Mao S, Tao W, Li Z. Lanthanide metal-organic framework-based surface molecularly imprinted polymers ratiometric fluorescence probe for visual detection of perfluorooctanoic acid with a smartphone-assisted portable device. Biosens Bioelectron 2024; 257:116330. [PMID: 38677022 DOI: 10.1016/j.bios.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Perfluorooctanoic acid (PFOA) poses a threat to the environment and human health due to its persistence, bioaccumulation, and reproductive toxicity. Herein, a lanthanide metal-organic framework (Ln-MOF)-based surface molecularly imprinted polymers (SMIPs) ratiometric fluorescence probe (Eu/Tb-MOF@MIPs) and a smartphone-assisted portable device were developed for the detection of PFOA with high selectivity in real water samples. The integration of Eu/Tb MOFs as carriers not only had highly stable multiple emission signals but also prevented deformation of the imprinting cavity of MIPs. Meanwhile, the MIPs layer preserved the fluorescence of Ln-MOF and provided selective cavities for improved specificity. Molecular dynamics (MD) was employed to simulate the polymerization process of MIPs, revealing that the formation of multiple recognition sites was attributed to the establishment of hydrogen bonds between functional monomers and templates. The probe showed a good linear relationship with PFOA concentration in the range of 0.02-2.8 μM, by giving the limit of detection (LOD) of 0.98 nM. Additionally, The red-green-blue (RGB) values analysis based on the smartphone-assisted portable device demonstrated a linear relationship of 0.1-2.8 μM PFOA with the LOD of 3.26 nM. The developed probe and portable device sensing platform exhibit substantial potential for on-site detecting PFOA in practical applications and provide a reliable strategy for the intelligent identification of important targets in water environmental samples.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Bofang Mu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Shuang Meng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Zeng Y, Zhang M, Ding L, Xie S, Liu P, Xie D, Wang S, Cheng F. Molecularly imprinted polymer photoelectrochemical sensor for the detection of triazophos in water based on carbon quantum dot-modified titanium dioxide. Mikrochim Acta 2024; 191:277. [PMID: 38647714 DOI: 10.1007/s00604-024-06364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.
Collapse
Affiliation(s)
- Yinan Zeng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Lei Ding
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shilei Xie
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Dong Xie
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
5
|
Vijayakumar S, Raja L, Venkatesan S, Lin MC, Vediappen P. A Highly Selective Schiff Base Based Chemodosimeter for the Detection of Perfluorooctanoic Acid by Optical Biosensor. J Fluoresc 2024; 34:787-794. [PMID: 37368079 DOI: 10.1007/s10895-023-03298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
A simple imine derivative based sensor (IDP) has been synthesized and characterized by 1 H NMR, 13 C NMR and mass spectral techniques. IDP is more capable of detecting perfluorooctanoic acid (PFOA) in a selective and sensitive manner. The PFOA as a biomarker interacts with IDP and shows "TURN-ON" response by colorimetric and fluorimetric method. Under optimized experimental observations, the selective determination of PFOA using IDP among other competitors as biomolecules has been noticed. The detection limit is 0.31 × 10- 8 mol/L. The practical applications of the IDP is effectively evaluated in human biofluids and water samples.
Collapse
Affiliation(s)
- Sathya Vijayakumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, 625021, India
| | - Lavanya Raja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, 625021, India
| | - Srinivasadesikan Venkatesan
- School of Applied Science and Humanities, Department of Chemistry, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522 213, India
| | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Padmini Vediappen
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, 625021, India.
| |
Collapse
|
6
|
Zhang M, Zhao Y, Bui B, Tang L, Xue J, Chen M, Chen W. The Latest Sensor Detection Methods for per- and Polyfluoroalkyl Substances. Crit Rev Anal Chem 2024:1-17. [PMID: 38234139 DOI: 10.1080/10408347.2023.2299233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.
Collapse
Affiliation(s)
- Mingyu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Yanan Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
| | - Liming Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
- School of CHIPS, Xi'an Jiaotong-Loverpool University, Suzhou, China
| |
Collapse
|
7
|
Suwannakot P, Zhu L, Tolentino MAK, Du EY, Sexton A, Myers S, Gooding JJ. Electrostatically Cross-Linked Bioinks for Jetting-Based Bioprinting of 3D Cell Cultures. ACS APPLIED BIO MATERIALS 2024; 7:269-283. [PMID: 38113450 DOI: 10.1021/acsabm.3c00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
It has been acknowledged that thousands of drugs that passed two-dimensional (2D) cell culture models and animal studies often fail when entering human clinical trials. Despite the significant development of three-dimensional (3D) models, developing a high-throughput model that can be reproducible on a scale remains challenging. One of the main challenges is precise cell deposition and the formation of a controllable number of spheroids to achieve more reproducible results for drug discovery and treatment applications. Furthermore, when transitioning from manually generated structures to 3D bioprinted structures, the choice of material is limited due to restrictions on materials that are applicable with bioprinters. Herein, we have shown the capability of a fast-cross-linking bioink that can be used to create a single spheroid with varying diameters (660, 1100, and 1340 μm) in a high-throughput manner using a commercialized drop-on-demand bioprinter. Throughout this work, we evaluate the physical properties of printable ink with and without cells, printing optimization, cytocompatibility, cell sedimentation, and homogeneity in ink during the printing process. This work showcases the importance of ink characterization to determine printability and precise cell deposition. The knowledge gained from this work will accelerate the development of next-generation inks compatible with a drop-on-demand 3D bioprinter for various applications such as precision models to mimic diseases, toxicity tests, and the drug development process.
Collapse
Affiliation(s)
- Panthipa Suwannakot
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - Lin Zhu
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - M A Kristine Tolentino
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - Eric Y Du
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - Andrew Sexton
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Sam Myers
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| |
Collapse
|
8
|
Ahmadi Tabar F, Lowdon JW, Bakhshi Sichani S, Khorshid M, Cleij TJ, Diliën H, Eersels K, Wagner P, van Grinsven B. An Overview on Recent Advances in Biomimetic Sensors for the Detection of Perfluoroalkyl Substances. SENSORS (BASEL, SWITZERLAND) 2023; 24:130. [PMID: 38202993 PMCID: PMC10781331 DOI: 10.3390/s24010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. Therefore, it is essential to map the extent of the problem to be able to remediate it properly in the next few decades. Current state-of-the-art detection platforms, however, are lab based and therefore too expensive and time-consuming for routine screening. Traditional biosensor tests based on, e.g., lateral flow assays may struggle with the low regulatory levels of PFAS (ng/mL), the complexity of environmental matrices and the presence of coexisting chemicals. Therefore, a lot of research effort has been directed towards the development of biomimetic receptors and their implementation into handheld, low-cost sensors. Numerous research groups have developed PFAS sensors based on molecularly imprinted polymers (MIPs), metal-organic frameworks (MOFs) or aptamers. In order to transform these research efforts into tangible devices and implement them into environmental applications, it is necessary to provide an overview of these research efforts. This review aims to provide this overview and critically compare several technologies to each other to provide a recommendation for the direction of future research efforts focused on the development of the next generation of biomimetic PFAS sensors.
Collapse
Affiliation(s)
- Fatemeh Ahmadi Tabar
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Joseph W. Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Thomas J. Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| |
Collapse
|
9
|
Tasfaout A, Ibrahim F, Morrin A, Brisset H, Sorrentino I, Nanteuil C, Laffite G, Nicholls IA, Regan F, Branger C. Molecularly imprinted polymers for per- and polyfluoroalkyl substances enrichment and detection. Talanta 2023; 258:124434. [PMID: 36940572 DOI: 10.1016/j.talanta.2023.124434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly toxic pollutants of significant concern as they are being detected in water, air, fish and soil. They are extremely persistent and accumulate in plant and animal tissues. Traditional methods of detection and removal of these substances use specialised instrumentation and require a trained technical resource for operation. Molecularly imprinted polymers (MIPs), polymeric materials with predetermined selectivity for a target molecule, have recently begun to be exploited in technologies for the selective removal and monitoring of PFAS in environmental waters. This review offers a comprehensive overview of recent developments in MIPs, both as adsorbents for PFAS removal and sensors that selectively detect PFAS at environmentally-relevant concentrations. PFAS-MIP adsorbents are classified according to their method of preparation (e.g., bulk or precipitation polymerization, surface imprinting), while PFAS-MIP sensing materials are described and discussed according to the transduction methods used (e.g., electrochemical, optical). This review aims to comprehensively discuss the PFAS-MIP research field. The efficacy and challenges facing the different applications of these materials in environmental water applications are discussed, as well as a perspective on challenges for this field that need to be overcome before exploitation of the technology can be fully realised.
Collapse
Affiliation(s)
- Aicha Tasfaout
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Farah Ibrahim
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Toulon, France
| | - Aoife Morrin
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugues Brisset
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Toulon, France
| | - Ilaria Sorrentino
- Klearia, 61 Avenue Simone Veil, CEEI Nice Côte d'Azur - Immeuble Premium, 06200, Nice, France
| | - Clément Nanteuil
- Klearia, 61 Avenue Simone Veil, CEEI Nice Côte d'Azur - Immeuble Premium, 06200, Nice, France
| | - Guillaume Laffite
- Klearia, 61 Avenue Simone Veil, CEEI Nice Côte d'Azur - Immeuble Premium, 06200, Nice, France
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Fiona Regan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Catherine Branger
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Toulon, France.
| |
Collapse
|
10
|
Rehman AU, Crimi M, Andreescu S. Current and emerging analytical techniques for the determination of PFAS in environmental samples. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2023; 37:e00198. [DOI: 10.1016/j.teac.2023.e00198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Tang Y, Liu Y, Wang J, Wang J, Liu Z. In Vivo Tracking of Persistent Organic Pollutants via a Coaxially Integrated and Implanted Photofuel Microsensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2826-2836. [PMID: 36775915 DOI: 10.1021/acs.est.2c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vivo tracking of persistent organic pollutants (POPs) is of great significance for assessing their risks to the ecological environment and human health. However, existing in vivo POPs detection methods are limited by the lethal sampling of living organisms, complex sample preparation processes, or bulky testing equipment. Photoelectrochemical (PEC) sensing with the merits of high sensitivity and simple equipment is a fast-developed method for in vivo analysis. A major obstacle for in vivo PEC sensors is the separated implantation of multiple electrodes and a light source, which raises concerns like multielectrode biofouling and electroactive molecules interference in the complex environment, uncertain electrode implant distance, and multiple insertion operations. Here, a coaxially implanted photofuel microsensor was developed by hiding the optical fiber-based photoanode inside the glass capillary-based biocathode, and the model target PCB77 can be detected with an ultralow detection limit (2.8 fg/mL). This unique photoanode-biocathode-light source integrated structure ensures excellent selectivity, good antifouling ability and biocompatibility, high accuracy, and less implant mechanical damage. Combined with a handheld pH meter, our sensor achieved convenient and direct tracking of the bioaccumulation levels of PCB77 in freely swimming fish.
Collapse
Affiliation(s)
- Ying Tang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Yanwen Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Jinmiao Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Juan Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
12
|
Wang Y, Ren R, Chen F, Jing L, Tian Z, Li Z, Wang J, Hou C. Molecularly Imprinted MOFs-driven carbon nanofiber for sensitive electrochemical detection and targeted electro-Fenton degradation of perfluorooctanoic acid. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Manivannan B, Nallathambi G, Devasena T. Alternative methods of monitoring emerging contaminants in water: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2009-2031. [PMID: 36128976 DOI: 10.1039/d2em00237j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities have steadily increased the release of emerging contaminants (ECs) in aquatic bodies, and these ECs may have adverse effects on humans even at their trace (μg L-1) levels. Their occurrence in wastewater systems is more common, and the current wastewater treatment facilities are inefficient in eliminating many of such persistent ECs. "Gold standard" techniques such as chromatography, mass spectrometry, and other high-resolution mass spectrometers are used for the quantification of ECs of various kinds, but they all have significant limitations. This paper reviews the alternative methods for EC detection, which include voltammetry, potentiometry, amperometry, electrochemical impedance spectroscopy (EIS) based electrochemical methods, colorimetry, surface-enhanced Raman spectroscopy (SERS), fluorescence probes, and fluorescence spectroscopy-based optical techniques. These alternative techniques have several advantages over conventional techniques, including low sample volume, excludes solid phase extraction procedure, high sensitivity, selectivity, portability, reproducibility, rapidity, low cost, and the ability to monitor ECs in real time. This review summarises each of the alternative methods for detecting ECs in water samples and their respective limits of detection (LODs). The sensitivity of each technique varied depending on the type of EC measured, type of electrochemical probe and electrode, substrates, type of nanoparticle (NP), the physicochemical parameters of water samples tested, and more. Nevertheless, this paper also focuses on some of the current challenges encountered by these alternative methods in monitoring ECs.
Collapse
Affiliation(s)
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
14
|
Ganesan S, Chawengkijwanich C, Gopalakrishnan M, Janjaroen D. Detection methods for sub-nanogram level of emerging pollutants - Per and polyfluoroalkyl substances. Food Chem Toxicol 2022; 168:113377. [PMID: 35995078 DOI: 10.1016/j.fct.2022.113377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds has been manufactured for more than five decades and used in different purposes. Among persistent organic pollutants, PFAS are toxic, bioaccumulative in humans, wildlife, and global environment. As per environmental protection agency (EPA) guidelines, the perfluorooctanoate and perfluorooctane sulfonate permissible limit was 0.07 ng/L in drinking water. When the concentration exceeds the acceptable limit, it has negative consequences for humans. In such a case, PFAS monitoring is critical, and a quick detection technique are highly needed. Health departments and regulatory agencies have interests in monitoring of PFAS presences and exposures. For the detection of PFAS, numerous highly precise and sensitive chromatographic methods are available. However, the drawbacks of analytical techniques include timely sample preparations and the lack of on-site applicability. As a result, there is an increasing demand for simple sensor systems for monitoring of PFAS in real field samples. In this review, we first describe the sample pre-treatment and analytical techniques for the detection of PFAS. Second, we broadly discussed available sensor system for the quantification of PFAS in different filed samples. Finally, future trends in PFASs sensor are also presented.
Collapse
Affiliation(s)
- Sunantha Ganesan
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chamorn Chawengkijwanich
- Research Network of NANOTEC - CU on Environment, Bangkok, 10330, Thailand; National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 12120, Pathumthani, Thailand.
| | - Mohan Gopalakrishnan
- Department of Chemical Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dao Janjaroen
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 12120, Pathumthani, Thailand.
| |
Collapse
|
15
|
Araújo RG, Rodríguez-Hernandéz JA, González-González RB, Macias-Garbett R, Martínez-Ruiz M, Reyes-Pardo H, Hernández Martínez SA, Parra-Arroyo L, Melchor-Martínez EM, Sosa-Hernández JE, Coronado-Apodaca KG, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.864894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PFAS are a very diverse group of anthropogenic chemicals used in various consumer and industrial products. The properties that characterize are their low degradability as well as their resistance to water, oil and heat. This results in their high persistence in the environment and bioaccumulation in different organisms, causing many adverse effects on the environment as well as in human health. Some of their effects remain unknown to this day. As there are thousands of registered PFAS, it is difficult to apply traditional technologies for an efficient removal and detection for all. This has made it difficult for wastewater treatment plants to remove or degrade PFAS before discharging the effluents into the environment. Also, monitoring these contaminants depends mostly on chromatography-based methods, which require expensive equipment and consumables, making it difficult to detect PFAS in the environment. The detection of PFAS in the environment, and the development of technologies to be implemented in tertiary treatment of wastewater treatment plants are topics of high concern. This study focuses on analyzing and discussing the mechanisms of occurrence, migration, transformation, and fate of PFAS in the environment, as well the main adverse effects in the environment and human health. The following work reviews the recent advances in the development of PFAS detection technologies (biosensors, electrochemical sensors, microfluidic devices), and removal/degradation methods (electrochemical degradation, enzymatic transformation, advanced oxidation, photocatalytic degradation). Understanding the risks to public health and identifying the routes of production, transportation, exposure to PFAS is extremely important to implement regulations for the detection and removal of PFAS in wastewater and the environment.
Collapse
|
16
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Li Y, Liu G, Ji D, He Y, Chen Q, Zhang F, Liu Q. Smartphone-based label-free photoelectrochemical sensing of cysteine with cadmium ion chelation. Analyst 2022; 147:1403-1409. [PMID: 35234782 DOI: 10.1039/d2an00017b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an important amino acid, cysteine is related to the development of various diseases. The quantitative detection of cysteine is of great significance for both disease diagnosis and treatment. The current labeling methods mainly rely on fluorescent probes, making it difficult for quantitative cysteine detection in point-of-care testing (POCT). In this study, we proposed a label-free method for cysteine quantification by novel photoelectrochemical (PEC) sensing using a specific ion chelation probe. An indium tin oxide electrode loaded with nanoscale graphitic carbon nitride (g-C3N4) was used as the PEC electrode and gold nanoparticle modification was performed to further promote the charge transfer efficiency for enhanced photocurrent detection. Cadmium ions (Cd2+) were employed as the specific ion chelation probe for cysteine detection, and the formed Cd2+/cysteine chelate complex served as the electron acceptor for sensitive PEC sensing under low-power LED illumination. A portable PEC system was developed for quantitative detection of cysteine by integrating the PEC sensor, a self-designed detection circuit and a smartphone. The detected photocurrents changed linearly with the cysteine concentrations ranging from 0 μM to 40 μM, and the limit of detection is calculated to be 9.2 μM. To demonstrate the capability of this system, cysteine in spiked urine samples was quantified with a recovery rate of 96.1%-100.57%. This system provides high portability, sufficient accuracy and sensitivity, and greatly reduces the complexity and cost of point-of-care cysteine detection.
Collapse
Affiliation(s)
- Yaru Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Daizong Ji
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Yan He
- Department of Computer, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Qingmei Chen
- Department of Computer, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
18
|
Fabrication of molecularly imprinted nanochannel membrane for ultrasensitive electrochemical detection of triphenyl phosphate. Anal Chim Acta 2022; 1192:339374. [DOI: 10.1016/j.aca.2021.339374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
|
19
|
Wang Y, Darling SB, Chen J. Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60789-60814. [PMID: 34911297 PMCID: PMC8719322 DOI: 10.1021/acsami.1c16517] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of engineered chemicals that have been widely used in industrial production. PFAS have drawn increasing attention due to their frequent occurrence in the aquatic environment and their toxicity to animals and humans. Developing effective and efficient detection and remediation methods for PFAS in aquatic systems is critical to mitigate ongoing exposure and promote water reuse. Adsorption-based removal is the most common method for PFAS remediation since it avoids hazardous byproducts; in situ sensing technology is a promising approach for PFAS monitoring due to its fast response, easy operation, and portability. This review summarizes current materials and devices that have been demonstrated for PFAS adsorption and sensing. Selectivity, the key factor underlying both sensor and sorbent performance, is discussed by exploring the interactions between PFAS and various probes. Examples of selective probes will be presented and classified by fluorinated groups, cationic groups, and cavitary groups, and their synergistic effects will also be analyzed. This review aims to provide guidance and implication for future material design toward more selective and effective PFAS sensors and sorbents.
Collapse
Affiliation(s)
- Yuqin Wang
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Seth B. Darling
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Junhong Chen
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Kassahun GS, Griveau S, Bedioui F, Slim C. Input of Electroanalytical Methods for the Determination of Diclofenac: A Review of Recent Trends and Developments. ChemElectroChem 2021. [DOI: 10.1002/celc.202100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Getnet Sewnet Kassahun
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Sophie Griveau
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Fethi Bedioui
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Cyrine Slim
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
21
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
23
|
Liu R, Wei X, Li J. Synergy of electrocatalysis on photoelectrocatalysis and amperometric determination of trace glucose. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Menger RF, Funk E, Henry CS, Borch T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 417:129133. [PMID: 37539085 PMCID: PMC10398537 DOI: 10.1016/j.cej.2021.129133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of compounds that have become environmental contaminants of emerging concern. They are highly persistent, toxic, bioaccumulative, and ubiquitous which makes them important to detect to ensure environmental and human health. Multiple instrument-based methods exist for sensitive and selective detection of PFAS in a variety of matrices, but these methods suffer from expensive costs and the need for a laboratory and highly trained personnel. There is a big need for fast, inexpensive, robust, and portable methods to detect PFAS in the field. This would allow environmental laboratories and other agencies to perform more frequent testing to comply with regulations. In addition, the general public would benefit from a fast method to evaluate the drinking water in their homes for PFAS contamination. A PFAS sensor would provide almost real-time data on PFAS concentrations that can also provide actionable information for water quality managers and consumers around the planet. In this review, we discuss the sensors that have been developed up to this point for PFAS detection by their molecular detection mechanism as well as the goals that should be considered during sensor development. Future research needs and commercialization challenges are also highlighted.
Collapse
Affiliation(s)
- Ruth F Menger
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
| | - Emily Funk
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
25
|
Ryu H, Li B, De Guise S, McCutcheon J, Lei Y. Recent progress in the detection of emerging contaminants PFASs. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124437. [PMID: 33162244 DOI: 10.1016/j.jhazmat.2020.124437] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 05/26/2023]
Abstract
As an emerging contaminant, per- and polyfluoroalkyl substances (PFASs) make up a large group of persistent anthropogenic chemicals, which are difficult to degrade in the environment. Notwithstanding their wide range of applications in consumer products and industrial processes, PFASs have been detected in the environment as well as in human body. Due to their potential adverse human health effects, the U.S. Environmental Protection Agency (EPA) set the combined concentration of PFOA and PFOS in drinking water at 70 ng/L or 70 ppt (parts per trillion) as a lifetime health advisory level. Current standard detection methods for PFASs heavily rely on chromatographic techniques coupled with mass spectrometry. Although these methods provide accurate, specific, and sensitive measurements, their applications are greatly limited in advanced analytical laboratories because it necessitates expensive instrumentations, professional operators, complicated sample pretreatment, and considerable analysis time. Therefore, other detection methods beyond chromatographic based techniques, such as optical and electrochemical techniques, have also been extensively explored for simple, accessible, inexpensive, rapid, and sensitive detection of PFASs, particularly PFOA and PFOS. The purpose of this review is to provide recent progress in alternative detection platforms relying on non-MS based techniques for PFASs analysis. Starting with a brief introduction about the importance of monitoring PFASs, recent advances in various PFASs detection methods are grouped and discussed based on the difference of signals, with an emphasis on the working principles of different techniques, the sensing mechanism, and the sensing performance. The review is closed with the conclusion and discussion of future trends.
Collapse
Affiliation(s)
- Heejeong Ryu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA.
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, CT 06269, USA
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, CT 06269, USA
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA.
| |
Collapse
|
26
|
Zhang J, Gao Y, Liu P, Yan J, Zhang X, Xing Y, Song W. Charge transfer accelerated by internal electric field of MoS2 QDs-BiOI p-n heterojunction for high performance cathodic PEC aptasensing. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Li Z, Zhu M. Detection of pollutants in water bodies: electrochemical detection or photo-electrochemical detection? Chem Commun (Camb) 2020; 56:14541-14552. [PMID: 33118579 DOI: 10.1039/d0cc05709f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The massive discharge of pollutants including endocrine-disrupting chemicals (EDCs), heavy metals, pharmaceuticals and personal care products (PPCPs) into water bodies is endangering the ecological environment and human health, and needs to be accurately detected. Both electrochemical and photo-electrochemical detection methods have been widely used for the detection of these pollutants, however, which one is better for the detection of different environmental pollutants? In this feature article, different electrochemical and photo-electrochemical detection methods are summarized, including the principles, classification, common catalysts, and applications. By summarizing the advantages and disadvantages of different detection methods, this review provides a guide for other researchers to detect pollutants in water bodies by using electrochemical and photo-electrochemical analysis.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China.
| | | |
Collapse
|
28
|
Wang H, Zhang B, Tang Y, Wang C, Zhao F, Zeng B. Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Svitkova V, Palchetti I. Functional polymers in photoelectrochemical biosensing. Bioelectrochemistry 2020; 136:107590. [PMID: 32674004 DOI: 10.1016/j.bioelechem.2020.107590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023]
Abstract
Photoelectrochemical (PEC) analysis is a detection technique that has gained a wide attention in sensing applications. PEC presents the advantages of high sensitivity, low background signal, simple equipment and easy miniaturization. In PEC detection, light is used as an excitation source while current or voltage is measured as the output detection signal. The ability to couple the PEC process with specific bioreceptors gives PEC biosensing a unique advantage of being both selective and sensitive. The growing interest in PEC bioanalysis has resulted in essential progress in its analytical performance and biodetection applications. Functional polymers have different applications in the development of novel PEC biosensing platforms. Recently, the interest in polymer-based photoactive materials has emerged as they are efficient and less toxic alternatives to certain kinds of inorganic semiconductors and sensitizers. Moreover, molecularly imprinted polymers are a class of synthetic bioreceptors that are increasingly used in PEC bioanalytics. In this review, we will provide an overview on functional polymer-based PEC biosensing approaches. Novel classes of polymers as photoactive materials are reviewed and selected applications are described. Furthermore, molecularly imprinted polymers in the development of smart and sensitive PEC bioanalytical strategies are discussed.
Collapse
Affiliation(s)
- Veronika Svitkova
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Ilaria Palchetti
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|
30
|
Yang JS, Lai WWP, Panchangam SC, Lin AYC. Photoelectrochemical degradation of perfluorooctanoic acid (PFOA) with GOP25/FTO anodes: Intermediates and reaction pathways. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122247. [PMID: 32062347 DOI: 10.1016/j.jhazmat.2020.122247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) have been widely studied due to their persistence, bioaccumulation and possible toxic effects. In this work, we investigated a photoelectrochemical (PEC) system consisting of a graphene oxide-titanium dioxide (GOP25) anode coated on fluorine-doped tin oxide (FTO) glass for removal of PFOA in an aquatic environment. The GOP25/FTO anode was fabricated and well characterized. Nearly complete decomposition of 0.5 mg/L PFOA was achieved after 4 h of PEC treatment with an initial pH of 5.3 and a current density of 16.7 mA cm-2. The presence of graphene oxide (GO) on the TiO2 anode could enhance its electrochemical performance, thereby leading to increased decomposition efficiency. A total of 18 PFOA transformation products, including short-chain perfluoroalkyl acids, are reported in this work, and 13 products were observed for the first time. Four possible routes of PFOA decomposition, namely, decarboxylation followed by oxidation, defluorination, hydroxylation and Cl atom substitution, were determined. The presence of chlorinated byproducts in the system indicated that reactive chlorine species contributed to PFOA degradation.
Collapse
Affiliation(s)
- Jheng-Sian Yang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Webber Wei-Po Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Sri Chandana Panchangam
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC; Annamacharya Institute of Technology and Sciences, Rajampeta, 516126, Kadapa, A.P., India.
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
31
|
Moro G, Bottari F, Liberi S, Covaceuszach S, Cassetta A, Angelini A, De Wael K, Moretto LM. Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid. Bioelectrochemistry 2020; 134:107540. [PMID: 32361666 DOI: 10.1016/j.bioelechem.2020.107540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy; AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Fabio Bottari
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stefano Liberi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Sonia Covaceuszach
- Istituto di Cristallografia - CNR, Trieste Outstation, Italy SS 14 km 163.5, Basovizza, Trieste, Italy
| | - Alberto Cassetta
- Istituto di Cristallografia - CNR, Trieste Outstation, Italy SS 14 km 163.5, Basovizza, Trieste, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Karolien De Wael
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ligia Maria Moretto
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| |
Collapse
|
32
|
Cheng YH, Barpaga D, Soltis JA, Shutthanandan V, Kargupta R, Han KS, McGrail BP, Motkuri RK, Basuray S, Chatterjee S. Metal-Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10503-10514. [PMID: 32031779 DOI: 10.1021/acsami.9b22445] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growing global concerns to public health from human exposure to perfluorooctanesulfonate (PFOS) require rapid, sensitive, in situ detection where current, state-of-the-art techniques are yet to adequately meet sensitivity standards of the real world. This work presents, for the first time, a synergistic approach for the targeted affinity-based capture of PFOS using a porous sorbent probe that enhances detection sensitivity by embedding it on a microfluidic platform. This novel sorbent-containing platform functions as an electrochemical sensor to directly measure PFOS concentration through a proportional change in electrical current (increase in impedance). The extremely high surface area and pore volume of mesoporous metal-organic framework (MOF) Cr-MIL-101 is used as the probe for targeted PFOS capture based on the affinity of the chromium center toward both the fluorine tail groups as well as the sulfonate functionalities as demonstrated by spectroscopic (NMR and XPS) and microscopic (TEM) studies. Answering the need for an ultrasensitive PFOS detection technique, we are embedding the MOF capture probes inside a microfluidic channel, sandwiched between interdigitated microelectrodes (IDμE). The nanoporous geometry, along with interdigitated microelectrodes, increases the signal-to-noise ratio tremendously. Further, the ability of the capture probes to interact with the PFOS at the molecular level and effectively transduce that response electrochemically has allowed us achieve a significant increase in sensitivity. The PFOS detection limit of 0.5 ng/L is unprecedented for in situ analytical PFOS sensors and comparable to quantification limits achieved using state-of-the-art ex situ techniques.
Collapse
Affiliation(s)
- Yu H Cheng
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jennifer A Soltis
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - V Shutthanandan
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roli Kargupta
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Kee Sung Han
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - B Peter McGrail
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sagnik Basuray
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sayandev Chatterjee
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
33
|
A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu 2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen. Anal Bioanal Chem 2020; 412:841-848. [PMID: 31897553 DOI: 10.1007/s00216-019-02283-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
A sensitive photoelectrochemical (PEC) aptasensor was constructed for prostate-specific antigen (PSA) detection using an enhanced photocurrent response strategy. The p-n heterostructure CdS-Cu2O nanorod arrays were prepared on Ti mesh (CdS-Cu2O NAs/TM) by a simple hydrothermal method and successive ionic-layer adsorption reactions. Compared with the original CdS/TM, the synergistic effect of p-n type CdS-Cu2O NAs/TM and the internal electric field realizes the effective separation of photoinduced electron-hole pairs and improves the PEC performance. In order to construct the aptasensor, an amino-modified aptamer was immobilized on CdS-Cu2O NAs/TM to serve as a recognition unit for PSA. After the introduction of PSA, PSA was specifically captured by the aptamer on the PEC aptasensor, which can be oxidized by photogenerated holes to prevent electron-hole recombination and increase photocurrent. Under optimal conditions, the constructed PEC aptasensor has a linear range of 0.1-100 ng·mL-1 and a detection limit as low as 0.026 ng·mL-1. The results of aptasensor detection of human serum indicate that it has broad application prospects in biosensors and photoelectrochemical analysis.
Collapse
|
34
|
Hu L, Liao Y, Xia D, Zhang Q, He H, Yang J, Huang Y, Liu H, Zhang F, He C, Shu D. In-situ fabrication of AgI-BiOI nanoflake arrays film photoelectrode for efficient wastewater treatment, electricity production and enhanced recovery of copper in photocatalytic fuel cell. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
|
36
|
Photoelectrochemical platform for sensing propyl gallate in edible oil samples based on CdTe quantum dots and poly(D-glucosamine). J Solid State Electrochem 2019. [DOI: 10.1007/s10008-018-04177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Zhu Y, Yan K, Xu Z, Wu J, Zhang J. Cathodic "signal-on" photoelectrochemical aptasensor for chloramphenicol detection using hierarchical porous flower-like Bi-BiOI@C composite. Biosens Bioelectron 2019; 131:79-87. [PMID: 30826654 DOI: 10.1016/j.bios.2019.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
A novel p-type semiconductor-based cathodic "signal-on" photoelectrochemical (PEC) aptasensor was proposed for highly sensitive and selective detection of chloramphenicol (CAP). The photocathode was fabricated with hierarchical porous flower-like Bi-BiOI@C composite synthesized via a one-pot solvothermal method using glucose as both green reductant and carbon precursor. Due to the surface plasmon resonance (SPR) effect of Bi and high-conductivity of carbon, the composite exhibited an enhanced cathodic photocurrent as compared with pure BiOI or Bi-BiOI. When CAP-binding aptamer was immobilized as recognition element on Bi-BiOI@C modified electrode, a cathodic PEC aptasensor showing specific "signal-on" response to CAP was constructed. Some influencing factors such as coating amount of Bi-BiOI@C suspension, applied bias potential, and aptamer concentration were studied. Under the optimum conditions, the cathodic photocurrent of the constructed PEC aptasensor increased linearly with CAP concentration from 2 to 250 nM, with a detection limit (3S/N) of 0.79 nΜ. The proposed sensor was successfully applied to the determination of CAP in pharmaceutical tablet, eye drop and lake water samples.
Collapse
Affiliation(s)
- Yuhan Zhu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Kai Yan
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Zuwei Xu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jinnan Wu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jingdong Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China.
| |
Collapse
|
38
|
Wang H, Zhang B, Zhao F, Zeng B. One-Pot Synthesis of N-Graphene Quantum Dot-Functionalized I-BiOCl Z-Scheme Cathodic Materials for "Signal-Off" Photoelectrochemical Sensing of Chlorpyrifos. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35281-35288. [PMID: 30239195 DOI: 10.1021/acsami.8b12979] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A Z-scheme I-BiOCl/N-GQD (i.e., nitrogen-doped graphene quantum dot) heterojunction was prepared by a one-pot precipitation method at room temperature. The doped iodine decreased the band gap of BiOCl, the introduced N-GQDs enhanced light harvesting and prolonged the photogenerated electron lifetime, and the resultant Z-scheme heterojunction promoted the spatial separation of interfacial charges. Thus, the composite showed high photoelectrochemical activity and a big cathodic photocurrent signal. On the basis of the coordination of chlorpyrifos with surface Bi(III) of the composite, a cathodic photoelectrochemical sensor was constructed for the selective detection of chlorpyrifos. In this case, chlorpyrifos decreased the lifetime of photogenerated electrons, so the photocurrent became small. Furthermore, the photocurrent changed and the logarithm of chlorpyrifos concentration presented a linear relationship. The linear range was 0.3-80 ng mL-1, and the limit of detection was estimated to be 0.01 ng mL-1 (defined as S/N = 3). The present strategy can also be used for the design and fabrication of other PEC sensors suitable for different analytes.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Bihong Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
39
|
Li X, Wang X, Zhang L, Gong J. High-Throughput Signal-On Photoelectrochemical Immunoassay of Lysozyme Based on Hole-Trapping Triggered by Disintegrating Bioconjugates of Dopamine-Grafted Silica Nanospheres. ACS Sens 2018; 3:1480-1488. [PMID: 29984996 DOI: 10.1021/acssensors.8b00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique split-type photoelectrochemical (PEC) immunoassay has been constructed for detection of low-abundance biocompounds (lysozyme, Lyz, used in this case) via a new trigger strategy by disintegrating bioconjugates of dopamine-grafted silica nanospheres (DA@SiO2NSs) for signal amplification. The preferred electron donor assembly of DA@SiO2NSs is first used as a molecular printboard for positioning anti-Lyz secondary antibody (Ab2) through an amide reaction. With specific immunoreactions in a high-binding microplate, a sandwich immunoassay, the DA@SiO2NSs-based bioconjugate is achieved. By initiating the disintegration of the bioconjugates via acid etching, numerous electron donors of DA are released, thus efficiently triggering hole-trapping with amplified signals obtained. The smart integration of ZnIn2S4-based heterojunctions as photoactive material, a split-type detection mode, and a new trigger strategy by disintegrating the DA@SiO2NSs-based bioconjugate offer an attractive high-throughput signal-on PEC immunoassay for detection of Lyz. Such an unusual PEC sensor exhibits an outstanding linear response to the concentration in the range between 0.002 and 500 ng mL-1, and the detection limit is as low as 0.6 ppt ( S/ N = 3). The as-fabricated assay is cost-effective and sensitive. It has been successfully used for measuring Lyz in real samples, which demonstrates great promise for practical applications.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xinlei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
40
|
Li X, Wang X, Fang T, Zhang L, Gong J. Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode. Talanta 2018; 181:147-153. [DOI: 10.1016/j.talanta.2018.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
|
41
|
Sousa KAP, Lima FMR, Monteiro TO, Silva SM, Goulart MOF, Damos FS, Luz RDCS. Amperometric Photosensor Based on Acridine Orange/TiO2 for Chlorogenic Acid Determination in Food Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1261-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Yan P, Xu L, Jiang D, Li H, Xia J, Zhang Q, Hua M, Li H. Photoelectrochemical monitoring of ciprofloxacin based on metallic Bi self-doping BiOBr nanocomposites. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Du W, Xu Q, Jin D, Wang X, Shu Y, Kong L, Hu X. Visible-light-induced photo-Fenton process for the facile degradation of metronidazole by Fe/Si codoped TiO2. RSC Adv 2018; 8:40022-40034. [PMID: 35558215 PMCID: PMC9091309 DOI: 10.1039/c8ra08114j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
This work investigated the feasibility and efficiency of a heterogeneous photo-Fenton catalyst, Fe/Si codoped TiO2, for the degradation of metronidazole (MNZ) under visible light irradiation. The Fe/Si codoped TiO2 was prepared via a facile and simple sol–gel solvothermal process followed by annealing at 480 °C for 4 hours. High resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) measurements revealed that the photo-Fenton process did not change the structure, textural and surface morphologies of this catalyst. Elemental mapping results indicated the good dispersion of Fe and Si ions in TiO2. Nitrogen adsorption and desorption measurements indicated that Si doping increased the surface area of the catalysts. The Fe and Si doping narrowed the band gap of TiO2. They also facilitated the transfer of photo-generated electrons from TiO2 to Fe(iii). Under visible light irradiation and the optimum operating conditions, MNZ could be completely degraded in 50 min by this catalyst within a wide pH range. Hydroxyl radicals and holes were verified to be responsible for degrading MNZ. The leaching of iron ions was less than 0.047 ppm even after illuminating the catalyst for 6 hours, indicating the good stability of the Fe/Si codoped TiO2. The as-prepared catalysts with excellent catalytic activity, and remarkable reusability and stability could provide a new insight into the preparation of photocatalysts and have wide applications for antibiotics removal. This work investigated the feasibility and efficiency of a heterogeneous photo-Fenton catalyst, Fe/Si codoped TiO2, for the degradation of metronidazole (MNZ) under visible light irradiation.![]()
Collapse
Affiliation(s)
- Wei Du
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Qin Xu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Dangqin Jin
- Department of Chemical Engineering
- Yangzhou Polytechnic Institute
- Yangzhou 225127
- China
| | - Xiaoyu Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Yun Shu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Liming Kong
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Guangling College
| |
Collapse
|
44
|
Luo T, Bai J, Li J, Zeng Q, Ji Y, Qiao L, Li X, Zhou B. Self-Driven Photoelectrochemical Splitting of H 2S for S and H 2 Recovery and Simultaneous Electricity Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12965-12971. [PMID: 28971667 DOI: 10.1021/acs.est.7b03116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H2S and simultaneous electricity production. The key ideas were the self-bias function between a WO3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I-/I3-. Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I- was transformed into I3- by photoholes or hydroxyl radicals, H2S was oxidized to S by I3-, and I3- was then reduced to I-. Meanwhile, H+ was efficiently converted to H2 in the photocathode region. In the system, H2S was uniquely oxidized to sulfur but not to polysulfide (Sxn-) because of the mild oxidation capacity of I3-. High recovery rates for S and H2 were obtained up to ∼1.04 mg h-1 cm-1 and ∼0.75 mL h-1 cm-1, respectively, suggesting that H2S was completely converted into H2 and S. In addition, the output power density of the system reached ∼0.11 mW cm-2. The proposed PEC-H2S system provides a self-sustaining, energy-saving method for simultaneous H2S treatment and energy recovery.
Collapse
Affiliation(s)
- Tao Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Qingyi Zeng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Youzhi Ji
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Li Qiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Xiaoyan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd, Shanghai 200240, China
- Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai 200240, PR China
| |
Collapse
|
45
|
Yan P, Xu L, Cheng X, Qian J, Li H, Xia J, Zhang Q, Hua M, Li H. Photoelectrochemical monitoring of phenol by metallic Bi self-doping BiOI composites with enhanced photoelectrochemical performance. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Yang X, Li X, Zhang L, Gong J. Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate. Biosens Bioelectron 2017; 92:61-67. [DOI: 10.1016/j.bios.2017.01.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
47
|
Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2071-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Xu L, Yan P, Li H, Ling S, Xia J, Xu Q, Qiu J, Li H. Photoelectrochemical sensing of bisphenol a based on graphitic carbon nitride/bismuth oxyiodine composites. RSC Adv 2017. [DOI: 10.1039/c6ra25525f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphitic carbon nitride/bismuth oxyiodine composites with excellent photoelectrochemical performance had been designed for sensitive PEC monitoring platform of bisphenol A.
Collapse
Affiliation(s)
- Li Xu
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Pengcheng Yan
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Henan Li
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Siyan Ling
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jiexiang Xia
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Xu
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jingxia Qiu
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huaming Li
- Institute for Energy Research
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
49
|
Bu Y, Xu J, Li Y, Liu Q, Zhang X. Enhanced photocatalytic activity of BiOI under visible light irradiation by the modification of MoS2. RSC Adv 2017. [DOI: 10.1039/c7ra06462d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The suitable modification of MoS2 with 3D hierarchical BiOI could improve the separation efficiency of photogenerated charge carriers.
Collapse
Affiliation(s)
- Yuzhen Bu
- College of Science
- Northeastern University
- Shenyang
- China
| | - Junli Xu
- College of Science
- Northeastern University
- Shenyang
- China
| | - Yawen Li
- College of Science
- Northeastern University
- Shenyang
- China
| | - Qian Liu
- College of Science
- Northeastern University
- Shenyang
- China
| | - Xia Zhang
- College of Science
- Northeastern University
- Shenyang
- China
| |
Collapse
|
50
|
Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. J Colloid Interface Sci 2016; 483:241-248. [DOI: 10.1016/j.jcis.2016.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/24/2016] [Accepted: 08/06/2016] [Indexed: 11/23/2022]
|