1
|
Serres S, Tardin C, Salomé L. Digital One-Step Competitive Detection of a Small Molecule in Synthetic and Environmental Waters. Anal Chem 2024; 96:15521-15525. [PMID: 39284000 DOI: 10.1021/acs.analchem.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Optical methods for single-molecule analysis hold the promise of accurate, sensitive, and rapid detection of target molecules. Here, we demonstrate the efficiency of such an approach for the competitive detection of small molecules in water. Our biosensing method is based on a combination of a single-DNA biochip for the parallelization of tethered particle motion real-time measurements with antibodies and modified targets as molecular competitors. The antibodies are coupled to the particles tethered to the surface by a long DNA bearing in its middle the molecular competitor bound to the antibodies. Competitive target binding leads to a detectable conformational change of the DNA tethers from looped to unlooped in proportions related to the target concentration. We thus managed to detect fluorescein, chosen as a model of a target molecule, in freshwater of various qualities, from solutions prepared with ultrapure water to more complex matrices such as river water and wastewater treatment plant effluent samples. Similar dose-response curves were obtained under these various conditions in a wide range of concentrations from nanomolar to micromolar with a limit of detection around 2 nM.
Collapse
Affiliation(s)
- Sandra Serres
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| |
Collapse
|
2
|
Fu J, Feng Y, Sun Y, Yi R, Tian J, Zhao W, Sun D, Zhang C. A Multi-Drug Concentration Gradient Mixing Chip: A Novel Platform for High-Throughput Drug Combination Screening. BIOSENSORS 2024; 14:212. [PMID: 38785686 PMCID: PMC11117479 DOI: 10.3390/bios14050212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Combinatorial drug therapy has emerged as a critically important strategy in medical research and patient treatment and involves the use of multiple drugs in concert to achieve a synergistic effect. This approach can enhance therapeutic efficacy while simultaneously mitigating adverse side effects. However, the process of identifying optimal drug combinations, including their compositions and dosages, is often a complex, costly, and time-intensive endeavor. To surmount these hurdles, we propose a novel microfluidic device capable of simultaneously generating multiple drug concentration gradients across an interlinked array of culture chambers. This innovative setup allows for the real-time monitoring of live cell responses. With minimal effort, researchers can now explore the concentration-dependent effects of single-agent and combination drug therapies. Taking neural stem cells (NSCs) as a case study, we examined the impacts of various growth factors-epithelial growth factor (EGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF)-on the differentiation of NSCs. Our findings indicate that an overdose of any single growth factor leads to an upsurge in the proportion of differentiated NSCs. Interestingly, the regulatory effects of these growth factors can be modulated by the introduction of additional growth factors, whether singly or in combination. Notably, a reduced concentration of these additional factors resulted in a decreased number of differentiated NSCs. Our results affirm that the successful application of this microfluidic device for the generation of multi-drug concentration gradients has substantial potential to revolutionize drug combination screening. This advancement promises to streamline the process and accelerate the discovery of effective therapeutic drug combinations.
Collapse
Affiliation(s)
- Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
| | - Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
| | - Yu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710127, China (R.Y.)
| | - Ruiya Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710127, China (R.Y.)
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710127, China (R.Y.)
- Huaxin Microfish Biotechnology Co., Ltd., Taicang 215400, China
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi’an 710127, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
- Huaxin Microfish Biotechnology Co., Ltd., Taicang 215400, China
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi’an 710127, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China
- Huaxin Microfish Biotechnology Co., Ltd., Taicang 215400, China
| |
Collapse
|
3
|
Tortajada-Genaro LA, Lazaro A, Martorell S, Maquieira A. Nucleotide-selective amplification and array-based detection for identifying multiple somatic mutations. Anal Chim Acta 2023; 1265:341343. [PMID: 37230582 DOI: 10.1016/j.aca.2023.341343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
In the context of personalized and cost-effective treatment, knowledge of the mutational status of specific genes is advantageous to predict which patients are responsive to therapies. As an alternative to one-by-one detection or massive sequencing, the presented genotyping tool determines multiple polymorphic sequences that vary a single nucleotide. The biosensing method includes an effective enrichment of mutant variants and selective recognition by colorimetric DNA arrays. The proposed approach is the hybridization between sequence-tailored probes and products from PCR with SuperSelective primers to discriminate specific variants in a single locus. A fluorescence scanner, a documental scanner, or a smartphone captured the chip images to obtain spot intensities. Hence, specific recognition patterns identified any single-nucleotide change in the wild-type sequence overcoming qPCR methods and other array-based approaches. Studied mutational analyses applied to human cell lines provided high discrimination factors, the precision was 95%, and the sensitivity was 1% mutant of total DNA. Also, the methods showed a selective genotyping of the KRAS gene from tumorous samples (tissue and liquid biopsy), corroborating results by NGS. The developed technology supported on low-cost robust chips and optical reading provides an attractive pathway toward implementing fast, cheap, reproducible discrimination of oncological patients.
Collapse
Affiliation(s)
- Luis A Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain.
| | - Ana Lazaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sara Martorell
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
4
|
Pal A, Kaswan K, Barman SR, Lin YZ, Chung JH, Sharma MK, Liu KL, Chen BH, Wu CC, Lee S, Choi D, Lin ZH. Microfluidic nanodevices for drug sensing and screening applications. Biosens Bioelectron 2023; 219:114783. [PMID: 36257116 PMCID: PMC9533638 DOI: 10.1016/j.bios.2022.114783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.
Collapse
Affiliation(s)
- Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Zih Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jun-Hsuan Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Manish Kumar Sharma
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuei-Lin Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bo-Huan Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 333, Taiwan
| | - Chih-Cheng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Center of Quality Management, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, 30059, Taiwan; College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, 35053, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| |
Collapse
|
5
|
Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. BIOSENSORS 2022; 12:bios12080566. [PMID: 35892464 PMCID: PMC9394270 DOI: 10.3390/bios12080566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 05/07/2023]
Abstract
Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
Collapse
Affiliation(s)
- Xinqian Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Dingqiang Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China;
| | - Ming Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Danyang Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yujiao Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yixuan Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| |
Collapse
|
6
|
Tijunelyte I, Teillet J, Bruand P, Courson R, Lecestre A, Joseph P, Bancaud A. Hybridization-based DNA biosensing with a limit of detection of 4 fM in 30 s using an electrohydrodynamic concentration module fabricated by grayscale lithography. BIOMICROFLUIDICS 2022; 16:044111. [PMID: 35992636 PMCID: PMC9385222 DOI: 10.1063/5.0073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Speeding up and enhancing the performances of nucleic acid biosensing technologies have remained drivers for innovation. Here, we optimize a fluorimetry-based technology for DNA detection based on the concentration of linear targets paired with probes. The concentration module consists of a microfluidic channel with the shape of a funnel in which we monitor a viscoelastic flow and a counter-electrophoretic force. We report that the technology performs better with a target longer than 100 nucleotides (nt) and a probe shorter than 30 nt. We also prove that the control of the funnel geometry in 2.5D using grayscale lithography enhances sensitivity by 100-fold in comparison to chips obtained by conventional photolithography. With these optimized settings, we demonstrate a limit of detection of 4 fM in 30 s and a detection range of more than five decades. This technology hence provides an excellent balance between sensitivity and time to result.
Collapse
Affiliation(s)
- Inga Tijunelyte
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Jeffrey Teillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Paul Bruand
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Rémi Courson
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | | - Pierre Joseph
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
7
|
Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. BIOSENSORS 2022; 12:357. [PMID: 35624657 PMCID: PMC9139021 DOI: 10.3390/bios12050357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Better diagnostics are always essential for the treatment and prevention of a disease. Existing technologies for detecting infectious and non-infectious diseases are mostly tedious, expensive, and do not meet the World Health Organization's (WHO) ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end user) criteria. Hence, more accurate, sensitive, and faster diagnostic technologies that meet the ASSURED criteria are highly required for timely and evidenced-based treatment. Presently, the diagnostics industry is finding interest in microfluidics-based biosensors, as this integration comprises all qualities, such as reduction in the size of the equipment, rapid turnaround time, possibility of parallel multiple analysis or multiplexing, etc. Microfluidics deal with the manipulation/analysis of fluid within micrometer-sized channels. Biosensors comprise biomolecules immobilized on a physicochemical transducer for the detection of a specific analyte. In this review article, we provide an outline of the history of microfluidics, current practices in the selection of materials in microfluidics, and how and where microfluidics-based biosensors have been used for the diagnosis of infectious and non-infectious diseases. Our inclination in this review article is toward the employment of microfluidics-based biosensors for the improvement of already existing/traditional methods in order to reduce efforts without compromising the accuracy of the diagnostic test. This article also suggests the possible improvements required in microfluidic chip-based biosensors in order to meet the ASSURED criteria.
Collapse
Affiliation(s)
- Tanu Bhardwaj
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, 3rd Milestone, Gurugram Expressway, Faridabad 121001, India;
| | - Lakshmi Narashimhan Ramana
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India;
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gujarat International Finance and Tec (GIFT) City, Gandhinagar 382355, India
| |
Collapse
|
8
|
Xie Y, Dai L, Yang Y. Microfluidic technology and its application in the point-of-care testing field. BIOSENSORS & BIOELECTRONICS: X 2022; 10:100109. [PMID: 35075447 PMCID: PMC8769924 DOI: 10.1016/j.biosx.2022.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 05/15/2023]
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), countries around the world have suffered heavy losses of life and property. The global pandemic poses a challenge to the global public health system, and public health organizations around the world are actively looking for ways to quickly and efficiently screen for viruses. Point-of-care testing (POCT), as a fast, portable, and instant detection method, is of great significance in infectious disease detection, disease screening, pre-disease prevention, postoperative treatment, and other fields. Microfluidic technology is a comprehensive technology that involves various interdisciplinary disciplines. It is also known as a lab-on-a-chip (LOC), and can concentrate biological and chemical experiments in traditional laboratories on a chip of several square centimeters with high integration. Therefore, microfluidic devices have become the primary implementation platform of POCT technology. POCT devices based on microfluidic technology combine the advantages of both POCT and microfluids, and are expected to shine in the biomedical field. This review introduces microfluidic technology and its applications in combination with other technologies.
Collapse
Affiliation(s)
- Yaping Xie
- Sansure Biotech Inc., Changsha, 410205, PR China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Lizhong Dai
- Sansure Biotech Inc., Changsha, 410205, PR China
| | - Yijia Yang
- Sansure Biotech Inc., Changsha, 410205, PR China
| |
Collapse
|
9
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
10
|
Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, Ruslinda AR, Voon CH, Uda MNA, Uda MNA, Nadzirah S, Rejali Z, Afzan A, Zakaria II. Designing DNA probe from HPV 18 and 58 in the E6 region for sensing element in the development of genosensor-based gold nanoparticles. Biotechnol Appl Biochem 2021; 69:1966-1983. [PMID: 34554606 DOI: 10.1002/bab.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
Collapse
Affiliation(s)
- F Nadhirah Jaapar
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N Hamidah A Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - F Syakirah Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - A Rahim Ruslinda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - C H Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Amilia Afzan
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute (MGI), National Institute of Biotechnology (NIBM), Kajang, Selangor, Malaysia
| |
Collapse
|
11
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Takekawa VS, Marques LA, Strubinger E, Segato TP, Bogusz S, Brazaca LC, Carrilho E. Development of low-cost planar electrodes and microfluidic channels for applications in capacitively coupled contactless conductivity detection (C 4 D). Electrophoresis 2021; 42:1560-1569. [PMID: 34080201 DOI: 10.1002/elps.202000351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/11/2023]
Abstract
Electrochemical techniques are commonly applied to micro total analysis system (μTAS) devices mainly due to its high sensitivity and miniaturization capacity. Among many electrochemical techniques, capacitively coupled contactless conductivity detection (C4 D) stands out for not requiring direct electrode-solution contact, avoiding several problems such as electrolysis, bubble formation, and metal degradation. Furthermore, the instrumentation required for C4 D measurements is compact, low cost, and easy to use, allowing in situ measurements to be performed even by nonspecialized personal. Contrarily, the production of metallic electrodes and microchannels adequate for C4 D measurements commonly requires specialized facilities and workers, increasing the costs of applying these methods. We propose alternatives to batch manufacture metallic electrodes and polymeric microchannels for C4 D analysis using more straightforward equipment and lower-cost materials. Three devices with different dielectric layer compositions and electrode sizes were tested and compared regarding their analytical performance. The constructed platforms have shown a reduction of more than 64% in cost when compared to traditional techniques and displayed good linearity (R2 ≥ 0.994), reproducibility (RSD ≤ 4.07%, n = 3), and limits of detection (≤0.26 mmol/L) when measuring standard NaCl samples. Therefore, the proposed methods were successfully validated and are available for further C4 D applications such as diagnosis of dry-eye syndrome.
Collapse
Affiliation(s)
- Victor Sadanory Takekawa
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Letícia Aparecida Marques
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Ethan Strubinger
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Thiago Pinotti Segato
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Stanislau Bogusz
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Jia F, Bai X, Zhang X, Fu Y, Li Y, Li X, Kokini JL. A Low-Field Magnetic Resonance Imaging Aptasensor for the Rapid and Visual Sensing of Pseudomonas aeruginosa in Food, Juice, and Water. Anal Chem 2021; 93:8631-8637. [PMID: 34107210 DOI: 10.1021/acs.analchem.1c01669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present a low-field magnetic resonance imaging (LF-MRI) aptasensor based on the difference in magnetic behavior of two magnetic nanoparticles with diameters of 10 (MN10) and 400 nm (MN400) for the rapid detection of Pseudomonas aeruginosa (P. aeruginosa). First, specific anti-P. aeruginosa aptamers were covalently immobilized onto magnetic nanoparticles via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide chemistry for the capture of the target bacteria. In the presence of P. aeruginosa, an MN10-bacteria-MN400 (MBM) complex was formed after binding between the aptamers on magnetic nanoparticles and P. aeruginosa cells. When a magnetic field was applied, the MBM complex and free MN400 were rapidly magnetically separated, and free MN10 left in the solution worked as a T2 (transverse relaxation time) single readout in MRI measurement. Under optimum conditions, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with a detection limit of 100 cfu/mL. The feasibility and specificity of the aptasensor were demonstrated in detecting real food, orange juice, and drinking water samples and validated using plate counting methods.
Collapse
Affiliation(s)
- Fei Jia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Department of Food Science, Purdue University, West Lafayette, Indiana 47906, United States
| | - Xingjian Bai
- Department of Food Science, Purdue University, West Lafayette, Indiana 47906, United States
| | - Xiaowei Zhang
- Department of Food Science, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jozef L Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
14
|
micro-RNA 21 detection with a limit of 2 pM in 1 min using a size-accordable concentration module operated by electrohydrodynamic actuation. Biosens Bioelectron 2021; 178:112992. [PMID: 33548653 DOI: 10.1016/j.bios.2021.112992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
We present a fluorimetry-based technology for micro-RNA-21 (miR-21) sensing based on the concentration of miR-molecular beacon (MB) complexes and flushing of unbound MB. This concentration module consists of a microfluidic channel with the shape of a funnel operated with electrohydrodynamic actuation. We report a limit of detection of 2 pM in less than 1 min for miR-21 alone, and then demonstrate that miR-21 levels, measured in fine needle biopsy samples, from patients with pancreatic cancer correlate with the reference technique of reverse-transcription polymerase chain reaction (RT-PCR). Altogether, this technology has promising clinical performances for the follow-up of patients with cancer.
Collapse
|
15
|
Wang J, Ma P, Kim DH, Liu BF, Demirci U. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy. NANO TODAY 2021; 37:101066. [PMID: 33777166 PMCID: PMC7990116 DOI: 10.1016/j.nantod.2020.101066] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exosomes are a class of cell-secreted, nano-sized extracellular vesicles with a bilayer membrane structure of 30-150 nm in diameter. Their discovery and application have brought breakthroughs in numerous areas, such as liquid biopsies, cancer biology, drug delivery, immunotherapy, tissue repair, and cardiovascular diseases. Isolation of exosomes is the first step in exosome-related research and its applications. Standard benchtop exosome separation and sensing techniques are tedious and challenging, as they require large sample volumes, multi-step operations that are complex and time-consuming, requiring cumbersome and expensive instruments. In contrast, microfluidic platforms have the potential to overcome some of these limitations, owing to their high-precision processing, ability to handle liquids at a microscale, and integrability with various functional units, such as mixers, actuators, reactors, separators, and sensors. These platforms can optimize the detection process on a single device, representing a robust and versatile technique for exosome separation and sensing to attain high purity and high recovery rates with a short processing time. Herein, we overview microfluidic strategies for exosome isolation based on their hydrodynamic properties, size filtration, acoustic fields, immunoaffinity, and dielectrophoretic properties. We focus especially on advances in label-free isolation of exosomes with active biological properties and intact morphological structures. Further, we introduce microfluidic techniques for the detection of exosomal proteins and RNAs with high sensitivity, high specificity, and low detection limits. We summarize the biomedical applications of exosome-mediated therapeutic delivery targeting cancer cells. To highlight the advantages of microfluidic platforms, conventional techniques are included for comparison. Future challenges and prospects of microfluidics towards exosome isolation applications are also discussed. Although the use of exosomes in clinical applications still faces biological, technical, regulatory, and market challenges, in the foreseeable future, recent developments in microfluidic technologies are expected to pave the way for tailoring exosome-related applications in precision medicine.
Collapse
Affiliation(s)
- Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Peng Ma
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Daniel H Kim
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| |
Collapse
|
16
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
17
|
Zhang D, Li C, Ji D, Wang Y. Paper-Based Microfluidic Sensors for Onsite Environmental Detection: A Critical Review. Crit Rev Anal Chem 2021; 52:1432-1449. [PMID: 33660571 DOI: 10.1080/10408347.2021.1886900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A newly developed research topic, fabricated paper-based microfluidic sensors, was discussed in the field of low-cost environmental detection. Distinguished with the traditional dipstick or lateral-flow setups, these paper-based microfluidic sensors can serve as a tool for onsite quantitative and semi-quantitative measurements, without risks to cause environmental pollution. They have attracted increasing interest since the first easy-fabricated paper-based setup reported by Whitesides group in 2007. Most of the publications utilized paper-based sensors in clinical detection. In recent years, some groups started to use these sensors in environmental measurement, leading to precise, easy operation, low-cost, and eco-friendly methods for onsite detection. In this review, paper-based microfluidic sensors were briefly introduced, followed by literatures review and discussion for future perspectives.
Collapse
Affiliation(s)
- Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| | - Dongli Ji
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| | - Yufei Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| |
Collapse
|
18
|
Xue J, Chen F, Bai M, Cao X, Fu W, Zhang J, Zhao Y. Aptamer-Functionalized Microdevices for Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9402-9411. [PMID: 33170621 DOI: 10.1021/acsami.0c16138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aptamers have drawn great attention in the field of biological research and disease diagnosis for the remarkable advantages as recognition elements. They show unique superiority for facile selection, desirable thermal stability, flexible engineering, and low immunogenicity, complementing the use of conventional antibodies. Aptamer-functionalized microdevices offer promising properties for bioanalysis applications because of the compact sizes, minimal reaction volume, high throughput, operational feasibility, and controlled preciseness. In this review, we first introduce the innovative technologies in the selection of aptamers with microdevices and then highlight some advanced applications of aptamer-functionalized microdevices in bioanalysis field for diverse targets. Aptamer-functionalized microfluidic devices, microarrays, and paper-based and other interface-based microdevices are all bioanalysis platforms with huge potential in the near future. Finally, the major challenges of these microdevices applied in bioanalysis are discussed and future perspectives are also envisioned.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Wenhao Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
19
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
20
|
Liu Y, Fang X, Sun X, Niu B, Chen Q. Detection of Allergen Genes in Peanut and Soybean by Circular Fluorescence Probe-Mediated Isothermal Amplification. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01883-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Campu A, Lerouge F, Craciun AM, Murariu T, Turcu I, Astilean S, Monica F. Microfluidic platform for integrated plasmonic detection in laminal flow. NANOTECHNOLOGY 2020; 31:335502. [PMID: 32348974 DOI: 10.1088/1361-6528/ab8e72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we propose a novel approach to design robust microfluidic devices with integrated plasmonic transducers allowing portability, reduced analysis time through dynamic measurements and high sensitivity. Specifically, the strategy we apply involves two steps: (i) the controlled deposition of gold bipyramidal nanoparticles (AuBPs) onto a functionalized solid glass substrate and (ii) the integration of the as-fabricated plasmonic substrate into a polydimethylsiloxane (PDMS) microfluidic circuit. The localized surface plasmon resonance (LSPR) sensitivity of the plasmonic-microfluidic device was evaluated by monitoring the optical responses at refractive index changes, proving a bulk sensitivity of 243 nm RIU-1 for the longitudinal LSPR band of isolated AuBPs and 150 nm RIU-1 for the band assigned to end-to-end linked nanoparticles. A strong electric field generated in the gaps between AuBPs-due to the generation of the so-called extrinsic 'hot-spots'-was subsequently proved by the volumetric surface enhanced Raman scattering (SERS) detection of molecules in continuous flow conditions by loading the analyte into the microfluidic channel via a syringe pump. In conclusion, our miniaturized portable microfluidic system aims to detect and identify, in real-time with high accuracy, analyte molecules in laminal flow, thus providing a groundwork for further complex biosensing applications.
Collapse
Affiliation(s)
- Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania. Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania
| | | | | | | | | | | | | |
Collapse
|
22
|
Khan NI, Song E. Lab-on-a-Chip Systems for Aptamer-Based Biosensing. MICROMACHINES 2020; 11:mi11020220. [PMID: 32093323 PMCID: PMC7074738 DOI: 10.3390/mi11020220] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.
Collapse
Affiliation(s)
- Niazul I. Khan
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA;
| | - Edward Song
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA;
- Materials Science Program, University of New Hampshire, Durham, NH 03824, USA
- Correspondence: ; Tel.: +1-603-862-5498
| |
Collapse
|
23
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
24
|
Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 2019; 37:357-381. [DOI: 10.1016/j.biotechadv.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
|
25
|
High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices. Anal Bioanal Chem 2019; 411:4007-4016. [PMID: 30972474 DOI: 10.1007/s00216-019-01756-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/02/2019] [Accepted: 03/04/2019] [Indexed: 11/27/2022]
Abstract
Micro-/nanofluidics has received considerable attention over the past two decades, which allows efficient biomolecule trapping and preconcentration due to ion concentration polarization (ICP) within nanostructures. The rich scientific content related to ICP has been widely exploited in different applications including protein concentration, biomolecules sensing and detection, cell analysis, and water purification. Compared to pure microfluidic devices, micro-/nanofluidic devices show a highly efficient sample enrichment capacity and nonlinear electrokinetic flow feature. These two unique characterizations make the micro-/nanofluidic systems promising in high-performance bioanalysis. This review provides a comprehensive description of the ICP phenomenon and its applications in bioanalysis. Perspectives are also provided for future developments and directions of this research field.
Collapse
|
26
|
Nesakumar N, Kesavan S, Li CZ, Alwarappan S. Microfluidic Electrochemical Devices for Biosensing. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-0083-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Yew M, Ren Y, Koh KS, Sun C, Snape C. A Review of State-of-the-Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800060. [PMID: 31565355 PMCID: PMC6383963 DOI: 10.1002/gch2.201800060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Indexed: 05/17/2023]
Abstract
Microfluidic systems have advanced beyond natural and life science applications and lab-on-a-chip uses. A growing trend of employing microfluidic technologies for environmental detection has emerged thanks to the precision, time-effectiveness, and cost-effectiveness of advanced microfluidic systems. This paper reviews state-of-the-art microfluidic technologies for environmental applications, such as on-site environmental monitoring and detection. Microdevices are extensively used in collecting environmental samples as a means to facilitate detection and quantification of targeted components with minimal quantities of samples. Likewise, microfluidic-inspired approaches for separation and treatment of contaminated water and air, such as the removal of heavy metals and waterborne pathogens from wastewater and carbon capture are also investigated.
Collapse
Affiliation(s)
- Maxine Yew
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo China199 Taikang East Road315100NingboChina
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo China199 Taikang East Road315100NingboChina
| | - Kai Seng Koh
- School of Engineering and Physical SciencesHeriot‐Watt University MalaysiaNo. 1 Jalan Venna P5/2, Precinct 562200PutrajayaMalaysia
| | - Chenggong Sun
- Faculty of EngineeringUniversity of NottinghamThe Energy Technologies Building, Jubilee CampusNottinghamNG7 2TUUK
| | - Colin Snape
- Faculty of EngineeringUniversity of NottinghamThe Energy Technologies Building, Jubilee CampusNottinghamNG7 2TUUK
| |
Collapse
|
28
|
Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M. Recent Microdevice-Based Aptamer Sensors. MICROMACHINES 2018; 9:E202. [PMID: 30424135 PMCID: PMC6187364 DOI: 10.3390/mi9050202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Abstract
Since the systematic evolution of ligands by exponential enrichment (SELEX) method was developed, aptamers have made significant contributions as bio-recognition sensors. Microdevice systems allow for low reagent consumption, high-throughput of samples, and disposability. Due to these advantages, there has been an increasing demand to develop microfluidic-based aptasensors for analytical technique applications. This review introduces the principal concepts of aptasensors and then presents some advanced applications of microdevice-based aptasensors on several platforms. Highly sensitive detection techniques, such as electrochemical and optical detection, have been integrated into lab-on-a-chip devices and researchers have moved towards the goal of establishing point-of-care diagnoses for target analyses.
Collapse
Affiliation(s)
- Donny Nugraha Mazaafrianto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
29
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
30
|
Riquelme MV, Leng W, Carzolio M, Pruden A, Vikesland P. Stable oligonucleotide-functionalized gold nanosensors for environmental biocontaminant monitoring. J Environ Sci (China) 2017; 62:49-59. [PMID: 29289292 DOI: 10.1016/j.jes.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The global propagation of environmental biocontaminants such as antibiotic resistant pathogens and their antibiotic resistance genes (ARGs) is a public health concern that highlights the need for improved monitoring strategies. Here, we demonstrate the environmental stability and applicability of an oligonucleotide-functionalized gold nanosensor. The mecA ARG was targeted as model biocontaminant due to its presence in clinically-relevant pathogens and to its emergence as an environmental contaminant. mecA-specific nanosensors were tested for antibiotic resistance gene (ARG) detection in ARG-spiked effluent from four wastewater treatment plants (WWTPs). The mecA-specific nanosensors showed stability in environmental conditions and in high ionic strength ([MgCl2]<50mM), and high selectivity against mismatched targets. Spectrophotometric detection was reproducible with an LOD of 70pM (≈4×107genes/μL), even in the presence of interferences associated with non-target genomic DNA and complex WWTP effluent. This contribution supports the environmental applicability of a new line of cost-effective, field-deployable tools needed for wide-scale biocontaminant monitoring.
Collapse
Affiliation(s)
- Maria V Riquelme
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Weinan Leng
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Marcos Carzolio
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Peter Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
31
|
Synthesis, Characterization and Applications of Magnetic Iron Oxide Nanostructures. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2835-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
de Oliveira RAG, Materon EM, Melendez ME, Carvalho AL, Faria RC. Disposable Microfluidic Immunoarray Device for Sensitive Breast Cancer Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27433-27440. [PMID: 28742317 DOI: 10.1021/acsami.7b03350] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. The detection of biomarkers has played a significant role in the early diagnosis and prognosis of breast cancer. Herein, we describe the construction of a disposable microfluidic immunoarray device (DμID) for the rapid and low-cost detection of CA15-3 (carbohydrate antigen 15-3), a protein biomarker for breast cancer. The DμID was constructed using a simple and rapid prototyping technique and was applied to detect CA15-3 in cancer patients. The DμID construction was based on the use of a double-sided adhesive card with a microfluidic channel and a screen-printed array with 8 electrodes. Both the immunoarray and microfluidic channel were designed using an inexpensive home cutter printer and using low-cost materials. The immunoarray was modified using the layer-by-layer technique aiming at immobilizing the primary antibody. For the biomarker detection, magnetic particles (MPs) modified with polyclonal antibodies and peroxidase enzymes were used as a strategy for capture, separation, and preconcentration of the biomarker, in addition to amplification of the electroanalytical signal. The preconcentration and amplification strategies integrated with the nanostructured immunosensors of the DμID meaningfully contributed toward the detection of CA15-3 with a limit of detection (LoD) of 6 μU mL-1, requiring as low as 2 μL of serum samples for 8 simultaneous detections. The obtained LoD was 1200 times lower compared to those of other immunosensors previously reported in the literature. The DμID was applied for the detection of CA15-3 in real samples of breast cancer patients and was found to present an excellent correlation with the well-established commercial electrochemiluminescence immunoassay. The association of the DμID with nanostructured surfaces and analyte capturing with bioconjugated paramagnetic particles is essentially a promising breakthrough for the low-cost and accurate detection of cancer biomarkers.
Collapse
Affiliation(s)
- Ricardo A G de Oliveira
- Department of Chemistry, Federal University of São Carlos , São Carlos, 13565-905 São Paulo, Brazil
| | - Elsa M Materon
- Department of Chemistry, Federal University of São Carlos , São Carlos, 13565-905 São Paulo, Brazil
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos, 14784-400 São Paulo, Brazil
| | - André L Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos, 14784-400 São Paulo, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos , São Carlos, 13565-905 São Paulo, Brazil
| |
Collapse
|
33
|
Bhat KS, Ahmad R, Yoo JY, Hahn YB. Nozzle-jet printed flexible field-effect transistor biosensor for high performance glucose detection. J Colloid Interface Sci 2017; 506:188-196. [PMID: 28735192 DOI: 10.1016/j.jcis.2017.07.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/14/2023]
Abstract
Printable electronics is a subject of great interest for low-cost, facile and environmentally-friendly large scale device production. But, it still remains challenging for printable biosensor development. Herein, we present the fabrication of nozzle-jet printed flexible field-effect transistor (FET) glucose biosensor. The silver source-drain electrodes and ZnO seed layers were printed on flexible substrate by nozzle-jet printer followed by ZnO nanorods (ZnO NRs) synthesis and glucose oxidase (GOx) immobilization. Utilization of nozzle-jet printing methods resulted in highly reproducible electrodes with well-defined vertical grown ZnO NRs for high GOx loading and enhanced glucose sensing performance in a wide glucose detection range. The stability, anti-interference ability, reproducibility, reusability, and applicability in human serum samples were also assessed. Overall, biosensor fabrication using nozzle-jet printer will not only provide large scale production of highly reproducible electrodes but also reduce the fabrication cost. Additionally, printed electrodes can be modified accordingly for different analyte detection.
Collapse
Affiliation(s)
- Kiesar Sideeq Bhat
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Rafiq Ahmad
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jin-Young Yoo
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
34
|
Deng Y, Yue X, Hu H, Zhou X. A new analytical experimental setup combining quartz crystal microbalance with surface enhancement Raman spectroscopy and its application in determination of thrombin. Microchem J 2017. [DOI: 10.1016/j.microc.2017.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|