1
|
Balasubramanian K, Karuppiah C, Alagarsamy S, Mohandoss S, Arunachalam P, Govindasamy C, Velmurugan M, Yang CC, Lee HJ, Ramaraj SK. Highly sensitive detection of environmental toxic fenitrothion in fruits and water using a porous graphene oxide nanosheets based disposable sensor. ENVIRONMENTAL RESEARCH 2024; 259:119500. [PMID: 38950814 DOI: 10.1016/j.envres.2024.119500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Monitoring fenitrothion (FNT) residues in food and the environment is crucial due to its high environmental toxicity. In this study, we developed a sensitive, reliable electrochemical method for detecting FNT by using screen-printed carbon electrodes (SPCE) modified with porous graphene oxide (PGO) nanosheets. PGO surface properties have been meticulously characterized using advanced spectroscopic techniques. Electrochemical impedance spectroscopy and cyclic voltammetry were used to test the electrochemical properties of the PGO-modified sensor. The PGO-modified sensor exhibited remarkable sensitivity, achieving a detection limit as low as 0.061 μM and a broad linear range of 0.02-250 μM. Enhanced performance is due to PGO's high surface area and excellent electrocatalytic properties, which greatly improved electron transfer. Square wave voltammetry was used to demonstrate the sensor's efficacy as a real-time, on-site monitoring tool for FNT residues in fruit and water. The outstanding performance of the PGO/SPCE sensor underscores its applicability in ensuring food safety and environmental protection.
Collapse
Affiliation(s)
- Kavitha Balasubramanian
- PG and Research Department of Chemistry, Thiagarajar College affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Chelladurai Karuppiah
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Saranvignesh Alagarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Prabhakarn Arunachalam
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Murugan Velmurugan
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Tiruchirappalli, 621112, Tamil Nadu, India
| | - Chun-Chen Yang
- Battery Research center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
2
|
Peter JJ, Roy NC, Grynszpan F, Levine M. Ultrasensitive and versatile hydrogen peroxide sensing via fluorescence quenching. Chem Commun (Camb) 2024; 60:10152-10155. [PMID: 39189658 DOI: 10.1039/d4cc03020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Reported herein is an ultra-sensitive turn-off fluorescence sensor for hydrogen peroxide based on its reaction with bimane 1. This reaction is highly efficient, resulting in a detection limit of 7.9 pM. It also maintains sensor efficacy when adsorbed on paper and enables both solution-state and vapor-phase detection.
Collapse
Affiliation(s)
- Jenisha John Peter
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan Street, Ariel 40700, Israel.
| | | | - Flavio Grynszpan
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan Street, Ariel 40700, Israel.
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan Street, Ariel 40700, Israel.
| |
Collapse
|
3
|
Lei S, Zou Z, Tian K, Zheng Y, Ding M, Hu G, Bin Yang H, Guo C, Li C, Hu FX. Sensitive subcellular scale and real-time detection of hydrogen peroxide by a W-doped Pt microelectrode. Chem Commun (Camb) 2024; 60:7630-7633. [PMID: 38958176 DOI: 10.1039/d4cc02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A W-doped Pt modified graphene oxide (Pt-W-GO) electrochemical microelectrode was developed to detect hydrogen peroxide (H2O2) in real time at a subcellular scale. Interestingly, results showed that the concentration of H2O2 in the nucleus of HeLa cells was 2.68 times and 0.51 times that in the extracellular membrane and cytoplasm, respectively.
Collapse
Affiliation(s)
- Shaohui Lei
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zhuo Zou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Kangling Tian
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yan Zheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mei Ding
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Guangxuan Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Fang Xin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
5
|
Chen C, Ran B, Liu B, Liu X, Zhang Z, Li Y, Li H, Lan M, Zhu Y. Multiplexed detection of biomarkers using a microfluidic chip integrated with mass-producible micropillar array electrodes. Anal Chim Acta 2023; 1272:341450. [PMID: 37355325 DOI: 10.1016/j.aca.2023.341450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Quantifying multiple biomarkers with high sensitivity in tiny biological samples is essential to meet the growing demand for point-of-care testing. This paper reports the development of a novel microfluidic device integrated with mass-producible micropillar array electrodes (μAEs) for multiple biomarker detections. The μAE are mass-fabricated by soft lithography and hot embossing technique. Pt-Pd bimetallic nanoclusters (BNC) are modified on the surface of μAEs by constant potential (CP)/multi-potential step (MPS) electrodeposition strategies to improve the electroanalytical performance. The experimental result displays that Pt-Pd BNC/μAEs have good sensitivity enhancement compared with bare planar electrodes and bare μAEs, the enhancement being 56.5 and 9.5 times respectively, from the results of the H2O2 detection. Furthermore, glucose, uric acid and sarcosine were used as model biomarkers to show the biosensing capability with high sensitivity. The linear range and LOD of the glucose, uric acid and sarcosine detection are 0.1 mM-12 mM, 10 μM-800 μM and 2.5 μM-100 μM, 58.5, 3.4 and 0.4 μM, respectively. In particular, biosensing chips show wide linear ranges covering required detection ranges of glucose, uric acid and sarcosine in human serum, indicating the developed device has great potential in self-health management and clinical requirements.
Collapse
Affiliation(s)
- Chaozhan Chen
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Bo Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Xiaoxuan Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Ziteng Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Yan Li
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Hongchun Li
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
6
|
Jiang W, Sun D, Cai C, Zhang H. Sensitive detection of extracellular hydrogen peroxide using plasmon-enhanced electrochemical activity on Pd-tipped Au nanobipyramids. Analyst 2023; 148:3791-3797. [PMID: 37462115 DOI: 10.1039/d3an00829k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The fabrication of electroactive nanostructures with high electron concentration and specific electron transport is crucial for electrochemical sensing. In this study, a plasmon-enhanced electrochemical sensor has been developed for the detection of extracellular hydrogen peroxide (H2O2) from cancer cells, utilizing Pd-tipped Au nanobipyramids (PTA NBPs) as the electrocatalysts. Plasmonic PTA NBPs were synthesized by depositing Pd nanoparticles onto the tips of Au nanobipyramids (Au NBPs). Under excitation of localized surface plasmon resonance (LSPR), the PTA NBPs generate high-energy electron-hole pairs (e-/h+) on their surface. The generated electrons (e-) significantly enhance the electrochemical reduction of H2O2. Based on this, a plasmon-enhanced H2O2 electrochemical sensor is constructed with high sensitivity (986.57 μA mM-1 cm-2), low detection limit (0.02 μM), wide linear range (0.1 μM to 980 μM), and good stability and repeatability. Moreover, this sensor also enables the measurement of extracellular H2O2 derived from cancer cells (MCF-7), highlighting its potential applications in cellular biology and biomedical research.
Collapse
Affiliation(s)
- Wenli Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| | - Die Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China.
| |
Collapse
|
7
|
Zhang N, Zhang W, Wu Y, Xie X, Jiang R, Luo F, Zhang K. Upconversion nanoparticles anchored MnO 2 nanosheets for luminescence "turn on" detecting hydrogen peroxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122819. [PMID: 37163855 DOI: 10.1016/j.saa.2023.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The sensitively and reliably detecting hydrogen peroxide (H2O2) is of significant for biology and environment protection fields. Herein, we reported a high sensitive H2O2 nanoprobe based on upconversion nanoparticles (UCNPs) anchored MnO2 nanosheets. In which, DNA modified NaYF4@NaYF4:Yb,Tm core-shell nanoparticles were anchored onto the MnO2 nanosheets surface via π-π stacking. Owing to the luminescence resonance energy transfer, the blue luminescence of UCNPs was effectively quenched by MnO2 nanosheets, then the luminescence could be restored by adding H2O2 for reducing MnO2 to Mn2+, and achieving a H2O2 concentration-dependent luminescence change, the detection limit could reach to 0.23 nM (S/N = 3). The proposed method could detect H2O2 in serum, lake water and real samples. Thus, a desired upconversion luminescence sensing strategy for detection H2O2 in life and environmental analysis was successfully constructed. It may be provide a potential tool in disease diagnosis and environmental monitoring fields.
Collapse
Affiliation(s)
- Na Zhang
- China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, China; Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wen Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Yilin Wu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Xusheng Xie
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Rongli Jiang
- China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, China.
| | - Fabao Luo
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 234000, China.
| | - Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
8
|
Putro PA, Maddu A, Hardhienata H, Isnaeni I, Ahmad F, Dipojono HK. Revealing the incorporation of an NH 2 group into the edge of carbon dots for H 2O 2 sensing via the C-N⋯H hydrogen bond interaction. Phys Chem Chem Phys 2023; 25:2606-2617. [PMID: 36602293 DOI: 10.1039/d2cp04097b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated hydrogen peroxide (H2O2) sensing on NH2-functionalized carbon dots (Cdots) for three different -NH2 positions, and the N atom was found to be the active site using a quantum computational approach. B3LYP and 6-31G(d,p) were used for density functional theory (DFT) ground state calculations, whereas CAM-B3LYP and the same basis set were used in time-dependent density functional theory (TD-DFT) excited state calculations. Structural optimization showed that the H2O2 is chemisorbed on 1-sim via a C-N⋯H hydrogen bond interaction with an adsorption energy of -10.61 kcal mol-1. Mulliken atomic charge distributions and electrostatic potential (ESP) analysis were both used to determine reactivity of the molecules at the atomic level. For in-depth analysis of the ground states, we utilized Frontier molecular orbital (FMO) theory, quantum theory of atoms in molecules (QTAIM), and non-covalent interaction (NCI) index analysis. In addition, we also present UV-vis absorption spectra and charge transfer lengths to understand the mechanism of H2O2 sensing in excited states. Based on the molecular and electronic properties of the NH2-Cdots, it was shown that 1-sim is a potential candidate for use as an electrochemical sensor for H2O2 sensing. Whereas 3-sim is believed to be a potential candidate for use as an optical sensor of H2O2 based on the UV-vis characteristics via photoinduced charge transfer.
Collapse
Affiliation(s)
- Permono Adi Putro
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia. .,Department of Physics, Faculty of Science, Universitas Mandiri, Subang, 41211, Indonesia
| | - Akhiruddin Maddu
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Hendradi Hardhienata
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Isnaeni Isnaeni
- Research Center for Photonics, National Research and Innovation Agency, Banten, 15314, Indonesia
| | - Faozan Ahmad
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Hermawan Kresno Dipojono
- Department of Engineering Physics, Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia.,Research Center for Nanoscience and Nanotechnology, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
9
|
Zarei A, Hatefi-Mehrjardi A, Karimi MA, Mohadesi A. Impedimetric glucose biosensing based on drop-cast of porous graphene, nafion, ferrocene, and glucose oxidase biocomposite optimized by central composite design. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H 2O 2) Released from Cancer Cells. NANOMATERIALS 2022; 12:nano12091475. [PMID: 35564184 PMCID: PMC9103167 DOI: 10.3390/nano12091475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Cancer is by far the most common cause of death worldwide. There are more than 200 types of cancer known hitherto depending upon the origin and type. Early diagnosis of cancer provides better disease prognosis and the best chance for a cure. This fact prompts world-leading scientists and clinicians to develop techniques for the early detection of cancer. Thus, less morbidity and lower mortality rates are envisioned. The latest advancements in the diagnosis of cancer utilizing nanotechnology have manifested encouraging results. Cancerous cells are well known for their substantial amounts of hydrogen peroxide (H2O2). The common methods for the detection of H2O2 include colorimetry, titration, chromatography, spectrophotometry, fluorimetry, and chemiluminescence. These methods commonly lack selectivity, sensitivity, and reproducibility and have prolonged analytical time. New biosensors are reported to circumvent these obstacles. The production of detectable amounts of H2O2 by cancerous cells has promoted the use of bio- and electrochemical sensors because of their high sensitivity, selectivity, robustness, and miniaturized point-of-care cancer diagnostics. Thus, this review will emphasize the principles, analytical parameters, advantages, and disadvantages of the latest electrochemical biosensors in the detection of H2O2. It will provide a summary of the latest technological advancements of biosensors based on potentiometric, impedimetric, amperometric, and voltammetric H2O2 detection. Moreover, it will critically describe the classification of biosensors based on the material, nature, conjugation, and carbon-nanocomposite electrodes for rapid and effective detection of H2O2, which can be useful in the early detection of cancerous cells.
Collapse
|
11
|
Elancheziyan M, Theyagarajan K, Ponnusamy VK, Thenmozhi K, Senthilkumar S. Porous graphene oxide based disposable non-enzymatic electrochemical sensor for the determination of nicotinamide adenine dinucleotide. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Gričar E, Kalcher K, Genorio B, Kolar M. Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO 2 Modified Carbon Paste Electrodes. SENSORS 2021; 21:s21248301. [PMID: 34960395 PMCID: PMC8707399 DOI: 10.3390/s21248301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matrices. CPE, with their robustness, reliability, and ease of modification, present a convenient starting point for the development of new sensors. Modification of CPE was optimized by systematically changing the type and concentration of materials in the modifier and studying the prepared electrode surface by cyclic voltammetry. N-htGONR in combination with manganese dioxide (1:1 ratio) proved to be the most appropriate material for detection of hydrogen peroxide in pharmaceutical and saliva matrices. The developed sensor exhibited a wide linear range (1.0–300 µM) and an excellent limit of detection (0.08 µM) and reproducibility, as well as high sensitivity and stability. The sensor was successfully applied to real sample analysis, where the recovery values for a commercially obtained pharmaceutical product were between 94.3% and 98.0%. Saliva samples of a user of the pharmaceutical product were also successfully analyzed.
Collapse
Affiliation(s)
- Ema Gričar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Kurt Kalcher
- Department of Analytical Chemistry, Insistute of Chemistry, University of Graz, Universitätsplatz 1, 8020 Graz, Austria;
| | - Boštjan Genorio
- Department of Chemical Engineering and Technical Safety, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Correspondence: (B.G.); (M.K.)
| | - Mitja Kolar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
- Correspondence: (B.G.); (M.K.)
| |
Collapse
|
13
|
Mehmandoust M, Erk N, Karaman O, Karimi F, Bijad M, Karaman C. Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine. Food Chem Toxicol 2021; 158:112698. [PMID: 34838678 DOI: 10.1016/j.fct.2021.112698] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
In this work, an electrochemical sensor for the azo dye compound tartrazine (TRT) determination was proposed. A screen-printed carbon electrode (SPCE) was modified by depositing three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles (Pt/CQDs@rGO/SPCE). The resulting amount of TRT was observed by differential pulse voltammetry. Under optimal conditions, the sensor exhibited two wide linearities ranging from 0.01 to 1.57 μM and 1.57-9.3 μM with the reliability coefficient of determination of 0.991 and 0.992, respectively. The detection limit (LOD) was also estimated to be 7.93 nM. Moreover, the Pt/CQDs@rGO/SPCE suggested high selectivity in the presence of several interfering agents and azo dye compounds that have a similar structure. Additionally, the Pt/CQDs@rGO/SPCE revealed superior recovery values of about 96.5-101.6% for candy, 99.7-103.5% for soft drinks, 96.0-101.2% for jelly powder, and 98.0-103.0% for water samples. Furthermore, the fabricated sensor exhibits excellent selectivity, stability, reproducibility, and repeatability, indicating a great perspective in the monitoring of TRT. Therefore, it can be speculated that the proposed electrode could be effectively applied to determine TRT in food samples.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Majede Bijad
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| |
Collapse
|
14
|
Annalakshmi M, Kumaravel S, Balamurugan T, Chen SM, He JL. Facile solvothermal synthesis of ultrathin spinel ZnMn2O4 nanospheres: An efficient electrocatalyst for in vivo and in vitro real time monitoring of H2O2. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Yan T, Chen Q, Wang Y, Long Y, Jiang Y, Fan G. An Ultrahigh Performance Enzyme‐Free Electrochemical H
2
O
2
Sensor Based on Carbon Nanopores Encapsulated Ultrasmall Cobalt Oxide Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tingting Yan
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Qian Chen
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Yi Wang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Yan Long
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Yanshu Jiang
- Sichuan Institute of Food Inspection Chengdu 610097 China
| | - Guangyin Fan
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| |
Collapse
|
16
|
Hui Liu, Zhang Y, Dong YP, Chu XF. Synthesis of ZnO/g-C3N4 Nanocomposite and Its Electrochemical Application in Hydrogen Peroxide Detection. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Yu H, Yu J, Li L, Zhang Y, Xin S, Ni X, Sun Y, Song K. Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors. Front Chem 2021; 9:677876. [PMID: 34012952 PMCID: PMC8128108 DOI: 10.3389/fchem.2021.677876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The detection of biomolecules using various biosensors with excellent sensitivity, selectivity, stability, and reproducibility, is of great significance in the analytical and biomedical fields toward achieving their practical applications. Noble metal nanoparticles are favorable candidates due to their unique optical, surface electrical effect, and catalytic properties. Among these noble metal nanoparticles, platinum nanoparticles (Pt NPs) have been widely employed for the detection of bioactive substances such as glucose, glutamic acid, and hormones. However, there is still a long way to go before the potential challenges in the practical applications of biomolecules are fully overcome. Bearing this in mind, combined with our research experience, we summarized the recent progress of the Pt NP-based biosensors and highlighted the current problems that exist in their practical applications. The current review would provide fundamental guidance for future applications using the Pt NP-based biosensors in food, agricultural, and medical fields.
Collapse
Affiliation(s)
- Han Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Jingbo Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Linlin Li
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yujia Zhang
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiuzhen Ni
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
18
|
Cao P, Wang N, Dai H, Ma H, Lin M. Molybdenum-containing polypyrrole self-supporting hollow flexible electrode for hydrogen peroxide detection in living cells. Anal Chim Acta 2021; 1151:338251. [PMID: 33608079 DOI: 10.1016/j.aca.2021.338251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
A flexible electrode based on polypyrrole-supported free-standing molybdenum oxide-molybdenum disulfide/polypyrrole nanostructure (MoO3-MoS2/PPy) was synthesized. The petal-like MoO3-MoS2 sheets grown on PPy were prepared step by step through simple electrodeposition and hydrothermal methods. The corresponding surface morphological and structural characterizations were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that the prepared petal MoO3-MoS2 hybrid nanomaterials were uniformly distributed on the PPy skeleton and exhibited a three-dimensional porous network structure. The flexible electrode was used for non-enzymatic detection of hydrogen peroxide (H2O2), and the developed MoO3-MoS2/PPy nanomaterials exhibited high electrochemical sensing performance in the range of 0.3-150 μM, with the detection limit of 0.18 μM (S/N = 3). The excellent detection properties enabled the MoO3-MoS2/PPy flexible electrode to detect H2O2 released by living cells. The resulting MoO3-MoS2/PPy flexible electrode also has the advantages of customizable shape and adjustability, which provides a potential platform for constructing clinically diagnosed in vivo portable instruments and real-time environmental monitoring.
Collapse
Affiliation(s)
- Pengfei Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hongxiu Dai
- Department Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Houyi Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
19
|
Rabiee N, Ahmadi S, Fatahi Y, Rabiee M, Bagherzadeh M, Dinarvand R, Bagheri B, Zarrintaj P, Saeb MR, Webster TJ. Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine (Lond) 2021; 16:237-258. [PMID: 33501839 DOI: 10.2217/nnm-2020-0353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next generation of nanomaterial-based microfluidic systems, the latest in their commercialization success and failure and highlight the value of these devices both in industry and in the laboratory.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Bagheri
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Zhao F, Zhou S, Zhang Y. Ultrasensitive Detection of Hydrogen Peroxide Using Bi 2Te 3 Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4761-4767. [PMID: 33440937 DOI: 10.1021/acsami.0c19911] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical sensors, with high accuracy, good selectivity, and linear response, have been widely used for environmental protection, health monitoring, and disease treatment. However, to date, these sensors still have limit sensitivity or otherwise require the use of high-cost materials such as noble metals and enzymes. Here, we report a novel electrochemical sensor using a topological insulator, Bi2Te3. Through liquid-phase exfoliation, we prepared nano- and microflakes of Bi2Te3 and measured their performance in hydrogen peroxide sensing via electrocatalytic reduction processes. Our devices exhibit a sensitivity of ∼4900 μA mM-1 cm-2 and a detection limit of ∼10-8 molar, both of which are superior to typical noble metal-based electrochemical sensors. Through electrochemical analysis and microkinetic simulations, we extracted the kinetic parameters and gained insights into the reaction mechanism. We attribute the ultrahigh sensitivity to the facile electron transfer at the Bi2Te3-aqueous solution interface.
Collapse
Affiliation(s)
- Fujia Zhao
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Shan Zhou
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Yingjie Zhang
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Zhao J, Yang H, Wu W, Shui Z, Dong J, Wen L, Wang X, Yang M, Hou C, Huo D. Flexible nickel–cobalt double hydroxides micro-nano arrays for cellular secreted hydrogen peroxide in-situ electrochemical detection. Anal Chim Acta 2021; 1143:135-143. [DOI: 10.1016/j.aca.2020.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/30/2020] [Accepted: 11/28/2020] [Indexed: 11/27/2022]
|
22
|
Roushani M, Ghanbarzadeh M, Shahdost-Fard F. Fabrication of an electrochemical biodevice for ractopamine detection under a strategy of a double recognition of the aptamer/molecular imprinting polymer. Bioelectrochemistry 2020; 138:107722. [PMID: 33340819 DOI: 10.1016/j.bioelechem.2020.107722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/06/2023]
Abstract
The importance of RAC tracking in human biofluids has boosted many demands for designing an ultrasensitive tool to determine the trace value of the RAC from clinical, judicial, and forensic centers. In this study, an electrochemical biodevice has developed for the highly selective detection of this illegal feed additive under a double recognition strategy of the aptamer (Apt) and molecular imprinting polymer (MIP) on a glassy carbon electrode (GCE). The sensing relies on this fact that both the MIP and Apt act synergistically to trap the RAC molecules. The sensing surface fabrication steps have been monitored by some electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV(. The charge transfer resistance (Rct) value of the redox probe as a representative of the biodevice response has increased linearly with the RAC concentration increasing in a dynamic range of 1 fM to 1.90 µM. The detection limit (LOD) value has been estimated to be 330 aM, lower than all of the reported methods in the RAC sensing. Furthermore, the practical feasibility of biodevice has been evaluated in some human blood serum and urine samples. This strategy offers some useful advantages in reliable detection of the RAC, which may help in the routine analysis, as mandated by regulatory agencies.
Collapse
Affiliation(s)
- Mahmoud Roushani
- Department of Chemistry, Faculty of Science, Ilam University, 65315-516 Ilam, Iran.
| | - Mahsa Ghanbarzadeh
- Department of Chemistry, Faculty of Science, Ilam University, 65315-516 Ilam, Iran
| | - Faezeh Shahdost-Fard
- Department of Chemistry, Faculty of Science, Ilam University, 65315-516 Ilam, Iran
| |
Collapse
|
23
|
Co-MOF/titanium nanosheet array: An excellent electrocatalyst for non-enzymatic detection of H2O2 released from living cells. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Soleymani J, Shafiei-Irannejad V, Hamblin MR, Hasanzadeh M, Somi MH, Jouyban A. Applications of advanced materials in bio-sensing in live cells: Methods and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111691. [PMID: 33579435 DOI: 10.1016/j.msec.2020.111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022]
Abstract
A wide variety of species, such as different ions, reactive oxygen species, and biomolecules play critical roles in many cell functions. These species are responsible for a range of cellular functions such as signaling, and disturbed levels could be involved in many diseases, such as diabetes, cancer, neurodegeneration etc. Thus, sensitive and specific detection methods for these biomarkers could be helpful for early disease detection and mechanistic investigations. New ultrasensitive sensors for detection of markers within living cells are a growing field of research. The present review provides updates in live cell-based biosensing, which have been published within the last decade. These sensors are mainly based on carbon, gold and other metals, and their physicochemical advantages and limitations are discussed. Advanced materials can be incorporated into probes for the detection of various analytes in living cells. The sensitivity is strongly influenced by the intrinsic properties of the nanomaterials as well their shape and size. The mechanisms of action and future challenges in the developments of new methods for live cell based biosensing are discussed.
Collapse
Affiliation(s)
- Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad H Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Hwang HS, Jeong JW, Kim YA, Chang M. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. MICROMACHINES 2020; 11:mi11090814. [PMID: 32872236 PMCID: PMC7569884 DOI: 10.3390/mi11090814] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
A biosensor is defined as a measuring system that includes a biological receptor unit with distinctive specificities toward target analytes. Such analytes include a wide range of biological origins such as DNAs of bacteria or viruses, or proteins generated from an immune system of infected or contaminated living organisms. They further include simple molecules such as glucose, ions, and vitamins. One of the major challenges in biosensor development is achieving efficient signal capture of biological recognition-transduction events. Carbon nanomaterials (CNs) are promising candidates to improve the sensitivity of biosensors while attaining low detection limits owing to their capability of immobilizing large quantities of bioreceptor units at a reduced volume, and they can also act as a transduction element. In addition, CNs can be adapted to functionalization and conjugation with organic compounds or metallic nanoparticles; the creation of surface functional groups offers new properties (e.g., physical, chemical, mechanical, electrical, and optical properties) to the nanomaterials. Because of these intriguing features, CNs have been extensively employed in biosensor applications. In particular, carbon nanotubes (CNTs), nanodiamonds, graphene, and fullerenes serve as scaffolds for the immobilization of biomolecules at their surface and are also used as transducers for the conversion of signals associated with the recognition of biological analytes. Herein, we provide a comprehensive review on the synthesis of CNs and their potential application to biosensors. In addition, we discuss the efforts to improve the mechanical and electrical properties of biosensors by combining different CNs.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Jae Won Jeong
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| |
Collapse
|
26
|
2D materials in electrochemical sensors for in vitro or in vivo use. Anal Bioanal Chem 2020; 413:701-725. [PMID: 32776222 DOI: 10.1007/s00216-020-02831-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Individual cells and cell populations are at the present time investigated with a myriad of analytical tools. While most of them are commercially available, some of these analytical tools are just emerging from research laboratories and are in the developmental phase. Electrochemical sensors which allow the monitoring of low molecular weight compounds released (and / or uptaken) by cells are among these emerging tools. Such sensors are increasingly built using 2D materials (e.g. graphene-based materials, transition metal dichalcogenides, etc.) with the aim of conferring better analytical performances to these devices. The present work critically reviews studies published during the last 10 years describing electrochemical sensors made with 2D materials and exploited to monitor small compounds (e.g. H2O2, ·NO, glucose, etc.) in living biological systems. It also discusses the very few 2D material-based electrochemical sensors which are wearable or usable in vivo. Finally, the present work includes a specific section about 2D material biocompatibility, a fundamental requirement for 2D material-based sensor applications in vitro and in vivo. As such, the review provides a critical view on the state of the art of electrochemical sensors made with 2D materials and used at cellular level and it evaluates the possibility that such sensors will be used on / in the human body on a wider scale.
Collapse
|
27
|
A Nonenzymatic Glucose Sensor Platform Based on Specific Recognition and Conductive Polymer-Decorated CuCo 2O 4 Carbon Nanofibers. MATERIALS 2020; 13:ma13122874. [PMID: 32604917 PMCID: PMC7345228 DOI: 10.3390/ma13122874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022]
Abstract
CuCo2O4 decoration carbon nanofibers (CNFs) as an enzyme-free glucose sensor were fabricated via electrospinning technology and carbonization treatment. The CNFs with advantages of abundant nitrogen amounts, porosity, large surface area, and superior electrical conductivity were used as an ideal matrix for CuCo2O4 decoration. The resultant CuCo2O4–CNF hybrids possessed favorable properties of unique three-dimensional architecture and good crystallinity, accompanied by the CuCo2O4 nanoparticles uniformly growing on the CNF skeleton. To further enhance the selective molecular recognition capacity of the developed sensor, a conductive film was synthesized through the electropolymerization of thiophene and thiophene-3-boronic acid (TBA). Based on the synergistic effects of the performances of CNFs, CuCo2O4 nanoparticles, and boronic acid-decorated polythiophene layer, the obtained poly(thiophene-3-boronic acid) (PTBA)/CuCo2O4–CNF-modified electrodes (PTBA/CuCo2O4–CNFs/glassy carbon electrode (GCE)) displayed prominent electrocatalytic activity toward electro-oxidation of glucose. The fabricated sensor presented an outstanding performance in the two linear ranges of 0.01–0.5 mM and 0.5–1.5 mM, with high selectivity of 2932 and 708 μA·mM−1·cm−2, respectively. The composite nanofibers also possessed good stability, repeatability, and excellent anti-interference selectivity toward the common interferences. All these results demonstrate that the proposed composite nanofibers hold great potential in the application of constructing an enzyme-free glucose sensing platform.
Collapse
|
28
|
Yang Y, Zhang H, Wang Z, Li X, Abdelsamie Abdelrahim Abdelsamie A, Yuan X, Fan X, Zhang R, Chang H. Highly Sensitive Electrochemical Detection of Reactive Oxygen Species in Living Cancer Cells Using Monolithic Metallic Foam Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Yang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Ministry of Education Key Laboratory of Micro/Nano Systems for AerospaceNorthwestern Polytechnical University Xi'an 710072 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical University Xi'an 710072 China
| | - Heng Zhang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology School of Life SciencesNorthwestern Polytechnical University
| | - Xuepeng Li
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
| | | | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
- Key Laboratory for Space Bioscience and Biotechnology School of Life SciencesNorthwestern Polytechnical University
| | - Xiaomeng Fan
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical University Xi'an 710072 China
| | - Ruirong Zhang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| | - Honglong Chang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| |
Collapse
|
29
|
Polyurethane-doped platinum nanoparticles modified carbon paste electrode for the sensitive and selective voltammetric determination of free copper ions in biological samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Balasubramanian P, He SB, Jansirani A, Deng HH, Peng HP, Xia XH, Chen W. Oxygen vacancy confined nickel cobaltite nanostructures as an excellent interface for the enzyme-free electrochemical sensing of extracellular H2O2 secreted from live cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj03281f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxygen vacancy (OV) manufacturing is an effective way to boost the efficiency of a catalyst; therefore, the development of OV-rich catalysts has attracted substantial research interest.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Arumugam Jansirani
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| |
Collapse
|
31
|
Wang H, Yuan S, Zhou M, Guo L. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT‐9/Mesoporous Carbon Composite. ELECTROANAL 2019. [DOI: 10.1002/elan.201900496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haixu Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Shuang Yuan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|
32
|
Zhang Y, Wan Q, Yang N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903780. [PMID: 31663294 DOI: 10.1002/smll.201903780] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
33
|
Wang Y, Yang J, Sun S, Wang L, Guo T, Zhang D, Xue Z, Zhou X. PtNi nanoparticles supported on electrochemically reduced porous graphene oxide for methanol oxidation reaction. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Peng M, Zhao Y, Chen D, Tan Y. Free‐Standing 3D Electrodes for Electrochemical Detection of Hydrogen Peroxide. ChemCatChem 2019. [DOI: 10.1002/cctc.201900913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Peng
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Yang Zhao
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Dechao Chen
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Yongwen Tan
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
35
|
Zhao Y, Hu Y, Hou J, Jia Z, Zhong D, Zhou S, Huo D, Yang M, Hou C. Electrochemical biointerface based on electrodeposition AuNPs on 3D graphene aerogel: Direct electron transfer of Cytochrome c and hydrogen peroxide sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Wu P, Ding P, Ye X, Li L, He X, Wang K. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles as a novel enzyme mimic for biosensing applications. RSC Adv 2019; 9:14982-14989. [PMID: 35516347 PMCID: PMC9064217 DOI: 10.1039/c9ra00603f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023] Open
Abstract
Multimetallic nanomaterials have aroused special attention owing to the unique characteristics of chemical, optical and enhanced enzyme mimetic capabilities resulting from the synergistic effect of different metal elements. In this work, we present a facile, gentle, fast and one-pot method for preparing Cu/Au/Pt trimetallic nanoparticles (TNPs), which possess intrinsic and enhanced peroxidase-like activity as well as excellent stability, sustainable catalytic activity, and robustness to harsh environments. Kinetic analysis indicated that Cu/Au/Pt TNPs exhibited strong affinities with H2O2 and 3,3,5,5-tetramethylbenzidine (TMB) as the substrates. To investigate the feasibility of Cu/Au/Pt TNPs-based strategy in biological analysis, H2O2 was chosen as a model analyte and a sensitive and specific detection for H2O2 was acquired with a detection limit of 17 nM. By coupling with glucose oxidase (GOD), this assay could also achieve a sensitive and selective detection of glucose with a detection limit of 33 μM, indicating the versatility of the method. In view of the potential combination with diverse enzyme-related reactions, the Cu/Au/Pt TNPs-based strategy is promising as a universal platform for biosensors.
Collapse
Affiliation(s)
- Pian Wu
- XiangYa School of Public Health, Central South University Changsha 410078 Hunan China +86-731-84805462 +86-731-84805462
| | - Ping Ding
- XiangYa School of Public Health, Central South University Changsha 410078 Hunan China +86-731-84805462 +86-731-84805462
| | - Xiaosheng Ye
- XiangYa School of Public Health, Central South University Changsha 410078 Hunan China +86-731-84805462 +86-731-84805462
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Changsha 410082 Hunan China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University Nanjing 211166 Jiangsu China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Changsha 410082 Hunan China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Changsha 410082 Hunan China
| |
Collapse
|
37
|
Zhang Y, Zhu H, Sun P, Sun C, Huang H, Guan S, Liu H, Zhang H, Zhang C, Qin K. Laser‐induced Graphene‐based Non‐enzymatic Sensor for Detection of Hydrogen Peroxide. ELECTROANAL 2019. [DOI: 10.1002/elan.201900043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuhan Zhang
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
| | - Huichao Zhu
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
| | - Pin Sun
- Department of Neurosurgery, Huashan HospitalFudan University Shanghai China
- Shanghai Medical CollegeFudan University Shanghai China
| | - Chang‐Kai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue EngineeringDalian University of Technology Dalian 116024 China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain DisordersDalian Medical University Dalian 116044 China
| | - Hui Huang
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
| | - Shui Guan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue EngineeringDalian University of Technology Dalian 116024 China
| | - Hailong Liu
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
| | - Hangyu Zhang
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
| | - Chi Zhang
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
| | - Kai‐Rong Qin
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian 116024 China
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian 116024 China
| |
Collapse
|
38
|
Žalnėravičius R, Gedminas A, Ruzgas T, Jagminas A. Nanoplatelet MoS2 arrays decorated with Pt nanoparticles for non-enzymatic detection of hydrogen peroxide. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ye X, He X, Lei Y, Tang J, Yu Y, Shi H, Wang K. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles with enhanced catalytic and plasmonic properties as a universal platform for biosensing and cancer theranostics. Chem Commun (Camb) 2019; 55:2321-2324. [PMID: 30720028 DOI: 10.1039/c8cc10127b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu/Au/Pt trimetallic nanoparticles (TMNPs) with enhanced catalytic activity and intense plasmonic absorption in the NIR-I biowindow (650-950 nm) were prepared using a fast, gentle and one-pot protocol. Based on these properties and assembly of thiolated-aptamers on Cu/Au/Pt TMNPs, a universal platform was developed for applications in biosensing and theranostics.
Collapse
Affiliation(s)
- Xiaosheng Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Three-Dimensional Au/Holey-Graphene as Efficient Electrochemical Interface for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. MICROMACHINES 2019; 10:mi10020084. [PMID: 30682841 PMCID: PMC6413087 DOI: 10.3390/mi10020084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 11/23/2022]
Abstract
The quantification of ascorbic acid (AA), dopamine (DA), and uric acid (UA) has been an important area of research, as these molecules’ determination directly corresponds to the diagnosis and control of diseases of nerve and brain physiology. In our research, graphene oxide (GO) with nano pores deposited with gold nanoparticles were self-assembled to form three-dimensional (3D) Au/holey-graphene oxide (Au/HGO) composite structures. The as-prepared 3DAu/HGO composite structures were characterized for their structures by X-ray diffraction, Raman spectrum, scanning electron microscopy, and transmission electron microscopy coupled with cyclic voltammograms. Finally, the proposed 3DAu/HGO displayed high sensitivity, excellent electron transport properties, and selectivity for the simultaneous electrochemical determination of AA, DA and UA with linear response ranges of 1.0–500 μM, 0.01–50 μM and 0.05–50 μM respectively. This finding paves the way for graphene applications as a biosensor for detecting three analytes in human serum.
Collapse
|
41
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
42
|
Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Peng TK, Balamurugan TST. Facile Solvothermal Preparation of Mn 2CuO 4 Microspheres: Excellent Electrocatalyst for Real-Time Detection of H 2O 2 Released from Live Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43543-43551. [PMID: 30495924 DOI: 10.1021/acsami.8b18510] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen peroxide (H2O2) is an eminent biomarker in pathogenesis; a selective, highly sensitive real-time detection of H2O2 released from live cells has drawn a significant research interest in bioanalytical chemistry. Binary transition-metal oxides (BTMOs) displayed a recognizable benefit in enhancing the sensitivity of H2O2 detection; although the reported BTMO-based H2O2 sensor's detection limit is still insufficient, it is not appropriate for in situ profiling of trace amounts of cellular H2O2. In this paper, we describe an efficient, reliable electrochemical biosensor based on Mn2CuO4 (MCO) microspheres to assay cellular H2O2. The Mn2CuO4 microspheres were prepared through a superficial solvothermal method. It is obvious from impedance studies, introduction of manganese into copper oxide lattice significantly improved the ionic conductivity, which is beneficial for the electrochemical sensing process. Thanks to the distinct microsphere structure and excellent synergy, MCO-modified electrode exhibited excellent nonenzymatic electrochemical behavior toward H2O2 sensing. The MCO-modified electrode delivered a broad working range (36 nM to 9.3 mM) and an appreciable detection limit (13 nM), with high selectivity toward H2O2. To prove its practicality, the developed sensor was applied in the detection of cellular H2O2 released by RAW 264.7 cells in presence of CHAPS. These results label the possible appliance of the sensor in clinical analysis and pathophysiology. Thus, BTMOs are evolving as a promising candidate in designing catalytic matrices for biosensor applications.
Collapse
|
43
|
Zhou JX, Tang LN, Yang F, Liang FX, Wang H, Li YT, Zhang GJ. MoS 2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 2018; 142:4322-4329. [PMID: 29068445 DOI: 10.1039/c7an01446e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This work describes the adaptive use of a conventional stainless steel acupuncture needle as the electrode substrate for construction of a molybdenum disulfide (MoS2) and platinum nanoparticles (PtNPs) layer-modified microneedle sensor for real-time monitoring of hydrogen peroxide (H2O2) release from living cells. To construct the nanocomposite-functionalized microneedle, the needle surface was first coated with a gold film by ion sputtering to enhance the conductivity. Subsequently, an electrochemical deposition method was successfully employed to deposit MoS2 nanosheet and Pt nanoparticles on the needle tip as the sensing interface. Electrochemical study demonstrated that the MoS2/PtNPs nanocomposite-modified needle exhibited excellent catalytic performance and low over-potential toward the reduction of H2O2. Not only did the microneedle achieve a wide linear range from 1 to 100 μmol L-1 with a limit of detection down to 0.686 μmol L-1, but it also realized the highly specific detection of H2O2. Owing to these remarkable analytical advantages, the prepared microneedle was applied to determine H2O2 release from living cells with satisfactory results. The MoS2/PtNPs nanocomposite-functionalized microneedle sensor is simple and affordable, and can serve as a promising electrochemical nonenzymatic sensing platform. Moreover, this superfine needle sensor shows great potential for real-time monitoring of reactive oxygen species in vivo with minimal damage.
Collapse
Affiliation(s)
- Jin-Xiu Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, PR China.
| | | | | | | | | | | | | |
Collapse
|
44
|
A novel enzyme-free glucose and H2O2 sensor based on 3D graphene aerogels decorated with Ni3N nanoparticles. Anal Chim Acta 2018; 1038:11-20. [DOI: 10.1016/j.aca.2018.06.086] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 01/07/2023]
|
45
|
Roushani M, Shahdost-Fard F. A glassy carbon electrode with electrodeposited silver nanoparticles for aptamer based voltammetric determination of trinitrotoluene using riboflavin as a redox probe. Mikrochim Acta 2018; 185:558. [PMID: 30467783 DOI: 10.1007/s00604-018-3098-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of -0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity. Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
Collapse
Affiliation(s)
- Mahmoud Roushani
- Department of Chemistry, Ilam University, PO. Box 69315-516, Ilam, Iran.
| | | |
Collapse
|
46
|
Construction and Application of a Non-Enzyme Hydrogen Peroxide Electrochemical Sensor Based on Eucalyptus Porous Carbon. SENSORS 2018; 18:s18103464. [PMID: 30326588 PMCID: PMC6210474 DOI: 10.3390/s18103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Natural eucalyptus biomorphic porous carbon (EPC) materials with unidirectional ordered pores have been successfully prepared by carbonization in an inert atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were employed to characterize the phase identification, microstructure and morphology analysis. The carbon materials were used to fabricate electrochemical sensors to detect hydrogen peroxide (H2O2) without any assistance of enzymes because of their satisfying electrocatalytic properties. It was immobilized on a glassy carbon electrode (GCE) with chitosan (CHIT) to fabricate a new kind of electrochemical sensor, EPC/CHIT/GCE, which showed excellent electrocatalytic activity in the reduction of H2O2. Meanwhile, EPC could also promote electron transfer with the help of hydroquinone. The simple and low-cost electrochemical sensor exhibited high sensitivity, and good operational and long-term stability.
Collapse
|
47
|
Hassan M, Jiang Y, Bo X, Zhou M. Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 2018; 188:339-348. [DOI: 10.1016/j.talanta.2018.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
48
|
Zhang Q, Zhao Q, Fu M, Fan X, Lu H, Wang H, Zhang Y, Wang H. Carbon quantum dots encapsulated in super small platinum nanocrystals core-shell architecture/nitrogen doped graphene hybrid nanocomposite for electrochemical biosensing of DNA damage biomarker-8-hydroxy-2'-deoxyguanosine. Anal Chim Acta 2018; 1047:9-20. [PMID: 30567668 DOI: 10.1016/j.aca.2018.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
Abstract
In this work, carbon quantum dots (CQD) encapsulated in super small platinum nanocrystals core-shell architecture/nitrogen doped graphene hybrid nanocomposite (CQD@PDA@PtNCs-NGR) was design synthesized. Without using any capping reagent, stabilizer and surfactant, very small CQD was served as template and anchoring point for the synthesis of Pt NCs with a super small size (2.25 nm) and a uniform distribution. Meanwhile, dopamine (DA) was used as bridging agent, positioning agent and weak reducing agent to make Pt2+ grow on the CQD. Combine the high dispersed Pt NCs with high specific surface area and high conductivity of NGR, the CQD@PDA@PtNCs-NGR shows excellent electrocatalytic performance towards the biosensing of DNA damage biomarker- 8-Hydroxy-2'-deoxyguanosine (8-OH-dG). A very low detection limit of 0.45 nM and 0.85 nM (S/N = 3), a wide linear range of 0.013 μM-109.78 μM and a high sensitivity of 7.912 μA μM-1cm-2 and 4.190 μA μM-1cm-2 were obtained. The fabricated CQD@PDA@PtNCs-NGR realized the detection of 8-OH-dG in human urine practical sample. Furthermore, CQD@PDA@PtNCs-NGR was applied for the determination of 8-OH-dG generated from damaged DNA and damaged guanine (G), respectively. This work effectively combines the electrochemical signal of 8-OH-dG with DNA damage, confirms the mechanism of DNA damage, which might pave a new way to establish the associations between degree of DNA damage and 8-OH-dG.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Qiuyue Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Mingxuan Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Haijun Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China.
| |
Collapse
|
49
|
Zhang Q, Cao B, Fu M, Liu Y, Wang H, Fan X, Lu H, Zhang Y, Wang H. Template, surfactant, stabilizer free controllable synthesis of various morphologies platinum decorated ordered mesoporous carbon nano architecture for high–performance electrochemical sensing. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
|