1
|
Zhao T, Jin B. A label-free electrochemical biosensor based on a bimetallic organic framework for the detection of carbohydrate antigen 19-9. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6173-6182. [PMID: 39189647 DOI: 10.1039/d4ay01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is an important marker for pancreatic cancer, ovarian cancer and other tumors, and its rapid and stable detection is the basis for early diagnosis and treatment. In this paper, a label-free electrochemical immunosensor for the sensitive detection of CA19-9 has been developed. First, the synthesis of two novel core-shell bimetallic nanomaterials, namely Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF, was accomplished using the MOF-on-MOF approach. The poor electrical conductivity of MOF materials was addressed by incorporating polyethylenimide (PEI) functionalized rGO with Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF nanomaterials. Simultaneously, toluidine blue (Tb) was employed as a redox probe and physically adsorbed onto the synthesized materials, resulting in the formation of two nanomaterials: rGO@Ce-MOF-on-Fe-MOF@Tb and rGO@Fe-MOF-on-Ce-MOF@Tb. The fundamental characterization reveals that the sensing performance of the rGO@Ce-MOF-on-Fe-MOF@TB-based immune sensor surpasses that of the rGO@Fe-MOF-on-Ce-MOF@TB-based immune sensor, which is attributed to the fact that, unlike the interlayer-constrained structure of Fe-MOF-on-Ce-MOF, in Ce-MOF-on-Fe-MOF, Ce-MOF penetrates into Fe-MOF to form a heterogeneous structure due to the relatively large pore size of Fe-MOF, which better combines the excellent biocompatibility and strong anchoring effect of Fe MOFs on antibodies, as well as the high electrochemical activity and conductivity of Ce-MOF, to enhance sensing performance. The proposed label-free immunosensor based on rGO@Ce-MOF-on-Fe-MOF@Tb has a wide linear range (1-100 000 mU mL-1), a low detection limit (0.34 mU mL-1), good stability, reproducibility, and repeatability, and satisfactory applicability, which provides a potential platform for clinical applications.
Collapse
Affiliation(s)
- Tongxiao Zhao
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Qi F, Wu M, Liu S, Mu W, Wu C, Ren X, Rui C, Wu F, Chang D, Pan H. Ratiometric electrochemical immunosensor for the detection of CA199 based on the ratios of NiCo@Fc-MWCNTs-LDH and 3D-rGOF@Ag/Au complexes. Talanta 2024; 272:125606. [PMID: 38394747 DOI: 10.1016/j.talanta.2023.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024]
Abstract
Carbohydrate antigen 199 (CA199) is the most sensitive marker reported for pancreatic cancer, and it is a difficult task to develop a highly sensitive assay for CA199. During the experiment, a ratiometric electrochemical immunosensor for quantitative analysis of CA199 was prepared for NiCo@Fc-MWCNTs-LDH as the electrode sensing surface and 3D-rGOF@Ag/Au as the label of Ab2. NiCo@Fc-MWCNTs-LDH not only provide the required signal for the immunosensor, but also have a layered structure to obtain a large specific surface area, which can provide more sites for the placement of biological molecules. rGOF has the advantages of large specific surface area and high porosity, which can adsorb Ag electrochemical probe through redox reaction. The modification of gold nanoparticles can not only enhance the electrical conductivity of nano-composites, but also immobilize more biomolecules to improve the sensitivity of electrochemical sensors. With the beefing up of CA199 concentration, the oxidation peak current of Ag increases and the oxidation peak current of Fc-COOH decreases. The ratio (y = IAg/IFc-COOH) of two different signals was linear with the logarithm of CA199 concentration in a certain value range. Under optimal conditions, the immunosensor showed excellent performance in the concentration range of 0.0001 U/mL to 10 U/mL, and the detection limit was 5.55 × 10-4 U/mL. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specifificity. This approach further detects CA199 in human plasma to differentiate pancreatic cancer patients from healthy individuals with high accuracy. This method also provided a new idea for the ultrasensitive quantitative detection of other biomarkers.
Collapse
Affiliation(s)
- Feifan Qi
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for science and technology, Shanghai, 200093, China
| | - Mengdie Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Simin Liu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for science and technology, Shanghai, 200093, China
| | - Wendi Mu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for science and technology, Shanghai, 200093, China
| | - Chunyan Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for science and technology, Shanghai, 200093, China
| | - Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Rui
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fangfang Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong Chang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
3
|
Huang J, Xie Z, Luo S, Li M, Xie L, Fan Q, Zeng T, Zhang Y, Zhang M, Xie Z, Wang S, Li D, Wei Y, Li X, Wan L, Ren H. A sandwich amperometric immunosensor for the detection of fowl adenovirus group I based on bimetallic Pt/Ag nanoparticle-functionalized multiwalled carbon nanotubes. Sci Rep 2024; 14:261. [PMID: 38168000 PMCID: PMC10762159 DOI: 10.1038/s41598-023-50821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
An enzyme-free sandwich amperometric immunosensor based on bimetallic Pt/Ag nanoparticle (Pt/AgNPs)-functionalized chitosan (Chi)-modified multiwalled carbon nanotubes (MWCNTs) as dual signal amplifiers and Chi-modified MWCNTs (MWCNTs-Chi) as substrate materials was developed for ultrasensitive detection of fowl adenovirus group I (FAdV-I). MWCNTs have a large specific surface area, and many accessible active sites were formed after modification with Chi. Hence, MWCNTs-Chi, as a substrate material for modifying glassy carbon electrodes (GCEs), could immobilize more antibodies (fowl adenovirus group I-monoclonal antibody, FAdV-I/MAb). Multiple Pt/AgNPs were attached to the surface of MWCNTs-Chi to generate MWCNTs-Chi-Pt/AgNPs with high catalytic ability for the reaction of H2O2 and modified active sites for fowl adenovirus group I-polyclonal antibody (FAdV-I/PAb) binding. Amperometric i-t measurements were employed to characterize the recognizability of FAdV-I. Under optimal conditions, and the developed immunosensor exhibited a wide linear range (100.93 EID50 mL-1 to 103.43 EID50 mL-1), a low detection limit (100.67 EID50 mL-1) and good selectivity, reproducibility and stability. This immunosensor can be used in clinical sample detection.
Collapse
Affiliation(s)
- Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China.
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xiaofeng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| |
Collapse
|
4
|
Hu JX, Ding SN. In Situ Synthesis of Highly Fluorescent, Phosphorus-Doping Carbon-Dot-Functionalized, Dendritic Silica Nanoparticles Applied for Multi-Component Lateral Flow Immunoassay. SENSORS (BASEL, SWITZERLAND) 2023; 24:19. [PMID: 38202881 PMCID: PMC10780618 DOI: 10.3390/s24010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The sensitivity of fluorescent lateral flow immunoassay (LFIA) test strips is compromised by the low fluorescence intensity of the signaling molecules. In this study, we synthesized novel phosphorus-doped carbon-dot-based dendritic mesoporous silica nanoparticles (DMSNs-BCDs) with a quantum yield as high as 93.7% to break this bottleneck. Meanwhile, the in situ growth method increased the loading capacity of carbon dots on dendritic mesoporous silica, effectively enhancing the fluorescence intensity of the composite nanospheres. Applied DMSNs-BCDs in LFIA can not only semi-quantitatively detect a single component in a short time frame (procalcitonin (PCT), within 15 min) but also detect the dual components with a low limit of detection (LOD) (carbohydrate antigen 199 (CA199) LOD: 1 U/mL; alpha-fetoprotein (AFP) LOD: 0.01 ng/mL). And the LOD of PCT detection (0.01 ng/mL) is lower by 1.7 orders of magnitude compared to conventional colloidal gold strips. For CA199, the LOD is reduced by a factor of four compared to LFIA using gold nanoparticles as substrates, and for AFP, the LOD is lowered by two orders of magnitude compared to colloidal gold LFIA. Furthermore, the coefficients of variation (CV) for intra-assay and inter-assay measurements are both less than 11%.
Collapse
Affiliation(s)
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
5
|
Zhou Y, Luo X, Yan F, Mou Y. Electrostatic Nanocage-Confined Probe for Electrochemical Detection of CA19-9 in Human Serum. ACS OMEGA 2023; 8:48491-48498. [PMID: 38144141 PMCID: PMC10733950 DOI: 10.1021/acsomega.3c08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023]
Abstract
Prompt and accurate detection of CA19-9 in human serum has great clinical significance for the early diagnosis and disease monitoring of cancer. Herein, we develop a convenient and antifouling electrochemical sensor for CA19-9 determination by immobilization of both an electrochemical redox probe [methylene blue (MB)] and immunorecognition element (CA19-9 antibody) on an electrostatic nanocage consisting of bipolar silica nanochannel array (bp-SNA). bp-SNA is composed of a negatively charged inner layer (n-SNA) and positively charged outer layer (p-SNA), which could be stably prepared on indium tin oxide (ITO) in several seconds using a two-step electrochemically assisted self-assembly approach and display asymmetric surface charges for confinement and enrichment of cationic MB into the inner n-SNA layer through electrostatic interaction. Modification of the CA19-9 antibody on the top surface of bp-SNA confers the sensing interface with specific recognition capacity. An antibody-antigen complex formed at the as-prepared immunosensor causes the decreased electrochemical signals of MB, achieving sensitive determination of CA19-9 with a wider linear dynamic range from 10 μU/mL to 50 U/mL and a low detection limit (3 μU/mL). Furthermore, accurate and feasible analysis of the CA19-9 amount in human serum samples by our proposed probe-integrated electrochemical immunosensor is realized.
Collapse
Affiliation(s)
- Yucheng Zhou
- Medical
College of Soochow University, Suzhou 215006, China
- General
Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic
Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xuan Luo
- Key
Laboratory of Surface & Polymer Materials of Zhejiang Province,
Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher
Education Zone, Hangzhou 310018, China
| | - Fei Yan
- Key
Laboratory of Surface & Polymer Materials of Zhejiang Province,
Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher
Education Zone, Hangzhou 310018, China
| | - Yiping Mou
- Medical
College of Soochow University, Suzhou 215006, China
- General
Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic
Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
6
|
Moazzenzade T, Huskens J, Lemay SG. Utilizing the Oxygen Reduction Reaction in Particle Impact Electrochemistry: A Step toward Mediator-Free Digital Electrochemical Sensors. ACS OMEGA 2023; 8:31265-31270. [PMID: 37663480 PMCID: PMC10468766 DOI: 10.1021/acsomega.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The current blockade particle impact method opens a route toward highly parallelized single-entity electrochemical assays. An important limitation is, however, that a redox mediator must be present in the sample, which can detrimentally interfere with molecular recognition processes. Dissolved O2 that is naturally present in aqueous solutions under ambient conditions can in principle serve as a suitable mediator via the oxygen reduction reaction (ORR). Here, we demonstrate the validity of this concept by performing current blockade experiments to capture and detect individual microparticles at Pt microelectrodes using solely the ORR. The readout modality is independent of the absolute O2 concentration, allowing operation under varying conditions. We further determine how the trajectories of individual microparticles are influenced by the combination of electrophoresis and electroosmotic flows and how these can be utilized to provide continuous detection of cationic particles in water for environmental monitoring.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G. Lemay
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
7
|
Tan YY, Sun HN, Liu M, Liu A, Li SS. Simple synthesis of PtRu nanoassemblies as signal amplifiers for electrochemical immunoassay of carbohydrate antigen 19-9. Bioelectrochemistry 2022; 148:108263. [PMID: 36162334 DOI: 10.1016/j.bioelechem.2022.108263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
In clinical analysis, carbohydrate antigen 19-9 (CA199) is a gold standard for pancreatic cancer diagnosis. Herein, PtRu nanoassemblies (NAs) were synthesized via a facile one-step solvothermal approach, with the help of octylphenoxypolye thoxyethanol (NP-40) acted as a growth-directing molecule, and triethylene glycol (TEG) worked as a reductant and solvent. During the assembly process of small particles, a large number of voids were formed, which significantly increase the specific surface area of the PtRu NAs exhibiting excellent electrocatalytic performance. Incorporating the PtRu NAs as signal amplifiers for potassium ferrocyanide oxidation into the specific molecular recognition of proteins, a facile signal-enhanced electrochemical (EC) immunosensor was developed. Verified by a series of experiments, the proposed immunosensor presented a wide linear range (10-4-70 U mL-1) and a low detection limit (3.3 × 10-5 U mL-1), accompanied by good reproducibility, selectivity, and stability, which could be applied in human serum samples for the determination of CA199, and was comparable to commercial electrochemiluminescence (ECL) immunoassay. Feasibility of batch fabrication of PtRu NAs makes nanomaterial-based EC immunoassay promising for the determination of similar cancer markers in future.
Collapse
Affiliation(s)
- Yuan-Yuan Tan
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - He-Nan Sun
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
8
|
Li X, Ma J, Zhang Y, Xu L, Gu C, Wei G, Zhang X, Jiang T, Zhou J. Reusable dual-functional SERS sensor based on gold nanoflowers-modified red phosphorus nanoplates for ultrasensitive immunoassay and degradation of CA19-9. Biosens Bioelectron 2022; 207:114148. [DOI: 10.1016/j.bios.2022.114148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
|
9
|
Ge K, Hu Y, Li G. Fabrication of branched gold copper nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane for surface-enhanced Raman spectroscopy analysis of carcinogens. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128742. [PMID: 35338931 DOI: 10.1016/j.jhazmat.2022.128742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Carcinogens in food samples show great potential threat to human health due to their wide distribution and high carcinogenicity. In this work, branched AuCu nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane (mpg-C3N4/AuCu) was fabricated for SERS analysis of carcinogens including benzidine and zearalenone in food. The AuCu was in-situ grown on mpg-C3N4 to form mpg-C3N4/AuCu composites. The as-fabricated mpg-C3N4/AuCu membrane can effectively combined synergistic effect of localized surface plasmon resonance properties of branched AuCu nanoalloy and semiconductor characteristics of mpg-C3N4. The limit of detection for crystal violet is 1.0 ng/L with enhancement factor of 3.7 × 108. The mechanism of high SERS activity of mpg-C3N4/AuCu membrane was investigated by density functional theory simulations. The mpg-C3N4/AuCu membrane was used for direct determination of benzidine, and indirect determination of zearalenone with 3,3',5,5'-tetramethylbenzidine as markers in food. The limits of detection of SERS method were 0.14 and 0.03 μg/L for benzidine and zearalenone, respectively. It provides a new strategy for design and fabrication of high-quality SERS substrates for carcinogens analysis.
Collapse
Affiliation(s)
- Kun Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Zhao X, Wang M, Wang Y, Li J, He D, Zou Y, Zhang Y. Assembly of bimetallic (Au-Ag)FON composite films at liquid/solid interfaces and their tunable optical properties. Dalton Trans 2022; 51:8480-8490. [PMID: 35603965 DOI: 10.1039/d2dt00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regular structure provided by two-dimensional (2D) structural colloidal crystals is widely accepted to provide an ideal template that ensures that plasmonic bimetallic composite nanostructures are uniform. Herein, we report an effective method for fabricating bimetallic Au-Ag composite films loaded on the surfaces of 2D polystyrene@polyacrylic acid (PS@PAA) colloidal crystals. PS@PAA particles coated with uniform Ag particle layers (AgFON) were produced by a simple and effective sputtering-deposition technique, after which the galvanic replacement (GR) reaction was used to produce a bimetallic (Au-Ag)FON composite film at the liquid/solid interface in aqueous HAuCl4. The morphology and relative contents of the bimetallic (Au-Ag)FON composite film can be regulated by changing the kinetic factors that control the GR reaction, including the concentration and pH of the HAuCl4 solution, and the reaction time. We demonstrated that the fabricated bimetallic (Au-Ag)FON composite has localized surface plasmon resonance (LSPR) properties that can be regulated by varying the composite structure and Ag/Au composition. On the one hand, the regular 2D colloidal crystal structure provides an ideal template for preparing Au-Ag composite films, which ensures that the optical signals of plasmonic Au-Ag composite films are reproducible. On the other hand, the synergy between Ag and Au in the bimetallic alloy composite film ensures stable and tunable LSPR performance. Furthermore, the prepared 2D ordered (Au-Ag)FON Au-Ag bimetallic material is expected to be used in sensing and catalysis applications.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Mingzhen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yingxue Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinqi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Dongqing He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yongjin Zou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Ying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Lin S, Wang Y, Peng Z, Chen Z, Hu F. Detection of cancer biomarkers CA125 and CA199 via terahertz metasurface immunosensor. Talanta 2022; 248:123628. [PMID: 35660997 DOI: 10.1016/j.talanta.2022.123628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
The cancer biomarkers including AFP, CEA, CA199 and CA125, are of great importance in the diagnosis, prognostic prediction and recurrence monitoring of malignancies. However, in clinical practical applications, most tumor cancer biomarkers are lack of sensitivity and specificity. In this study, we propose a terahertz (THz) metasurface (MS) immunosensor coupled with gold nanoparticles (AuNPs), which have good biocompatibility and high specific surface area for biomarkers. Firstly, we added AuNPs to the surface of the sensor. And then, the surface is modified with Anti-CA125 or Anti-CA199 to improve the sensitivity and specificity to the target antigen. The biosensor was fabricated using a surface micromachining process and characterized by a THz-time-domain spectroscopy (TDS) system. The sensitivity of the resonance frequency of the sensor to the refractive index was 65 GHz/RIU (refractive index unit). The detection performance of the THz immunosensor was also verified with different concentrations of CA125 and CA199. The experimental results showed that the frequency shift of the resonance peak was linearly related to the concentration of CA125 and CA199. The detection limits for both CA125 and CA199 are 0.01 U/ml, which is better than that of other common methods. Finally, serum samples were collected and detected to explore whether this method is suitable for clinical detection. The results are consistent with the results of antigen recognition. This study proves that the practicability of the THz immunosensor, which potentially provides important techniques and equipment for improving the sensitivity and specificity of cancer biomarkers.
Collapse
Affiliation(s)
- Shangjun Lin
- Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanli Wang
- Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin, 541004, China; Precision Medicine Laboratory, The First People's Hospital of Qinzhou, Qinzhou, 535000, China
| | - Zhenyun Peng
- Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Zhencheng Chen
- Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Fangrong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
12
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
13
|
Behyar MB, Farshchi F, Hasanzadeh M. Sensitive recognition of prostate specific antigen using biotinylated antibody encapsulated on D-penicillamine decorated wrinkled silicate nanoparticles (WSN): An innovative sandwich type biosensor towards diagnosis of prostate cancer. J Mol Recognit 2022; 35:e2960. [PMID: 35426958 DOI: 10.1002/jmr.2960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022]
Abstract
In this study, a new sandwich type biosensor was developed to specific recognition of prostate specific antigen (PSA) and early-stage diagnosis of prostate cancer using encapsulation of biotinylated antibody (Ab1) of prostate specific antigen on D-penicillamine decorated wrinkled silicate nanoparticles (WSN). For the first time, KCC-1-NH-DPA was synthesized and used to immobilization of biomacromolecules. So, fabricated immunosensor was performed by on sandwich type strategy. After fabrication of immunosensor, cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry techniques were used to electrochemical evaluation of immune-platform for PSA detection. The proposed biocompatibility immune-platform provided a novel interface towards sensitive bioanalysis of PSA biomarker in human plasma samples. Due to the use of gold nanoparticles functionalized Cysteamine (Cys A) in the structure of the secondary antibody (Ab2 [HRP-Ab2]), the intensity of the electrochemical signal has increased, resulting in a more accurate detection of the target molecules. Under the right conditions, the engineering immunosensor provides good bioanalytical performance for determining the PSA biomarker in the linear range of 0.002 to 60 μg. L-1 which low limit of quantification was 0.002 μg. L-1 . As a result, it is suggested to use this immune-devices in the clinical pre-diagnosis of prostate cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Milad Baghal Behyar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Farshchi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Fu X, Li X, Han D, Yang W, Liu C, Fan L, Ding S, Ma Y. Ultrasensitive electrochemical biosensor for des-gamma-carboxy prothrombin analysis based on core-shell Pd@PtCu-alloy loaded on WS2 nanosheet. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem 2021; 413:2407-2428. [PMID: 33666711 DOI: 10.1007/s00216-021-03197-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is associated with one of the highest rates of mortality among cancers worldwide. The early detection and management of CRC is imperative. Biomarkers play an important role in CRC screening tests, CRC treatment, and prognosis and clinical management; thus rapid and sensitive detection of biomarkers is helpful for early detection of CRC. In recent years, electrochemical biosensors for detecting CRC biomarkers have been widely investigated. In this review, different electrochemical detection methods for CRC biomarkers including immunosensors, aptasensors, and genosensors are summarized. Further, representative examples are provided that demonstrate the advantages of electrochemical sensors modified by various nanomaterials. Finally, the limitations and prospects of biomarkers and electrochemical sensors in detection are also discussed. Graphical abstract.
Collapse
|
17
|
Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T. SERS-based immunoassay and degradation of CA19-9 mediated by gold nanowires anchored magnetic-semiconductor nanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124009. [PMID: 33265038 DOI: 10.1016/j.jhazmat.2020.124009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/22/2023]
Abstract
Here, straight upward Au nanowires (NWs) were successfully grown onto Fe3O4@TiO2 matrix through a seed-mediated strategy to intensively improve its photocatalysis and SERS performances, facilitating a peculiar recyclable surface-enhanced Raman spectroscopy (SERS)-based immunoassay of CA19-9 in liquid form based on visible light irradiation. Such immunoassay was also supported by a smart heterobifunctional cross-linking agent-mediated probe of anti-CA19-9/4-MBA without metal nanoparticles. A low limit of detection of 5.65 × 10-4 IUmL-1 and a wide linear range from 1000 to 0.001 IUmL-1 were demonstrated through repeated constructing the sandwich immunostructure with only one batch of nanocomposites. Moreover, the actual levels of CA19-9 for colorectal cancer patients were readily measured by the recyclable immunoassay, the results of which are principally consistent with the conventional CLIA detection. Thus, such a green strategy of visible light-induced recyclable immunoassay could be expected to have a potential practicability in the clinical diagnoses of cancer.
Collapse
Affiliation(s)
- Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xiuting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ziqi Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Hongjie Si
- Urology Departments, Zhuji Chinese Medicine Hospital, Zhuji 311800, Zhejiang, PR China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
18
|
Feng YG, Zhu JH, Wang XY, Wang AJ, Mei LP, Yuan PX, Feng JJ. New advances in accurate monitoring of breast cancer biomarkers by electrochemistry, electrochemiluminescence, and photoelectrochemistry. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Yang X, Wei Y, Du Y, Qi H, Gao Q, Zhang C. Electrogenerated Chemiluminescence Immunoassays on Nanoelectrode Ensembles Platform with Magnetic Microbeads for the Determination of Carbohydrate Antigen. Anal Chem 2020; 92:15837-15844. [PMID: 33269595 DOI: 10.1021/acs.analchem.0c03047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work reports a gold nanoelectrode ensembles (Au-NEE) platform taken as a disposable electrogenerated chemiluminescence (ECL) platform with immunomagnetic microbeads for ECL immunoassays for the first time. The peak-shaped voltammograms were obtained at the Au-NEE, attributed to the total diffusional overlap. The ECL intensity at Au-NEE was 12.9 folds in the Ru(bpy)32+-tri-n-propylamine (TPA) ECL system and 19.6 folds in the luminol-H2O2 system, compared with that at the Au macroelectrode using the normalized active area of the electrodes, mainly attributed to the diffusion overlap of the Au-NEE and the edge effect of the individual gold nanodisks of the Au-NEE. The ECL immunoassay on the Au-NEE platform with magnetic microbeads for the determination of cancer biomarkers was developed. Carbohydrate antigen 19-9 (CA 19-9) was chosen as a model analyte while CA 19-9 antibody on the magnetic microbeads was taken as the capture probe, and ruthenium complex-labeled CA 19-9 antibody was used as the signal probe. A "sandwich" bioconjugates on the magnetic beads were transferred onto the ECL platform, and then the ECL measurements were performed in TPA solution. The developed method showed that the ECL peak intensity was directly in proportion to the concentration of CA 19-9 in the range from 0.5 to 20 U/mL with a limit of detection of 0.4 U/mL. This work demonstrates that the Au-NEE can be employed as a useful disposable ECL platform with the merits of cheapness, low nonspecific adsorption and practical application. The proposed approach will open a new avenue in the point-of-care test for the determination of protein biomarkers.
Collapse
Affiliation(s)
- Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Yujin Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| |
Collapse
|
20
|
Wang H, Ma Z. Copper peroxide/ZIF-8 self-producing H 2O 2 triggered cascade reaction for amperometric immunoassay of carbohydrate antigen 19-9. Biosens Bioelectron 2020; 169:112644. [PMID: 32979592 DOI: 10.1016/j.bios.2020.112644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Generally, H2O2 is frequently adopted to improve analysis capabilities of various detection systems. However, the addition of H2O2 with relatively higher concentration can lower the bioactivity of antibodies or antigens and the sensing interface stability in most peroxidase and peroxidase-like immunosensors. In order to solve these issues, we designed a novel copper peroxide/ZIF-8 immunoprobe that can self-produce H2O2 to trigger a cascade reaction for the sensitive detection of carbohydrate antigen 19-9. Specifically, CP/ZIF-8 plays a key role as a "signal switch" in the immunosensor. In the presence of HCl, the structures of ZIF-8 and copper peroxide can be broken, producing Cu2+ and H2O2 and a subsequent Fenton-type reaction that generates •OH. The resulting •OH can induce the decomposition of 3-aminobenzeneboronic acid/poly (vinyl alcohol) (PVA) film on the electrode. Although the immunosensor initially showed little current signal due to the poor conductivity pf ZIF-8 and PVA, the current signal was significantly amplified by a HCl-triggered cascade reaction. Under optimal conditions, the immunosensor displayed a wide linear range from 0.0001 to 100 U mL-1 with an ultralow limit of detection of 53.5 μU mL-1 (S/N = 3) for carbohydrate antigen 19-9. Considering these advantages, namely self-producing H2O2 and easy operation, this strategy paves a new way to design other novel sensors.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
21
|
Sensing and Interaction of His-Tagged CA19-9 Antigen with Graphene-Modified Electrodes. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrochemical oxidation of CA19-9 tagged with L-Histidine (CA199-His) was investigated for the first time with screen-printed electrodes (DS) modified with graphene oxide (DS/GO) or thermally reduced graphene oxide (DS/TRGO). Successive cyclic voltammograms (CV) measurements performed with bare and DS/TRGO electrodes proved that the intensity of the oxidation peak (I peak) is time-dependent. In fact, the oxidation signal increased over time, reached a maximum and then decreased due to the saturation of the surface with CA199-His molecules. The interaction of CA199-His with GO, TRGO, or graphite was additionally studied by isothermal calorimetry, a useful tool for accessing information regarding the biomolecule adsorption on graphene surface. The adsorption of CA199-His on TRGO was generating a higher heat, suggesting quantitative and efficient interactions. At the same time, in the case of TRGO, the saturation was not reached, indicating the existence of more free binding sites than in the case of GO and graphite. As such, the carbohydrate marker CA199-His showed a higher affinity for the TRGO surface than for the graphite or GO surfaces. The lack of saturation in the case of TRGO may indicate a continuous structural modification of the antigen when interacting with the graphene surface.
Collapse
|
22
|
Ibáñez-Redín G, Materon EM, Furuta RHM, Wilson D, do Nascimento GF, Melendez ME, Carvalho AL, Reis RM, Oliveira ON, Gonçalves D. Screen-printed electrodes modified with carbon black and polyelectrolyte films for determination of cancer marker carbohydrate antigen 19-9. Mikrochim Acta 2020; 187:417. [DOI: 10.1007/s00604-020-04404-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
|
23
|
Yin D, Cao X, Liu X, Yang Z, Liu Z, Wang D, Liu Q, Zhang X, Zhang X. Rapid colorimetric sensing of ascorbic acid based on the excellent peroxidase-like activity of Pt deposited on ZnCo2O4 spheres. NEW J CHEM 2020. [DOI: 10.1039/d0nj02795b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pt/ZnCo2O4 composites were firstly found to act as artificial peroxidases and used to construct colorimetric sensing platforms for detecting H2O2 and ascorbic acid.
Collapse
Affiliation(s)
- Dexin Yin
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiaoyan Cao
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiangwei Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Zhou Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhenxue Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Dongmei Wang
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Qingyun Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology
- School of Chemistry and Chemical Engineering, Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xiao Zhang
- Shandong Key Laboratory of Biochemical Analysis
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
24
|
Zhang N, Zhang D, Chu C, Ma Z. Label-assisted chemical adsorption triggered conversion of electroactivity of sensing interface to achieve the Ag/AgCl process for ultrasensitive detection of CA 19-9. Anal Chim Acta 2019; 1093:43-51. [PMID: 31735214 DOI: 10.1016/j.aca.2019.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022]
Abstract
Efficient strategies in enhancing sensitivity are pivotal to ultrasensitive detection of tumor markers. In this work, based on the strategy of label-assisted chemical adsorption triggered conversion of electroactivity of sensing interface, a Ag/AgCl process was achieved to enhance sensitivity of the constructed sandwich-type amperometric immunosensor for ultrasensitive detection of carbohydrate antigen 19-9 (CA19-9). Briefly, polydopamine-Ag nanoparticles (PDA-Ag NPs), as signal precursor, combined with labeling antibody were served as labels and graphene oxide-melamine (GO-MA) substrate with chemical absorption capacity was applied as smart sensing interface. After successfully incubating labels, there was primitively no current response due to the poor conductivity between labels and electrode. However, in the presence of H2O2, Ag NPs from labels can be etched into Ag ions, which were adsorbed by GO-MA to form GO-MA-Ag as electroactive substrate. Then, the substrate exhibited a sharp and stable electrochemistry peak of solid-state Ag/AgCl process in the buffer containing KCl. The sensitivity toward detection of CA19-9 was notably enhanced based on the appearance of sharp peak. Under optimum conditions, the designed immunosensor demonstrated a wide working range from 0.0001 to 100 U mL-1 and an ultralow detection limit 0.032 mU mL-1. Thus, utilizing this strategy to construct immunosensor was highly promising in clinical diagnosis for ultrasensitive detection of tumor makers.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Dongsheng Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Changshun Chu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
25
|
Du X, Zheng X, Zhang Z, Wu X, Sun L, Zhou J, Liu M. A Label-Free Electrochemical Immunosensor for Detection of the Tumor Marker CA242 Based on Reduced Graphene Oxide-Gold-Palladium Nanocomposite. NANOMATERIALS 2019; 9:nano9091335. [PMID: 31540374 PMCID: PMC6781068 DOI: 10.3390/nano9091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
As a tumor marker, carbohydrate antigen 24-2 (CA242) is a highly accurate and specific diagnostic indicator for monitoring pancreatic and colorectal cancers. The goal of this study was to create a novel label-free electrochemical immunosensor using a nanocomposite glassy carbon electrode for the detection of CA242. Graphene oxide (GO) and polyvinyl pyrrolidone were chosen as the dopants for the preparation of a high-performance reduced-GO-gold-palladium (rGO-Au-Pd) nanocomposite. RGO-Au-Pd was characterized using X-ray diffraction and transmission electron microscopy, revealing that the material exhibited superior electrochemical redox activity and electron transfer ability. The effects of the synthesis method, material concentration, reduction cycle, and pH were investigated to optimize the performance of the immunosensor. As a result of the catalytic activity and biocompatibility of rGO-Au-Pd, the prepared CA242 immunosensor displayed a wide linear range of detection from 0.001 U/mL to 10,000 U/mL with a detection limit of 1.54 × 10−3 U/mL and a sensitivity of 4.24 μA (log10CCA242)−1. More importantly, the immunosensor exhibited satisfactory reproducibility and selectivity when detected CA242 in PBS or human serum. The results of our study provide a platform for the development of novel bioassays for use in early cancer diagnosis and promote the application of biosensing technology in the medical field.
Collapse
Affiliation(s)
- Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Xiaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhenhua Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Xiaofan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
26
|
Zhong Y, Wu X, Li J, Lan Q, Jing Q, Min L, Ren C, Hu X, Lambert A, Cheng Q, Yang Z. Multiplex immunoassay of chicken cytokines via highly-sensitive chemiluminescent imaging array. Anal Chim Acta 2019; 1049:213-218. [DOI: 10.1016/j.aca.2018.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
|
27
|
Amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 based on dye sensitization of the semiconductor composite C 3N 4-MoS 2. Mikrochim Acta 2018; 185:530. [PMID: 30402791 DOI: 10.1007/s00604-018-3054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 02/03/2023]
Abstract
The authors describe an amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 (CA724). The method employs a C3N4-MoS2 semiconductor as the photoelectric conversion layer. The nanocomposite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. The dye eosin Y was encapsulated into CaCO3 nanospheres which then were used as labels for antibody against CA724. In addition, Fe3O4 nanospheres were employed as magnetic platform for constructing photoelectrochemical sandwich immunoassay. The CaCO3 nanospheres can be dissolved with aid of ethylene diamine tetraacetic acid (EDTA) and the carried eosin Y in CaCO3 is released. The released dyes sensitizes the C3N4-MoS2 semiconductor, which induces photocurrent amplification. Under optimal conditions and at a typical working voltage of 0 V (vs. SCE), the photocurrent increases linearly in the range of 0.05 mU mL-1 to 500 mU mL-1 of CA724, with a 0.02 mU mL-1 detection limit. Graphical abstract The C3N4-MoS2 complex, with high efficiency of electron transport, was synthesized to construct a photoelectrochemical analytical platform. A sandwich-type immunoassay was established on the surface of magnetic beads. Carbohydrate antigen 724 in sample was detected sensitively by using sensitization of released eosin Y as signal amplifiery.
Collapse
|
28
|
Chen Y, Yuan PX, Wang AJ, Luo X, Xue Y, Zhang L, Feng JJ. A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron 2018; 126:187-192. [PMID: 30415153 DOI: 10.1016/j.bios.2018.10.057] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 02/03/2023]
Abstract
Herein, a novel electrochemical ultrasensitive immunosensor was designed for detecting prostate-specific antigen (PSA) with three-dimensional (3D) PtCu hollow nanoframes (PtCu HNFs) as signal amplification. The highly opened PtCu HNFs were synthesized by a one-pot solvothermal method with cetyltrimethylammonium chloride (CTAC) and trishydroxymethyl aminomethane (Tris) as co-structuring directors. The architectures enlarged the loading of prostate specific antibodies (Ab) and efficiently catalyzed hydrogen peroxide (H2O2) reaction, ultimately amplifying the signals. And polylysine was used to disperse PtCu HNFs, improve the biocompatibility and bind the Ab on the electrode surface. The fabricated immunosensor exhibited lower detection limit (0.003 ng mL-1, S/N = 3), and wider linear range (0.01-100.0 ng mL-1), along with the improved reproducibility, selectivity and stability for the assay of PSA. Thus, it is a desirable platform for PSA detection in clinical diagnosis and practical applications.
Collapse
Affiliation(s)
- Yao Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadong Xue
- Jinhua Central Hospital, Jinhua 321001, China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
29
|
Zhu F, Zhao G, Dou W. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Mikrochim Acta 2018; 185:455. [PMID: 30215173 DOI: 10.1007/s00604-018-2984-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
A highly sensitive electrochemical sandwich immunoassay is described for determination of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated magnetite nanoparticles (Fe3O4) were modified with primary antibody to capture E. coli O157:H7. Gold-platinum core/shell nanoparticles (Au@Pt NPs) with different Pt shell thicknesses were prepared via changing the molar ratio of H2PtCl6 to HAuCl4 in the precursor solution. The optimized Au@Pt NPs exhibit enhanced activity in the electrocatalytic reduction of hydrogen peroxide (H2O2). The Au@Pt NPs were modified with graphene that was functionalized with Neutral Red, and then used as an electrochemical label for secondary antibodies and horseradish peroxidase (HRP). The sandwich immunocomplexes were magnetically absorbed on a 4-channel screen printed carbon electrode. Due to the catalysis of the Au@Pt NPs and HRP, the signal is strongly amplified in the presence of H2O2 when using thionine as the electron mediator. Under optimal conditions, the immunoassay has a linear response in the 4.0 × 102 to 4.0 × 108 CFU·mL-1 concentration range, with a limit of detection of 91 CFU·mL-1 (at an S/N ratio of 3). Graphical abstract Preparation of Au@Pt core/shell nanoparticles with different Pt shell thickness (A), rGO-NR (B), rGO-NR-Au@Pt-Ab2-HRP (C) and the preparation and the detection process of the immunoassay (D). rGO: reduced graphene oxide, GO: graphene oxide, NR: Neutral Red, HRP: horseradish peroxidase, AuNPs: gold nanoparticles, Fe3O4@SiO2: Silica coated magnetite nanoparticles, 4-SPCE: 4-channel screen printed carbon electrode.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
30
|
Wang R, Wang AJ, Liu WD, Yuan PX, Xue Y, Luo X, Feng JJ. A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals. Biosens Bioelectron 2018; 102:276-281. [DOI: 10.1016/j.bios.2017.11.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/03/2023]
|
31
|
Liu B, Dai W, Lu Z, Ye J, Ouyang L. Silver@Nitrogen-Doped Carbon Nanorods as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Media. Chemistry 2018; 24:3283-3288. [PMID: 29282777 DOI: 10.1002/chem.201705521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 12/20/2022]
Abstract
In recent years, various platinum-free catalysts for the oxygen reduction reaction (ORR) have attracted great attention due to the limited natural abundance and high cost of platinum. Herein, Ag@N-C (N-C: nitrogen-doped carbon) nanorods for the ORR were synthesized through chemical polymerization and pyrolysis methods by using pyrrole and silver nitrate as raw materials. Pyrolysis could significantly increase the specific surface area of as-synthesized catalysts and convert pyrrolic-N into graphitic-N and pyridinic-N. The results of electrochemical tests show that the Ag@N-C-900 catalyst (pyrolyzed at 900 °C) exhibits highly efficient ORR catalytic activity, improved stability, and better methanol resistance in comparison to that of Pt/C catalyst in alkaline media.
Collapse
Affiliation(s)
- Baichen Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Wanlin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Zhiwei Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China
| | - Liuzhang Ouyang
- School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of, Guangdong Province, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
32
|
Gao X, Gui R, Xu KQ, Guo H, Jin H, Wang Z. A bimetallic nanoparticle/graphene oxide/thionine composite-modified glassy carbon electrode used as a facile ratiometric electrochemical sensor for sensitive uric acid determination. NEW J CHEM 2018. [DOI: 10.1039/c8nj02904k] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel and facile ratiometric electrochemical sensor was developed for sensitive determination of uric acid.
Collapse
Affiliation(s)
- Xiaohui Gao
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Rijun Gui
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | | | - Huijun Guo
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Hui Jin
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| |
Collapse
|