1
|
Mahmoud AM, Alqahtani YS, Al-Qarni AO, Ali R, El-Wekil MM. Molecular imprinting technology for electrochemical sensing of kasugamycin in food products based on Cu 2+/Cu + stripping current. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8194-8203. [PMID: 39485522 DOI: 10.1039/d4ay01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
An electrochemical sensing approach was developed for the detection of the agricultural antibiotic drug kasugamycin. The method involves the construction of an electrochemical sensor comprising molecularly imprinted polymers (MIPs) embedded within a carbon paste (CP) matrix. The MIPs are designed to have imprinted sites that match the size and geometry of the Cu(II)-kasugamycin coordinated complex. Upon removal of kasugamycin, cavities suitable for the drug's entrance are formed within the MIPs. The presence of Cu(II) facilitates the detection of the drug by generating a redox signal of Cu(II)-Cu(I), which can be easily detected using differential pulse voltammetry (DPV). The signal response of Cu(II)-Cu(I) increases in the presence of the drug, promoting the accumulation of Cu(II) ions within the imprinted cavities. Under optimized conditions, the anodic peak (Ipa) signal of Cu(II)-Cu(I) exhibits an increase proportional to the concentration of kasugamycin within the range of 0.15-140 μM. The detection limit (LOD, S/N = 3) achieved is 0.046 μM. The proposed sensor demonstrates several characteristic features including good stability, reliable performance, a low detection limit, and excellent selectivity. The Cu(II)-MIP@CP sensor proved effective in detecting kasugamycin within complex samples like meat, milk, and cucumber, yielding recovery% ranging from 96.0 to 103.8%. Additionally, the relative standard deviation % (RSD%) fell within the range of 2.2% to 4.0%, indicating good precision and reliability.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ali O Al-Qarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ramadan Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
2
|
Chen WH, Maheshwaran S, Park YK, Ong HC. Iron-based electrode material composites for electrochemical sensor application in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176128. [PMID: 39255942 DOI: 10.1016/j.scitotenv.2024.176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
This review explores the expanding role of electrochemical sensors across diverse domains such as environmental monitoring, medical diagnostics, and food quality assurance. In recent years, iron-based electrocatalysts have emerged as promising candidates for enhancing sensor performance. Notable for their non-toxicity, abundance, catalytic activity, and cost-effectiveness, these materials offer significant advantages. However, further investigation is needed to fully understand how iron-based materials' physical, chemical, and electrical properties influence their catalytic performance in sensor applications. It explores the overview of electrochemical sensor technology, examines the impact of iron-based materials and their characteristics on catalytic activity, and investigates various iron-based materials, their advantages, functionalization, and modification techniques. Additionally, the review investigates the application of iron-based electrode material composites in electrochemical sensors for real sample detections. Ultimately, continued research and development in this area promise to unlock new avenues for using iron-based electrode materials in sensor applications.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Selvarasu Maheshwaran
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan.
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Alqahtani YS, Mahmoud AM, Ali AMBH, El-Wekil MM. Enhanced fluorometric detection of histamine using red emissive amino acid-functionalized bimetallic nanoclusters. RSC Adv 2024; 14:18970-18977. [PMID: 38873548 PMCID: PMC11168285 DOI: 10.1039/d4ra02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Lysine-capped gold nanoclusters doped with silver (LYS@Ag/Au NCs) have been developed for the sensitive and selective "turn-off" fluorescence detection of histamine. This fluorescent probe demonstrates excellent stability and a high quantum yield of 9.45%. Upon addition of histamine, a positively charged biogenic amine, to the LYS@Ag/Au NCs fluorescent probe, its fluorescence emission is quenched due to electrostatic interaction, aggregation, and hydrogen bond formation. The probe exhibits good sensitivity for the determination of histamine within the range of 0.003-350 μM, with a detection limit of 0.001 μM based on a signal-to-noise ratio of 3. Furthermore, the probe has been applied to detect biogenic amines in complicated matrices, highlighting its potential for practical applications. However, interference from the analogue histidine was observed during analysis, which can be mitigated by using a Supelclean™ LC-SAX solid-phase extraction column for removal.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71516 Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71516 Egypt
| |
Collapse
|
4
|
Alqahtani YS, Mahmoud AM, Ibrahim H, El-Wekil MM. Enhanced fluorescent detection of oxaliplatin via BSA@copper nanoclusters: a targeted approach for cancer drug monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38700061 DOI: 10.1039/d4ay00355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A new fluorescence sensing approach has been proposed for the precise determination of the anti-cancer drug oxaliplatin (Oxal-Pt). This method entails synthesizing blue-emitting copper nanoclusters (CuNCs) functionalized with bovine serum albumin (BSA) as the stabilizing agent. Upon excitation at 360 nm, the resultant probe exhibits emission at 460 nm. Notably, the fluorescence response of BSA@CuNCs substantially increases upon incubation with Oxal-Pt due to multiple binding interactions between the drug and the fluorescent probe. These interactions involve hydrogen bonding, hydrophobic interaction, and the high affinity between the SH groups (cysteine residues of BSA) and platinum (in Oxal-Pt). Consequently, this interaction induces aggregation-induced emission enhancement (AIEE) of BSA@CuNCs. The probe demonstrates a broad response range from 0.08 to 140.0 μM, along with a low detection limit of 20.0 nM, determined based on a signal-to-noise ratio of 3. Furthermore, the probe effectively detects Oxal-Pt in injections, human serum, and urine samples, yielding acceptable results. This study represents a significant advancement in the development of a straightforward and efficient sensor for monitoring platinum-containing anti-cancer drugs during chemotherapy.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
- School of Biotechnology, Badr University in Assiut, Assiut 2014101, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
5
|
Alqahtani YS, Mahmoud AM, El-Wekil MM. Ultrasensitive fluorometric determination of aluminum using the CoFe 2O 4 NPs/SDS/oxine system with the aid of ultrasound waves. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1804-1810. [PMID: 38436376 DOI: 10.1039/d3ay02288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
In this study, we present a thoughtful integration of a dispersive solid-phase sorbent and oxine for the ultrasensitive and highly selective determination of Al3+ ions. Cobalt ferrite nanoparticles (CoFe2O4 NPs) modified with oxine were employed to facilitate the pre-concentration and estimation of Al3+, forming highly fluorescent chelate. The modification process included the assistance of sodium dodecyl sulfate (SDS) and sonication. The results indicated that the fluorescence intensity of Al3+-oxine/SDS@CoFe2O4 NPs surpassed that of Al3+-oxine alone. The confirmation of the successful functionalization of CoFe2O4 NPs with oxine was established through various techniques. Under optimal conditions, the fluorescence intensity exhibited a positive correlation with increasing concentrations of Al3+ within the range of 0.029-600 ng mL-1, achieving a detection limit of 0.0087 ng mL-1 based on signal to noise ratio 3 : 1. The developed method was effectively applied to the determination of Al3+ in drinking water samples, yielding recoveries in the range of 97.19% to 103.13%, with a relative standard deviation (RSD%) not exceeding 3.78%.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Alqarni AO, Mahmoud AM, Alyami BA, Ali R, El-Wekil MM. Methylene blue-assisted molecularly-imprinted film modified nitrogen and sulfur co-doped molybdenum carbide for simultaneous electrochemical determination of two hepatotoxic drugs. Mikrochim Acta 2024; 191:123. [PMID: 38324133 DOI: 10.1007/s00604-024-06195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
A novel electrochemical sensor with a dual-template molecular imprinting technology was fabricated for the simultaneous detection of paracetamol (PAR) and isoniazid (INZ). The sensor was constructed using nitrogen and sulfur co-doped molybdenum carbide (N, S@Mo2C) and a thin layer of electro-polymerized methylene blue was applied onto the surface of the N, S@Mo2C. The electrochemical sensor demonstrated remarkable analytical efficiency for the concurrent PAR and INZ quantification under optimal circumstances. The system achieved an exceptionally low limit of detection (S/N = 3) of 3.7 nM for PAR, with a concentration range of 0.013 and 140 µM. A LOD of 7.6 nM was attained for INZ, with a linear range between 0.025 and 140 µM. Furthermore, the platform's selectivity was evaluated using differential pulse voltammetry (DPV). The designed platform successfully detected PAR and INZ in authentic samples with recoveries varying between 98.3% and 104.9%. The relative standard deviations (RSD) for these measurements ranged from 2.7 to 4.0%, demonstrating that the proposed sensor is extremely stable, repeatable, and reproducible. These promising results suggest that the sensor holds potential for the detection of various (bio) molecules, paving the way for future applications in sensing fields.
Collapse
Affiliation(s)
- Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Ramadan Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University Assiut Branch, Assiut, 76521, Egypt.
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 76521, Egypt.
| |
Collapse
|
7
|
Alkahtani SA, Mahmoud AM, Ali R, El-Wekil MM. Sonochemical synthesis of lanthanum ferrite nanoparticle-decorated carbon nanotubes for simultaneous electrochemical determination of acetaminophen and dopamine. Mikrochim Acta 2023; 191:25. [PMID: 38091119 DOI: 10.1007/s00604-023-06110-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023]
Abstract
A new nanocomposite consisting of lanthanum ferrite nanoparticles (LaFeO3 NPs) integrated with carbon nanotubes (CNTs) was fabricated via facile sonochemical approach. The engineered nanocomposite was applied to simultaneously determine acetaminophen (ACP) and dopamine (DA) in a binary mixture. The LaFeO3 NPs@CNT probe possesses several advantages such as superior conductivity, large surface area, and more active sites, improving its electrocatalytic activity towards ACP and DA. Under optimized conditions, the anodic peak currents (Ipa) linearly increased with increasing concentration of ACP and DA in the range 0.069-210 µM and 0.15-210 µM, respectively. The sensitivity of LaFeO3 NPs@CNTs/glassy carbon electrode (GCE) for detecting ACP and DA is 7.456 and 5.980 μA·μM-1·cm-2, respectively. The detection limits (S/N = 3) for ACP and DA are 0.02 μM and 0.05 μM, respectively. Advantages of LaFeO3 NPs@CNTs/GCE for the detection of ACP and DA include wide linear ranges, low-detection limits, good selectivity, and long-term stability. The as-fabricated electrode was applied to determine ACP and DA in pharmaceutical formulations and human serum samples with recoveries ranging from 97.7 to 103.3% and an RSD that did not exceed 3.7%, confirming the suitability of the proposed sensor for the determination of ACP and DA in real samples. This study not only presents promising opportunities for enhancing the sensitivity and stability of electrochemical sensors used in the detection of bioanalytes but also significantly contributes to the progress of unique and comprehensive biochemical detection methodologies.
Collapse
Affiliation(s)
- Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ramadan Ali
- Department of Pharmaceutical Chemistry, FacultyofPharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Asyut, 71526, Egypt.
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
8
|
Zhang Z, Ogata G, Asai K, Yamamoto T, Einaga Y. Electrochemical Diagnosis of Urinary Tract Infection Using Boron-Doped Diamond Electrodes. ACS Sens 2023; 8:4245-4252. [PMID: 37880948 DOI: 10.1021/acssensors.3c01569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Efficient detection of sodium nitrite in human urine could be used to diagnose urinary tract infections rapidly. Here, we demonstrate a fast and novel method for the selective detection of sodium nitrite in different human urine samples using electrolysis with a bare boron-doped diamond electrode. The measurement is performed without adding any other species, such as enzymes, and uses a simple electrochemical approach with an oxidation step followed by reduction. In the present study, we pay attention to the reduction potential range for the measurement, which is substantially different from many previous literature reports that focus on the oxidation reaction. The determination of added sodium nitrite based on cyclic voltammetry or differential pulse voltammetry is employed for two pooled urine samples and three individual urine matrices. From this, the linear response ranges for sodium nitrite detection are 0.5-10 mg/L (7.2-140 μmol/L) and 10-400 mg/L (140-5800 μmol/L). The results from these urine samples convert well to the calibration curve, with a limit of detection established as 0.82 mg/L (R2 = 0.9914), which is clinically relevant.
Collapse
Affiliation(s)
- Ziping Zhang
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Kai Asai
- Department of Sensor Development, First Screening Co., Ltd., 1-30-14 Yoyogi, Shibuya 151-0053, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
9
|
Alyami BA, Mahmoud AM, Alqarni AO, Ali AMBH, El-Wekil MM. Ratiometric fluorometric determination of sulfide using graphene quantum dots and self-assembled thiolate-capped gold nanoclusters triggered by aluminum. Mikrochim Acta 2023; 190:467. [PMID: 37955722 DOI: 10.1007/s00604-023-06042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
A ratiometric-based fluorescence emission system was proposed for the determination of sulfide. It consists of blue emissive graphene quantum dots (GQDs) and self-assembled thiolate-protected gold nanoclusters driven by aluminum ion (Al3+@GSH-AuNCs). The two types of fluorophores are combined to form a ratiometric emission probe. The orange emission of Al3+ @GSH-AuNCs at 624 nm was quenched in the presence of sulfide ion owing to the strong affinity between sulfide and Au(I), while the blue GQDs fluorescence at 470 nm remained unaffected. Interestingly, the Al3+@GSH-AuNCs and GQDs were excited under the same excitation wavelength (335 nm). The response ratios (F470/F624) are linearly proportional to the sulfide concentration within the linear range of 0.02-200 µM under the optimal settings, with a limit of detection (S/N = 3) of 0.0064 µM. The proposed emission probe was applied to detect sulfide ions in tap water and wastewater specimens, with recoveries ranging from 95.3% to 103.3% and RSD% ranging from 2.3% to 3.4%, supporting the proposed method's accuracy.
Collapse
Affiliation(s)
- Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 11001, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 11001, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 11001, Najran, Saudi Arabia
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
10
|
A dual-recognition-controlled electrochemical biosensor for selective and ultrasensitive detection of acrylamide in heat-treated carbohydrate-rich food. Food Chem 2023; 413:135666. [PMID: 36796261 DOI: 10.1016/j.foodchem.2023.135666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
A synergistic hybrid was fabricated for the electrochemical aptasensing of acrylamide (AAM) via molecularly imprinted technology. The aptasensor depends on the modification of glassy carbon electrode with AuNPs and reduced graphene oxide (rGO)/multiwalled carbon nanotubes (MWCNTs) {Au@rGO-MWCNTs/GCE}. The aptamer (Apt-SH) and AAM (template) were incubated with the electrode. After that, the monomer was electro-polymerized to fabricate molecular imprinted polymeric film (MIP) over the surface of Apt-SH/Au@rGO/MWCNTs/GCE. The modified electrodes were characterized using different morphological and electrochemical techniques. Under optimum conditions, the aptasensor exhibited a linear relationship between AAM concentration and anodic peak current difference (ΔIpa) in the range of 1-600 nM with a limit of quantitation (LOQ, S/N = 10) and a limit of detection (LOD, S/N = 3) of 0.346 and 0.104 nM, respectively. The aptasensor was successfully applied for the determination of AAM in potato fries samples with recoveries % in the range of 98.7-103.4 % and RSDs did not exceed 3.2 %. The advantages of MIP/Apt-SH/Au@rGO/MWCNTs/GCE are low detection limit, high selectivity, and satisfactory stability towards AAM detection.
Collapse
|
11
|
Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Bifunctional ratiometric sensor based on highly fluorescent nitrogen and sulfur biomass-derived carbon nanodots fabricated from manufactured dairy product as a precursor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122444. [PMID: 36758366 DOI: 10.1016/j.saa.2023.122444] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Novel biomass-derived carbon dots co-doped with nitrogen and sulfur were fabricated through facile and simple synthetic method from manufactured milk powder and methionine as precursors. The as-fabricated platform was used for ratiometric fluorescence sensing of Cu (II) and bisphosphonate drug risedronate sodium. The sensing platform is based on oxidation of o-phenylenediamine by Cu (II) to form 2, 3-diaminophenazine (oxidized product) with an emission peak at 557 nm. The resultant product quenched the fluorescence emission of as-fabricated carbon dots at 470 nm through Förster resonance energy transfer (FRET) and inner-filter effect (IFE). Upon addition of risedronate sodium, the formation of 2, 3-diaminophenazine was decreased as a result of Cu (II) chelation with risedronate sodium, recovering the fluorescence emission of carbon dots. The ratio of fluorescence at 470 nm and 557 nm was measured as a function of Cu (II) and risedronate sodium concentrations. The proposed sensing platform sensitively detected Cu (II) and risedronate sodium in the range of 0.01-55 μM and 5.02-883 µM with LODs (S/N = 3) of 0.003 μM and 1.48 µM, respectively. The sensing platform exhibited a good selectivity towards Cu (II) and risedronate sodium. The sensing system was used to determine Cu (II) and risedronate sodium in different sample matrices with recoveries % in the range of 99-103 % and 97.4-103.8 %, and RSDs % in the range of 1.5-3.0 % and 1.8-3.6 %, respectively.
Collapse
Affiliation(s)
- Rasha M K Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.
| | - Sabrein H Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Aml M Asran
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
12
|
A Z A, Alhazzani K, Alaseem AM, Alanzi AR, Al Awadh SA, Alenazi FS, Obaidullah AJ, El-Wekil MM. A molecularly imprinted electrochemical sensor for specific and ultrasensitive determination of an aminoglycoside drug: the role of copper ions in the determination. Analyst 2023; 148:2170-2179. [PMID: 37060111 DOI: 10.1039/d3an00251a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Herein, a molecularly imprinted polymer (MIP) was fabricated for specific sensing of an aminoglycoside e.g. kanamycin (KANA). Carbon paste modified with a MIP specific to Cu2+-KANA was first introduced. Copper (Cu2+) as a metal ion was used as a signal tracer and an amplifier, producing a current response measured by differential pulse voltammetry (DPV). Introducing the aminoglycoside drug into the solution containing Cu2+ did not affect the current response of the NIP/CPE. Under the optimum conditions, the as-fabricated sensor exhibited an increase in the current response in the range of 0.55-550 nM with a good limit of detection (LOD, S/N = 3) of 161 pM. The sensor exhibited many advantages including high sensitivity and selectivity, good stability and reproducibility, and cost-effectiveness. Moreover, it was successfully applied for the determination of KANA in milk and honey samples with RSD % not more than 3.3%, suggesting the reliability of the as-designed sensor.
Collapse
Affiliation(s)
- Alanazi A Z
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali M Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Abdullah Al Awadh
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahaad S Alenazi
- Department of Pharmacology, College of Medicine, University of Ha'il, Saudi Arabia
- Medical education Unit, College of Medicine, University of Ha'il, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
13
|
Turan HE, Medetalibeyoglu H, Polat İ, Yola BB, Atar N, Yola ML. Graphene quantum dots incorporated NiAl 2O 4 nanocomposite based molecularly imprinted electrochemical sensor for 5-hydroxymethyl furfural detection in coffee samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1932-1938. [PMID: 37013684 DOI: 10.1039/d3ay00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
5-Hydroxymethyl furfural (HMF) is an intermediate produced by dehydrating sugars, such as fructose, sucrose, and glucose, in an acidic medium or during the Maillard reaction. It also occurs due to the storage of sugary foods at inappropriate temperatures. In addition, HMF is seen as a quality criterion in products. In this study, a novel molecularly imprinted electrochemical sensor based on graphene quantum dots incorporated NiAl2O4 (GQDs-NiAl2O4) nanocomposite was presented for the selective determination of HMF in coffee samples. Various microscopic, spectroscopic, and electrochemical methods were carried out for the structural characterizations of GQDs-NiAl2O4 nanocomposite. The molecularly imprinted sensor was prepared by multi-scanning using cyclic voltammetry (CV) in the presence of 100.0 mM pyrrole monomer and 25.0 mM HMF. After method optimization, the sensor revealed linearity towards HMF in the range of 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The developed MIP sensor's high repeatability, selectivity, stability, and fast response ability can provide reliable HMF detection in beverages, such as coffee, which is heavily consumed.
Collapse
Affiliation(s)
- Hatice Ebrar Turan
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| | - Hilal Medetalibeyoglu
- Kafkas University, Faculty of Science and Letters, Department of Chemistry, Kars, Turkey
| | - İlknur Polat
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| | - Bahar Bankoğlu Yola
- Gaziantep Islam Science and Technology University, Faculty of Engineering and Natural Sciences, Department of Engineering Basic Sciences, Gaziantep, Turkey
| | - Necip Atar
- Pamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| |
Collapse
|
14
|
Bifunctional nanoprobe for dual-mode detection based on blue emissive iron and nitrogen co-doped carbon dots as a peroxidase-mimic platform. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Mahmoud AM, Mahnashi MH, Alshareef F, El-Wekil MM. Functionalized vanadium disulfide quantum dots as a novel dual-mode sensor for ultrasensitive and highly selective determination of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci Rep 2022; 12:12502. [PMID: 35869107 PMCID: PMC9307609 DOI: 10.1038/s41598-022-15637-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Pathogenic bacteria cause disease outbreaks and threaten human health, prompting the research on advanced detection assays. Herein, we developed a selective molecular imprinted aptasensor for sensitive and prompt quantitation of Staphylococcus aureus (S. aureus) bacteria. The aptasensor was constructed by immobilization of aptamer on gold nanoparticles modified magnetic nanoparticles (apt-AuNPs@ Fe3O4). A functional monomer (o-phenylenediamine, o-phen) was electro-polymerized on the surface of the as-synthesized nanocomposite in the presence of a template (S. aureus). After removing S. aureus, the formed imprinted sites were available to extract pathogenic bacteria from complicated matrices. The surface morphology of the as-fabricated nanocomposites was characterized using different spectroscopic and electrochemical methods. Moreover, we thoroughly evaluated factors affecting the synthesis and determination procedures. The molecular imprinted aptasensor exhibited a wide linear range of 101–107 CFU mL−1 with a Limit of Detection, LOD (signal to noise = 3) of 1 CFU mL−1. The aptasensor detected S. aureus in milk, conduit water, and apple juice samples with good recoveries % and satisfactory relative standard deviations (RSDs %) values.
Collapse
|
17
|
Zhang Z, Yuan J, Zheng H, Liu Z, Lu G, Huang Q, Liu M. Highly Sensitive Electrochemical Determination of Lead(II) by Double Stranded DNA (dsDNA) with a Carbon Paper/Reduced Graphene Oxide (CP/rGO) Substrate by Differential Pulse Anodic Stripping Voltammetry (DPASV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2119245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Jin Yuan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Huiling Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Zelin Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Guangqiu Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Qilin Huang
- Yunnan Provincial Key Laboratory of Criminal Science and Technology, Yunnan Police College, Kunming, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
19
|
El-Wekil MM, Hayallah AM, Abdelgawad MA, Shahin RY. Nanocomposite of gold nanoparticles@nickel disulfide-plant derived carbon for molecularly imprinted electrochemical determination of favipiravir. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Fluorometric and electrochemical dual-mode detection of toxic flavonoid rutin based on new nitrogen and sulfur co-doped carbon dots: Enhanced selectivity based on masking the interfering flavonoids with BSA complexation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Electrochemical sensing of copper-chelator D- penicillamine based on complexation with gold nanoparticles modified copper based-metal organic frameworks. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal Bioanal Chem 2022; 414:2343-2353. [DOI: 10.1007/s00216-021-03852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
|
23
|
Topkaya SN, Karaca Açarı İ, Kaya HO, Özcan İ, Köytepe S, Cetin AE. Interaction of nickel ferrite nanoparticles with nucleic acids. Colloids Surf B Biointerfaces 2021; 211:112282. [PMID: 34915301 DOI: 10.1016/j.colsurfb.2021.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
In this article, we introduced an electrochemical biosensor employing graphite electrodes (GE) decorated with Nickel ferrite (NiFe2O4) nanoparticles for nucleic acid detection. NiFe2O4 nanoparticles in a narrow size distribution were synthesized with co-precipitation technique. Their chemical and crystallographic properties were characterized with FTIR and X-ray spectroscopies. Nanoparticle size distribution and hydrodynamic diameter were determined with particle size analyzer. Elemental content and purity of nanoparticles were analyzed with EDX analysis. Our analyses showed a diameter of ~10 nm for NiFe2O4 nanoparticles. Electrochemical properties of NiFe2O4 nanoparticles were examined with different analysis methods. Conductivity properties of NiFe2O4 nanoparticles were investigated with Cyclic Voltammetry (CV), which confirmed that nanoparticles on GE surface have a high surface area and conductivity. More importantly, in this article, the interactions between NiFe2O4 nanoparticles and double stranded DNA (dsDNA), single stranded DNA (ssDNA), and RNA were for the first time examined using Differential Pulse Voltammetry (DPV), CV, and Electrochemical Impedance Spectroscopy (EIS). Oxidation peak currents of NiFe2O4 nanoparticles and guanine bases of dsDNA, ssDNA, and RNA showed that NiFe2O4 nanoparticles effectively interacts with nucleic acids via an electrostatic mode.
Collapse
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey.
| | - İdil Karaca Açarı
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Malatya, Turkey
| | - Hüseyin Oğuzhan Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Science, Inonu University, Malatya, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Science, Inonu University, Malatya, Turkey
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
24
|
NiFe2O4 nanospheres with size-tunable magnetic and electrochemical properties for superior supercapacitor electrode performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Saleh M, Mohamed MA, Shahat A, Allam NK. Sensitive Determination of SARS-COV-2 and the Anti-hepatitis C Virus Agent Velpatasvir Enabled by Novel Metal-Organic Frameworks. ACS OMEGA 2021; 6:26791-26798. [PMID: 34661033 PMCID: PMC8515823 DOI: 10.1021/acsomega.1c04525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report on the electrochemical determination of velpatasvir (VLP) as the main constituent of Epclusa, a SARS-COV-2 and anti-hepatitis C virus (HCV) agent, using a novel metal-organic framework (MOF). The NH2-MIL-53(Al) MOF was successfully modified with 5-bromo-salicylaldehyde to synthesize 5-BSA=N-MIL-53(Al) MOF. The synthesized MOF has been characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The modified MOF showed higher electrochemical activity and response than the bare NH2-MIL-53(Al) MOF. Compared to the bare carbon paste electrode (CPE), the 5-BSA=N-MIL-53(Al)/CPE platform was shown to enhance the electrochemical oxidation and detection of the anti-SARS-COV-2 and anti-HCV agent. Under optimized conditions, the 5-BSA=N-MIL-53(Al)/CPE platform showed a linear range of 1.11 × 10-6 to 1.11 × 10-7 and 1.11 × 10-7 to 25.97 × 10-6 M Britton-Robinson buffer (pH 7) with a detection limit and limit of quantification of 8.776 × 10-9 and 2.924 × 10-8 M, respectively. Repeatability, storage stability, and reproducibility in addition to selectivity studies and interference studies were conducted to illustrate the superiority of the electrode material. The study also included a highly accurate platform for the determination of VLP concentrations in both urine and plasma samples with reasonable recovery.
Collapse
Affiliation(s)
- Mahmoud
A. Saleh
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| | - Mona A. Mohamed
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| | - Ahmed Shahat
- Chemistry
Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Nageh K. Allam
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| |
Collapse
|
26
|
Enhanced molecular imprinted electrochemical sensing of histamine based on signal reporting nanohybrid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Aboras SI, Abdine HH, Ragab MAA, Korany MA. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit Rev Anal Chem 2021; 52:1878-1900. [PMID: 34138669 DOI: 10.1080/10408347.2021.1923456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
28
|
Zhou L, Li R, Li X, Zhang Y. One-step selective affinity purification and immobilization of His-tagged enzyme by recyclable magnetic nanoparticles. Eng Life Sci 2021; 21:364-373. [PMID: 34140847 PMCID: PMC8182278 DOI: 10.1002/elsc.202000093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022] Open
Abstract
The NiFe2O4 magnetic nanoparticles (NF-MNPs) were prepared for one-step selective affinity purification and immobilization of His-tagged recombinant glucose dehydrogenase (GluDH). The prepared nanoparticles were characterized by a Fourier-transform infrared spectrophotometer and microscopy. The immobilization and purification of His-tagged GluDH on NF-MNPs were investigated. The optimal immobilization conditions were obtained that mixed cell lysis and carriers in a ratio of 0.13 in pH 8.0 Tris-HCl buffer at 30℃ and incubated for 2 h. The highest activity recovery and protein bindings were 71.39% and 38.50 μg mg-1 support, respectively. The immobilized GluDH exhibited high thermostability, pH-stability and it can retain more than 65% of the initial enzyme after 10 cycles for the conversion of glucose to gluconolactone. Comparing with a commercial Ni-NTA resin, the NF-MNPs displayed a higher specific affinity with His-tagged recombinant GluDH.
Collapse
Affiliation(s)
- Li‐Jian Zhou
- The People's Hospital of DanyangAffiliated Danyang Hospital of Nantong UniversityDanyangJiangsu ProvinceP. R. China
| | - Rui‐Fang Li
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| | - Xue‐Yong Li
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| | - Ye‐Wang Zhang
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
29
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Mahmoud AM, Mahnashi MH, Alhazzani K, Az A, Algahtani MM, Alaseem A, Alyami BA, AlQarni AO, El-Wekil MM. Nitrogen doped graphene quantum dots based on host guest interaction for selective dual readout of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119516. [PMID: 33561682 DOI: 10.1016/j.saa.2021.119516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Herein, yellow emissive nitrogen doped graphene quantum dots (N@GQDs) were prepared by a novel advanced thermal driven oxidation. The N@GQDs was functionalized with β-cyclodextrin (β-CD) to improve its catalytic performance towards dopamine (DA) detection. The β-CD/N@GQDs exhibited strong fluorescence at λem. = 550 nm after excitation at 460 nm with a quantum yield of 38.6%. The β-CD/N@GQDs showed good peroxidase like activity via catalyzing the oxidation of tetramethylbenzidine (TMB) in presence of H2O2 to form blue colored product at λmax = 652 nm. In the colorimetric assay of DA, the detection based on the oxidation of TMB by H2O2 in presence of β-CD/N@GQDs as a catalyst. Then, the color of the blue oxidized TMB (oxTMB) product was reduced by addition of DA. While the fluorometric detection of DA based on the "inner filter effect" of the overlapped emission spectrum of β-CD/N@GQDs with the absorption spectrum of oxTMB, where, addition of DA reduces oxTMB to TMB and restores the fluorescence intensity of β-CD/N@GQDs. Under the optimized conditions, the colorimetric method achieved linearity range of 0.12-7.5 µM and LOD (S/N = 3) of 0.04 µM, while the fluorometric method achieved linearity range of 0.028-1.5 µM and LOD (S/N = 3) of 0.009 µM. The peroxidase like activity of β-CD/N@GQDs was used to detect DA in human plasma and serum samples with good % recoveries. The colorimetric and fluorometric methods exhibited good sensitivity and selectivity toward DA detection.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alanazi Az
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alaseem
- Pharmacology Department, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
31
|
Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Mahnashi MH, Mahmoud AM, AZ A, Alhazzani K, Alanazi SA, Alanazi MM, El-Wekil MM. A novel design and facile synthesis of nature inspired poly (dopamine-Cr3+) nanocubes decorated reduced graphene oxide for electrochemical sensing of flibanserin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Mahnashi MH, Mahmoud AM, Alhazzani K, Alanazi AZ, Alaseem AM, Algahtani MM, El-Wekil MM. Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid. Mikrochim Acta 2021; 188:124. [PMID: 33712895 DOI: 10.1007/s00604-021-04781-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
A sensitive and selective molecular imprinted polymeric network (MIP) electrochemical sensor is proposed for the determination of anti-cancer drug oxaliplatin (OXAL). The polymeric network [poly(pyrrole)] was electrodeposited on a glassy carbon electrode (GCE) modified with silver nanoparticles (Ag) functionalized Cu-metal organic framework (Cu-BDC) and nitrogen-doped carbon nanotubes (N-CNTs). The MIP-Ag@Cu-BDC /N-CNTs/GCE showed an observable reduction peak at -0.14 V, which corresponds to the Cu-BDC reduction. This peak increased and decreased by eluting and rebinding of OXAL, respectively. The binding constant between OXAL and Cu-BDC was calculated to be 3.5 ± 0.1 × 107 mol-1 L. The electrochemical signal (∆i) increased with increasing OXAL concentration in the range 0.056-200 ng mL-1 with a limit of detection (LOD, S/N = 3) of 0.016 ng mL-1. The combination of N-CNTs and Ag@Cu-BDC improves both the conductivity and the anchoring sites for binding the polymer film on the surface of the electrode. The MIP-based electrochemical sensor offered outstanding sensitivity, selectivity, reproducibility, and stability. The MIP-Ag@Cu-BDC /N-CNTs/GCE was applied to determine OXAL in pharmaceutical injections, human plasma, and urine samples with good recoveries (97.5-105%) and acceptable relative standard deviations (RSDs = 1.8-3.2%). Factors affecting fabrication of MIP and OXAL determination were optimized using standard orthogonal design using L25 (56) matrix. This MIP based electrochemical sensor opens a new venue for the fabrication of other similar sensors and biosensors.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Khalid Alhazzani
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ali Mohammed Alaseem
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
34
|
Alkahtani SA, Mahmoud AM, Mahnashi MH, AlQarni AO, Alqahtani YSA, El-Wekil MM. Facile one pot sonochemical synthesis of layered nanostructure of ZnS NPs/rGO nanosheets for simultaneous analysis of daclatasvir and hydroxychloroquine. Microchem J 2021; 164:105972. [PMID: 33518809 PMCID: PMC7826116 DOI: 10.1016/j.microc.2021.105972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
In this study, zinc sulfide nanoparticles were loaded on reduced graphene oxide (ZnS NPs/rGO) using simple sonochemical method. The nanocomposite was characterized using different morphological and electrochemical techniques such as TEM, SEM, PXRD, EDX, Raman spectroscopy, FTIR, N2-adsorption-desorption, CV, and EIS. The ZnS NPs/rGO modified glassy carbon electrode (GCE) was used to simultaneously estimate hydroxychloroquine (HCQ) and daclatasvir (DAC) in a binary mixture for the first time. The modified nanocomposite exhibited good catalytic activity towards HCQ and DAC detection. In addition, it showed higher sensitivity, good selectivity and stability; and high reproducibility towards HCQ and DAC analysis. The activity of the modified electrode was noticeably improved due to synergism between ZnS NPs and rGO. Under optimum conditions of DPV measurements, the anodic peak currents (Ipa) were obviously increased with the increase of HCQ and DAC amounts with linear ranges of 5.0-65.0 and 7.0-65.0 nM with LODs of 0.456 and 0.498 nM for HCQ and DAC, respectively. The ZnS NPs/ rGO modified GCE was used to quantify HCQ and DAC in biological fluids with recoveries of 98.7-102.7% and 96.9-104.5% and RSDs of 1.89-3.57% and 1.91-3.70%, respectively.
Collapse
Affiliation(s)
- Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S A Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
35
|
Alyami BA, Mahmoud AM, Alkahtani SA, El-Wekil MM. NiFe 2O 4 nanospheres functionalized with 2-(2, 4-Dihydroxyphenyl)-3, 5, 7-trihydroxychromen-4-one for selective solid-phase microextraction of aluminium. Talanta 2021; 226:122167. [PMID: 33676709 DOI: 10.1016/j.talanta.2021.122167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Herein, a rational combination of dispersive solid-phase sorbent and 2-(2, 4-Dihydroxyphenyl)-3, 5, 7-trihydroxychromen-4-one (morin) was proposed for sensitive and selective determination of Al3+ ion. Nickel ferrite nanospheres (NiFe2O4 NS) functionalized with morin was used to preconcentrate and estimate Al3+ via the formation of fluorescent complex at pH 7.0. The functionalization was assisted by anionic surfactant sodium dodecyl sulphate (SDS) and ultrasonication. The results revealed that the fluorescence intensity of Al-morin/SDS@ NiFe2O4 NS is higher than Al-morin. Functionalization of NiFe2O4 NS with morin was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometer (PXRD), and fluorescence spectroscopy. Under the optimum conditions, the fluorescence intensity increased with increasing of Al3+ concentrations in the range of 0.28-500.0 ng mL-1 with LOD (S/N = 3) of 0.09 ng mL-1. The method was applied for the determination of Al3+ in natural waters and human serum samples with recoveries % of 97-104% and RSDs % of 2-4%.
Collapse
Affiliation(s)
- Bandar A Alyami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
36
|
Mater Mahnashi H, Mahmoud AM, Saad Alkahtani A, El-Wekil MM. Simultaneous electrochemical detection of azithromycin and hydroxychloroquine based on VS 2 QDs embedded N, S @graphene aerogel/cCNTs 3D nanostructure. Microchem J 2021; 163:105925. [PMID: 33437097 PMCID: PMC7792520 DOI: 10.1016/j.microc.2021.105925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
In this research paper, an innovative electrochemical sensor was suggested for simultaneous voltammetric analysis of azithromycin (AZM) and hydroxychloroquine (HCQ) for the first time. The sensor based on hydrothermal synthesis of vanadium disulfide quantum dots (VS2 QDs) and insertion within 3D N, S graphene aerogel (3D N, S @ GNA) and carbon nanotubes nanaostructure as a new and widely group of carbon nanomaterials. The nanocomposites were characterized morphologically using different techniques. In addition, the nanomaterials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The proposed electrochemical sensor showed wide dynamic linear ranges of 0.28–30 × 10−8 M and 0.84–22.5 × 10−8 M for analysis of AZM and HCQ, respectively. The limits of detection (LODs) based on signal to noise (S/N) 3:1 were found to be 0.091 × 10−8 M and 0.277 × 10−8 M for AZM and HCQ, respectively. Briefly, the electrochemical sensor had good stability, selectivity, reproducibility and feasibility for simultaneous detection of AZM and HCQ in presence of different interfering species.
Collapse
Affiliation(s)
- H Mater Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - A Saad Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
37
|
Nitrogen and sulfur co-doped graphene quantum dots/nanocellulose nanohybrid for electrochemical sensing of anti-schizophrenic drug olanzapine in pharmaceuticals and human biological fluids. Int J Biol Macromol 2020; 165:2030-2037. [DOI: 10.1016/j.ijbiomac.2020.10.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/24/2023]
|
38
|
Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 2020; 175:112836. [PMID: 33272868 DOI: 10.1016/j.bios.2020.112836] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023]
Abstract
The surging growth of the pharmaceutical industry is a result of the rapidly increasing human population, which has inevitably led to new biomedical and environmental issues. Aside from the quality control of pharmaceutical production and drug delivery, there is an urgent need for precise, sensitive, portable, and cost-effective technologies to track patient overdosing and to monitor ambient water sources and wastewater for pharmaceutical pollutants. The development of advanced nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds has garnered immense attention due to their advantages, such as high sensitivity and selectivity, real-time monitoring, and ease of use. This review article surveys state-of-the-art nanomaterials-based electrochemical sensors and biosensors for the detection and quantification of six classes of significant pharmaceutical compounds, including anti-inflammatory, anti-depressant, anti-bacterial, anti-viral, anti-fungal, and anti-cancer drugs. Important factors such as sensor/analyte interactions, design rationale, fabrication, characterization, sensitivity, and selectivity are discussed. Strategies for the development of high-performance electrochemical sensors and biosensors tailored toward specific pharmaceuticals are highlighted to provide readers and scientists with an extensive toolbox for the detection of a wide range of pharmaceuticals. Our aims are two-fold: (i) to inspire readers by further elucidating the properties and functionalities of existing nanomaterials for the detection of pharmaceuticals; and (ii) to provide examples of the potential opportunities that these devices have for the advanced sensing of pharmaceutical compounds toward safeguarding human health and ecosystems on a global scale.
Collapse
Affiliation(s)
- Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Scott Prins
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada.
| |
Collapse
|
39
|
Ibáñez-Redín G, Joshi N, do Nascimento GF, Wilson D, Melendez ME, Carvalho AL, Reis RM, Gonçalves D, Oliveira ON. Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe 2O 4 nanoparticles. Mikrochim Acta 2020; 187:619. [PMID: 33083850 DOI: 10.1007/s00604-020-04594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
Abstract
A disposable electrochemical immunosensors is presented suitable to detect cancer biomarker p53 using screen-printed carbon electrodes modified with a layer-by-layer (LbL) matrix of carboxylated NiFe2O4 nanoparticles and polyethyleneimine, onto which anti-p53 antibodies were adsorbed. Under optimized conditions, the immunosensors exhibited high surface coverage and high concentration of immobilized antibodies, which allowed for detection of p53 in a wide dynamic range from 1.0 to 10 × 103 pg mL-1, with a limit of detection of 5.0 fg mL-1 at a working potential of 100 mV vs. Ag/AgCl. The immunosensors also exhibited good selectivity with negligible interference upon incubation in complex matrices containing high concentrations of proteins (i.e., fetal bovine serum and cell lysate). The immunosensor performance is among the best reported in the literature for determination of p53, with the additional advantage of being disposable and operating with low-volume solutions.Graphical abstract Schematic representation of immunosensor fabrication depicting the immobilization of specific antibodies against p53 protein onto the surfaces of disposable printed electrodes modified with films of polyethyleneimine and different concentrations of carboxylated magnetic nanoparticles.
Collapse
Affiliation(s)
- Gisela Ibáñez-Redín
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Nirav Joshi
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil.
| | | | - Deivy Wilson
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Matias E Melendez
- Pelé Little Prince Research Institute, Little Prince Complex, PR, 80250-060, Curitiba, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil
| | - André L Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil.,Life and eHealth Sciences Research Institute (ICVS), Medical School, University ofMinho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/ Guimarães, Portugal
| | - Débora Gonçalves
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil.
| |
Collapse
|
40
|
Alkahtani SA. Silver nanoparticles conjugated MnFe-based Prussian blue analogue for voltammetric and impedimetric bioaptasensing of amifostine (ethyol). Mikrochim Acta 2020; 187:576. [PMID: 32975672 DOI: 10.1007/s00604-020-04557-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022]
Abstract
A novel bioaptasensing-based electrochemical method for determination of amifostine (AMF) is proposed. The electrochemical aptasensor is based on modification of a glassy carbon electrode with a nanocomposite consisting of silver nanoparticles @ MnFe Prussian blue analogue nanospheres (AgNPs@MnFePBA NS), followed by immobilization of aptamer via Ag-N bonds (aptamer/AgNPs@MnFePBA NS/GCE). Experimental parameters including pH, incubation time, and aptamer concentrations were optimized. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetric (DPV) techniques were utilized to quantify AMF. The anodic peak current (∆Ipa) and charge transfer resistance (∆Rct) differences increase in the presence of AMF. Under the optimal conditions, using the redox probe, the electrochemical aptasensor exhibited linear ranges of 0.34-45 nmol L-1 and 0.69-45 nmol L-1 with LODs of 0.11 nmol L-1 and 0.23 nmol L-1 for EIS and DPV, respectively. The aptasensor was used to determine AMF in human plasma and in the presence of interfering species with recoveries and RSDs in the range 97.8-103.2% and 2.2-4.2%, respectively. Graphical abstract.
Collapse
Affiliation(s)
- Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
| |
Collapse
|
41
|
A sensitive voltammetric sensor based on carbon nanotube/nickel nanoparticle for determination of daclatasvir (an anti-hepatitis C drug) in real samples. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01478-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
El-Wekil MM, Darweesh M, Shaykoon MSA, Ali R. Enzyme-free and label-free strategy for electrochemical oxaliplatin aptasensing by using rGO/MWCNTs loaded with AuPd nanoparticles as signal probes and electro-catalytic enhancers. Talanta 2020; 217:121084. [DOI: 10.1016/j.talanta.2020.121084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
|
43
|
Mahnashi MH. Synthesis of three-dimensional nickel ferrite nanospheres decorated activated graphite nanoplatelets for electrochemical detection of vortioxetine with pharmacokinetic insights in human volunteers. Mikrochim Acta 2020; 187:519. [PMID: 32852618 DOI: 10.1007/s00604-020-04523-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022]
Abstract
An innovative electrochemical nanoprobe was developed for determination of vortioxetine (VORT), a serotonergic antidepressant drug, for the first time. The fabrication of the nanoprobe is based on decoration of a glassy carbon electrode with three-dimensional nickel ferrite nanospheres modified activated graphite nanoplatelets (3D NiFe2O4 NS/AGNP/GCE). The morphological characterization of the nanoprobe was carried out via scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), N2-adsorption-desorption isotherm, and powder X-ray spectroscopy (PXRD). In addition, the electrochemical behavior of the nanoprobe was described using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A well-defined and irreversible peak at 0.82 V was seen at the surface of 3D NiFe2O4 NS/AGNP/GCE. The proposed nanoprobe exhibited outstanding electro-catalytic activity towards VORT oxidation. Under the optimized conditions, the anodic oxidation currents were linearly proportional to VORT concentration at the working range 1.8-90 nM with a LOD of 0.55 nM. The nanoprobe was used to determine VORT in pharmaceutical tablets and human plasma samples. Satisfactory recoveries and RSD percentages were obtained in the range 103.8-107.7% (RSD% = 2.7-3.1%) and 101.4-105.3% (RSD % = 2.8-3.4%) for tablets and plasma samples, respectively. Moreover, the method was used to monitor VORT during a pharmacokinetic study in human volunteers with satisfactory results. The 3D NiFe2O4 NS/AGNP/GCE shows excellent sensitivity, reproducibility, and selectivity towards VORT detection. The proposed electrode could be utilized as simple, rapid, and inexpensive sensing tool for routine analysis and during pharmacokinetic/pharmacodynamic investigations. Graphical abstract.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
44
|
Ensafi AA, Talkhooncheh BM, Zandi‐Atashbar N, Rezaei B. Electrochemical Sensing of Flutamide Contained in Plasma and Urine Matrices Using NiFe
2
O
4
/rGO Nanocomposite, as an Efficient and Selective Electrocatalyst. ELECTROANAL 2020. [DOI: 10.1002/elan.202000048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ali Asghar Ensafi
- Department of ChemistryIsfahan University of Technology Isfahan 84156-83111 Iran
| | | | - Navid Zandi‐Atashbar
- Department of ChemistryIsfahan University of Technology Isfahan 84156-83111 Iran
| | - Behzad Rezaei
- Department of ChemistryIsfahan University of Technology Isfahan 84156-83111 Iran
| |
Collapse
|
45
|
Alkahtani SA, Mahmoud AM, Mahnashi MH, Ali R, El-Wekil MM. Facile fabrication of a novel 3D rose like lanthanum doped zirconia decorated reduced graphene oxide nanosheets: An efficient electro-catalyst for electrochemical reduction of futuristic anti-cancer drug salinomycin during pharmacokinetic study. Biosens Bioelectron 2020; 150:111849. [DOI: 10.1016/j.bios.2019.111849] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 12/29/2022]
|
46
|
Pham TN, Huy TQ, Le AT. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv 2020; 10:31622-31661. [PMID: 35520663 PMCID: PMC9056412 DOI: 10.1039/d0ra05133k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
The development of spinel ferrite nanomaterial (SFN)-based hybrid architectures has become more popular owing to the fascinating physicochemical properties of SFNs, such as their good electro-optical and catalytic properties, high chemothermal stability, ease of functionalization, and superparamagnetic behaviour. Furthermore, achieving the perfect combination of SFNs and different nanomaterials has promised to open up many unique synergistic effects and advantages. Inspired by the above-mentioned noteworthy properties, numerous and varied applications have been recently developed, such as energy storage in lithium-ion batteries, environmental pollutant monitoring, and, especially, biomedical applications. In this review, recent development efforts relating to SFN-based hybrid designs are described in detail and logically, classified according to 4 major hybrid structures: SFNs/carbonaceous nanomaterials; SFNs/metal–metal oxides; SFNs/MS2; and SFNs/other materials. The underlying advantages of the additional interactions and combinations of effects, compared to the standalone components, and the potential uses have been analyzed and assessed for each hybrid structure in relation to lithium-ion battery, environmental, and biomedical applications. We have summarized recent developments in SFN-based hybrid designs. The additional interactions, combination effects, and important changes have been analyzed and assessed for LIB, environmental monitoring, and biomedical applications.![]()
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
- Faculty of Electric and Electronics
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
- Faculty of Materials Science and Engineering
| |
Collapse
|
47
|
Facile fabrication of a novel disposable pencil graphite electrode for simultaneous determination of promising immunosuppressant drugs mycophenolate mofetil and tacrolimus in human biological fluids. Anal Bioanal Chem 2019; 412:355-364. [DOI: 10.1007/s00216-019-02245-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
48
|
Abdelhamid AA, Salah HA, Marzouk AA. Synthesis of imidazole derivatives: Ester and hydrazide compounds with antioxidant activity using ionic liquid as an efficient catalyst. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Hanan A. Salah
- Chemistry Department, Faculty of ScienceSohag University Sohag Egypt
| | - Adel A. Marzouk
- Pharmaceutical Chemistry Department, Faculty of PharmacyAl Azhar University Cairo Egypt
| |
Collapse
|
49
|
Sakthivel K, Muthumariappan A, Chen SM, Li YL, Chen TW, Ali MA. Evaluating Ternary Metal Oxide (TMO) core-shell nanocomposites for the rapid determination of the anti-neoplastic drug Chlorambucil (Leukeran™) by electrochemical approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109724. [DOI: 10.1016/j.msec.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022]
|
50
|
Mahmoud AM, El-Wekil MM, Mahnashi MH, Ali MFB, Alkahtani SA. Modification of N,S co-doped graphene quantum dots with p-aminothiophenol-functionalized gold nanoparticles for molecular imprint-based voltammetric determination of the antiviral drug sofosbuvir. Mikrochim Acta 2019; 186:617. [PMID: 31410574 DOI: 10.1007/s00604-019-3647-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
A molecularly imprinted polymer (MIP) was developed for the electrochemical determination of the antiviral drug sofosbuvir (SOF). The MIP was obtained by polymerization of p-aminothiophenol (p-ATP) on N,S co-doped graphene quantum dots (N,S@GQDs) in the presence of gold nanoparticles to form gold-sulfur covalent network. The presence of quantum dots improves the electron transfer rate, enhances surface activity and amplifies the signal. The nanocomposites were characterized by FTIR, TEM, EDX, and SEM. The electrochemical performance of the electrode was investigated by differential pulse voltammetry and cyclic voltammetry. The sensor uses hexacyanoferrate as the redox probe and is best operated at a potential of around 0.36 V vs. Ag/AgCl. It has a linear response over the concentration range of 1-400 nM SOF, with a detection limit of 0.36 nM. Other features include high selectivity, good reproducibility and temporal stability. The sensor was applied to the determination of SOF in spiked human plasma. Graphical abstract Novel sofosbuvir imprinted p-ATP polymer was synthesized by the aid of gold nanoparticles on N,S co-doped graphene quantum dots as a good conductive support. The imprinted polymer was used for detection of sofosbuvir in real samples by using the ferri/ferrocyanide redox probe.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Marwa F B Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| |
Collapse
|