1
|
Zheng S, Ruan L, Meng F, Wu Z, Qi Y, Gao Y, Yuan W. Skin-Inspired, Multifunctional, and 3D-Printable Flexible Sensor Based on Triple-Responsive Hydrogel for Signal Conversion in Skin Interface Electronics Health Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408745. [PMID: 39696924 DOI: 10.1002/smll.202408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Hydrogel-based flexible electronic components have become the optimal solution to address the rigidity problem of traditional electronics in health management. In this study, a multipurpose hydrogel is introduced, which is formed by combining a dual-network consisting of physical (chitosan, polyvinyl alcohol (PVA)) and chemical (poly(isopropyl acrylamide (NIPAM)-co-acrylamide (AM))) cross-linking, along with signal conversion fillers (eutectic gallium indium (EGaIn), Ti3C2 MXene, polyaniline (PANI)) for responding to external stimuli. Multiple sensing of dynamic and static signals is permissible for it. The strain sensor based on the hydrogel exhibits up to a 1000% resistance change within a 400% stretch range, and significant capacitance variations are observed upon touch. The temperature sensor yields a sensitivity of ≈-2.9% °C-1 at 20-40 °C and ≈65% °C-1 at 0-20 °C. The pH sensor responds with a sensitivity of near -13.68 mV pH-1. A paper-based triboelectric nanogenerator can be assembled to collect action energy at 83 mW m-2. The skin contact interface is kept in good condition owing to its 3D-printability, controllable antibacterial properties, along high cell survival rate. This multifunctional hydrogel holds promise in facilitating the integration of diagnosis and maintenance.
Collapse
Affiliation(s)
- Shuhuai Zheng
- School of Materials Science &Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Lingyang Ruan
- School of Materials Science &Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Fanmao Meng
- School of Materials Science &Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhihong Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
| | - Yukui Gao
- School of Materials Science &Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Weizhong Yuan
- School of Materials Science &Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
2
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
4
|
Atabakhsh S, Haji Abbasali H, Jafarabadi Ashtiani S. Thermally programmable time delay switches for multi-step assays in paper-based microfluidics. Talanta 2024; 271:125695. [PMID: 38295445 DOI: 10.1016/j.talanta.2024.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Paper-based microfluidic devices offer advantages such as low cost and disposability for point-of-care diagnostic applications. However, actuation of fluids on paper can be a challenge in multi-step and complex assays. In this work, a thermally programmable time-delay switch (TPTDS) is presented which operates by causing delays in the fluid path of a microfluidics paper-based analytical device (μPAD) by utilizing screen-printed wax micro-bridges. The time-delay is achieved through an electrical power feedback loop which indirectly adjusts the temperature of each individual micro-bridge, melting the wax into the paper. The melted wax manipulates the fluid flow depending on its penetration depth into the paper channel, which is a function of the applied temperature. To demonstrate functionality of the proposed method, the TPTDS is employed to automate and perform the nitrate assay which requires sequential delivery of reagents. Colorimetric detection is used to quantify the results by utilizing an electronic color sensor.
Collapse
Affiliation(s)
- Saeed Atabakhsh
- Department of Electrical Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hossein Haji Abbasali
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran
| | - Shahin Jafarabadi Ashtiani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran.
| |
Collapse
|
5
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
6
|
Wang Y, Liu Y, Wang X, Cao X, Xia J, Wang Z. A flexible and wearable three-electrode electrochemical sensing system consisting of a two-in-one enzyme-mimic working electrode. Anal Chim Acta 2023; 1278:341688. [PMID: 37709441 DOI: 10.1016/j.aca.2023.341688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
In this work, a wearable and flexible three-electrode electrochemical sensing system (TESS) by using a two-in-one enzyme-mimic working electrode (TIOWE) is reported. The integrated three-electrode, including working electrodes, reference electrodes, and counter electrodes are formed by transfer printing of Ni2P-based composite electrode ink (Ni2P/G ink), Ag/AgCl ink, and carbon ink onto PDMS substrate, respectively. The Ni2P/G ink-based working electrodes have both good conductivity and enzyme-mimic catalytic activity towards glucose. Under optimized conditions, the TIOWE-TESS has a low detection limit of 0.37 μM and wide linear ranges of 0.001 mM-0.1 mM and 0.1 mM-1.4 mM. Furthermore, the TIOWE-TESS has good applicability in serum samples and reveals remarkable electrochemical performance at fluctuant working temperatures. The proposed TIOWE-TESS can be integrated on a waterproof bandage to fabricate a skin-friendly patch device for sweet glucose monitoring, which highlights its potential applications in flexible and wearable commercial devices for health-monitoring.
Collapse
Affiliation(s)
- Yanan Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yali Liu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, PR China
| | - Xiao Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
7
|
Youssef K, Ullah A, Rezai P, Hasan A, Amirfazli A. Recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds. Mater Today Bio 2023; 22:100764. [PMID: 37674780 PMCID: PMC10477692 DOI: 10.1016/j.mtbio.2023.100764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/16/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023] Open
Abstract
Chronic wounds are among the major healthcare issues affecting millions of people worldwide with high rates of morbidity, losses of limbs and mortality. Microbial infection in wounds is a severe problem that can impede healing of chronic wounds. Accurate, timely and early detection of infections, and real time monitoring of various wound healing biomarkers related to infection can be significantly helpful in the treatment and care of chronic wounds. However, clinical methodologies of periodic assessment and care of wounds require physical visit to wound care clinics or hospitals and time-consuming frequent replacement of wound dressing patches, which also often adversely affect the healing process. Besides, frequent replacements of wound dressings are highly expensive, causing a huge amount of burden on the national health care systems. Smart bandages have emerged to provide in situ physiochemical surveillance in real time at the wound site. These bandages integrate smart sensors to detect the condition of wound infection based on various parameters, such as pH, temperature and oxygen level in the wound which reduces the frequency of changing the wound dressings and its associated complications. These devices can continually monitor the healing process, paving the way for tailored therapy and improved quality of patient's life. In this review, we present an overview of recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds in order to assess infection status. We have elaborated the recent progress in quantitative monitoring of several biomarkers important for assessing wounds infection status and its detection using smart biosensors. The review shows that real-time monitoring of wound status by quantifying specific biomarkers, such as pH, temperature and tissue oxygenation to significantly aid the treatment and care of chronic infected wounds.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Asad Ullah
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Zheng L, Zhu D, Xiao Y, Zheng X, Chen P. Microneedle coupled epidermal sensor for multiplexed electrochemical detection of kidney disease biomarkers. Biosens Bioelectron 2023; 237:115506. [PMID: 37473548 DOI: 10.1016/j.bios.2023.115506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
Early diagnosis of chronic kidney disease (CKD) and constant monitoring to guide optimal intervention is critical to prevent renal failure and other critical diseases. However, the conventional blood tests in hospital are time-consuming and have poor patient compliance. Herein, we demonstrate a real-time, minimally invasive, and self-administrable approach to detect kidney biomarkers in the skin interstitial fluid (ISF) using a polymeric microneedle coupled electrochemical sensor array (MNESA). Microneedles can readily penetrate stratum corneum and quickly extract ISF onto the sensors. Four biomarkers are simultaneously detected to avoid false positive and provide an accurate assessment of kidney functions. Using an artificial skin model, it is shown that MNSEA gives specific and sensitive responses to these kidney biomarkers in physiologically relevant ranges (phosphate: 0.3-1.8 mM, 3.62 μA/mM; uric acid: 50-550 μM, 4.19 nA/μM; creatinine: 50-550 μM, 12.58 nA/μM; urea: 1-16 mM, 44.6 mV/decade). Using a mouse model, we demonstrate that this approach is as reliable as the commercial assays and is feasible to readily monitor the progression of CDK.
Collapse
Affiliation(s)
- Lewen Zheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore
| | - Dandan Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore
| | - Yi Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore
| | - Xinting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore; Skin Research Institute of Singapore, 308232, Singapore; Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore.
| |
Collapse
|
9
|
Vital D, Bhushan P, Gaire P, Islam MK, Lahade S, Pozdin V, Volakis JL, Bhansali S, Bhardwaj S. SkinAid: A Wirelessly Powered Smart Dressing Solution for Continuous Wound-Tracking Using Textile-Based Frequency Modulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:985-998. [PMID: 37440381 DOI: 10.1109/tbcas.2023.3294916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In this article, SkinAid, a battery-free, low-cost, robust, and user-friendly smart bandage for electrochemical monitoring and sensing of chronic wounds is proposed. The working principle of the bandage is based on direct frequency modulation of a tri-electrode electrochemical sensing of wound data. The electronics and biotelemetry links were realized using low-cost manufacturing process of textile embroidery onto fabric substrate. The transmitter was represented by a bedsheet with novel corrugated crossed-dipole made of Elektrisola-7 embroidered onto gauze fabric. An input RF signal of 1 W was transmitted at 462 MHz from the bedsheet to the all-textile bandage featuring a rectifying circuit, a voltage-controlled oscillator (VCO), an electrochemical sensor, and a 915-MHz dipole for re-transmission of the modulated wound data. We demonstrate that for wound fluid emulated by various uric acid concentrations from 0.2 mM to 1.2 mM, corresponding modulated frequency varies from 1090 MHz to 1145 MHz for signals captured at 25 cm away from the bandage. For pH modulation ranging from 2 to 10, the corresponding modulated frequency was between 800 MHz and 830 MHz for signals received at more than 6 feet away from the bandage. For quick and reliable assessment, two empirical models were developed for the direct frequency modulation as a function of uric acid and pH. To the best of our knowledge, this is the first time an all-textile (fabric-integrated), battery-free and wirelessly powered smart bandage have been proposed for wound monitoring. This result can be used as a first step in developing RFID-type, battery-free, and low-cost 5G/6G smart bandages using millimeterwave and terahertz frequencies where the bedsheet can be host to a MIMO-aided beamforming.
Collapse
|
10
|
Lee S, Kim SR, Jeon KH, Jeon JW, Lee EI, Jeon J, Oh JH, Yoo JH, Kil HJ, Park JW. A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed. Sci Rep 2023; 13:5773. [PMID: 37031263 PMCID: PMC10082782 DOI: 10.1038/s41598-023-33081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 04/10/2023] Open
Abstract
For multifunctional wearable sensing systems, problems related to wireless and continuous communication and soft, noninvasive, and disposable functionality issues should be solved for precise physiological signal detection. To measure the critical transitions of pressure, temperature, and skin impedance when continuous pressure is applied on skin and tissue, we developed a sensor for decubitus ulcers using conventional analog circuitry for wireless and continuous communication in a disposable, breathable fabric-based multifunctional sensing system capable of conformal contact. By integrating the designed wireless communication module into a multifunctional sensor, we obtained sensing data that were sent sequentially and continuously to a customized mobile phone app. With a small-sized and lightweight module, our sensing system operated over 24 h with a coin-cell battery consuming minimum energy for intermittent sensing and transmission. We conducted a pilot test on healthy subjects to evaluate the adequate wireless operation of the multifunctional sensing system when applied to the body. By solving the aforementioned practical problems, including those related to wireless and continuous communication and soft, noninvasive, and disposable functionality issues, our fabric-based multifunctional decubitus ulcer sensor successfully measured applied pressure, skin temperature, and electrical skin impedance.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Seung-Rok Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Kun-Hoo Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jun-Woo Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Ey-In Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Je-Heon Oh
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Ju-Hyun Yoo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Hye-Jun Kil
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Asen Company, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|
12
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
13
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
14
|
Serena TE, Snyder RJ, Bowler PG. Use of fluorescence imaging to optimize location of tissue sampling in hard-to-heal wounds. Front Cell Infect Microbiol 2023; 12:1070311. [PMID: 36710976 PMCID: PMC9878329 DOI: 10.3389/fcimb.2022.1070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Wound microflora in hard-to-heal wounds is invariably complex and diverse. Determining the interfering organisms(s) is therefore challenging. Tissue sampling, particularly in large wounds, is subjective and, when performed, might involve swabbing or biopsy of several locations. Fluorescence (FL) imaging of bacterial loads is a rapid, non-invasive method to objectively locate microbial hotspots (loads >104 CFU/gr). When sampling is deemed clinically necessary, imaging may indicate an optimal site for tissue biopsy. This study aimed to investigate the microbiology of wound tissue incisional biopsies taken from sites identified by FL imaging compared with sites selected by clinical judgment. Methods A post hoc analysis of the 350-patient FLAAG wound trial was conducted; 78 wounds were included in the present study. All 78 wounds were biopsied at two sites: one at the center of the wound per standard of care (SoC) and one site guided by FL-imaging findings, allowing for comparison of total bacterial load (TBL) and species present. Results The comparison between the two biopsy sites revealed that clinical uncertainty was higher as wound surface area increased. The sensitivity of a FL-informed biopsy was 98.7% for accurately finding any bacterial loads >104 CFU/g, compared to 87.2% for SoC (p=0.0059; McNemar test). Regarding species detected, FL-informed biopsies detected an average of 3 bacterial species per biopsy versus 2.2 species with SoC (p < 0.001; t-test). Microbial hotspots with a higher number of pathogens also included the CDC's pathogens of interest. Conclusions & perspective FL imaging provides a more accurate and relevant microbiological profile that guides optimal wound sampling compared to clinical judgment. This is particularly interesting in large, complex wounds, as evidenced in the wounds studied in this post hoc analysis. In addition, fluorescence imaging enables earlier bacterial detection and intervention, guiding early and appropriate wound hygiene and potentially reducing the need for antibiotic use. When indicated, this diagnostic partnership with antibiotic stewardship initiatives is key to ameliorating the continuing threat of antibiotic resistance.
Collapse
Affiliation(s)
| | - Robert J. Snyder
- Foot and Ankle Institute, Barry University, Miami, FL, United States
| | | |
Collapse
|
15
|
Zhang Y, Hu Y, Jiang N, Yetisen AK. Wearable artificial intelligence biosensor networks. Biosens Bioelectron 2023; 219:114825. [PMID: 36306563 DOI: 10.1016/j.bios.2022.114825] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
The demand for high-quality healthcare and well-being services is remarkably increasing due to the ageing global population and modern lifestyles. Recently, the integration of wearables and artificial intelligence (AI) has attracted extensive academic and technological attention for its powerful high-dimensional data processing of wearable biosensing networks. This work reviews the recent developments in AI-assisted wearable biosensing devices in disease diagnostics and fatigue monitoring demonstrating the trend towards personalised medicine with highly efficient, cost-effective, and accurate point-of-care diagnosis by finding hidden patterns in biosensing data and detecting abnormalities. The reliability of adaptive learning and synthetic data and data privacy still need further investigation to realise personalised medicine in the next decade. Due to the worldwide popularity of smartphones, they have been utilised for sensor readout, wireless data transfer, data processing and storage, result display, and cloud server communication leading to the development of smartphone-based biosensing systems. The recent advances have demonstrated a promising future for the healthcare system because of the increasing data processing power, transfer efficiency and storage capacity and diversifying functionalities.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| |
Collapse
|
16
|
Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S. pH and its applications in targeted drug delivery. Drug Discov Today 2023; 28:103414. [PMID: 36273779 DOI: 10.1016/j.drudis.2022.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Zambia St, Addis Ababa, Ethiopia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Constance Malinga
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
17
|
Gillard N, Leong-Hoi A, Departe J, Coignard P, Kerdraon J, Allegre W. Early detection of pressure ulcers: considering the reperfusion. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2023.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Xu W, Ceylan Koydemir H. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. LAB ON A CHIP 2022; 22:4758-4773. [PMID: 36398687 DOI: 10.1039/d2lc00776b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections have long been a serious global health issue. Biofilm formation complicates matters even more. The biofilm's extracellular polymeric substances (EPSs) matrix protects bacteria from the host's immune responses, yielding strong adhesion and drug resistance as the biofilm matures. Early bacterial biofilm detection and bacterial biofilm growth monitoring are crucial to treating biofilm-associated infections. Current detection methods are highly sensitive but not portable, are time-consuming, and require expensive equipment and complex operating procedures, limiting their use at the point of care. Therefore, there is an urgent need to develop affordable, on-body, and non-invasive biomedical sensors to continuously monitor and detect early biofilm growth at the point of care through personalized telemedicine. Herein, recent advances in developing non-invasive biomedical sensors for early detection and monitoring bacterial biofilm growth are comprehensively reviewed. First, biofilm's life cycle and its impact on the human body, such as biofilm-associated disease and infected medical devices, are introduced together with the challenges of biofilm treatment. Then, the current methods used in clinical and laboratory settings for biofilm detection and their challenges are discussed. Next, the current state of non-invasive sensors for direct and indirect detection of bacterial biofilms are summarized and highlighted with the detection parameters and their design details. Finally, commercially available products, challenges of current devices, and the further trend in biofilm detection sensors are discussed.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| |
Collapse
|
19
|
Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, Gandhi S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100284. [PMID: 36448023 PMCID: PMC9691282 DOI: 10.1016/j.biosx.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 04/12/2023]
Abstract
The recent COVID-19 infection outbreak has raised the demand for rapid, highly sensitive POC biosensing technology for intelligent health and wellness. In this direction, efforts are being made to explore high-performance nano-systems for developing novel sensing technologies capable of functioning at point-of-care (POC) applications for quick diagnosis, data acquisition, and disease management. A combination of nanostructures [i.e., 0D (nanoparticles & quantum dots), 1D (nanorods, nanofibers, nanopillars, & nanowires), 2D (nanosheets, nanoplates, nanopores) & 3D nanomaterials (nanocomposites and complex hierarchical structures)], biosensing prototype, and micro-electronics makes biosensing suitable for early diagnosis, detection & prevention of life-threatening diseases. However, a knowledge gap associated with the potential of 0D, 1D, 2D, and 3D nanostructures for the design and development of efficient POC sensing is yet to be explored carefully and critically. With this focus, this review highlights the latest engineered 0D, 1D, 2D, and 3D nanomaterials for developing next-generation miniaturized, portable POC biosensors development to achieve high sensitivity with potential integration with the internet of medical things (IoMT, for miniaturization and data collection, security, and sharing), artificial intelligence (AI, for desired analytics), etc. for better diagnosis and disease management at the personalized level.
Collapse
Affiliation(s)
- Manisha Byakodi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| | - Riya Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Yogendra Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| |
Collapse
|
20
|
Liu X, Tian S, Xu S, Lu W, Zhong C, Long Y, Ma Y, Yang K, Zhang L, Yang J. A pressure-resistant zwitterionic skin sensor for domestic real-time monitoring and pro-healing of pressure injury. Biosens Bioelectron 2022; 214:114528. [PMID: 35816848 DOI: 10.1016/j.bios.2022.114528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
Abstract
Pressure injury (PI) is a hard-to-heal wound to patients with the limited mobility, especially paralyzed or elderly persons. These patients also commonly suffer from sensation loss or dementia that is unable to indicate symptoms in time, resulting in missing the "golden period" for treatment. Therefore, it is highly required to domestic continously real-time monitoring as well as promoting wound healing of PI. However, no existing device has realized these functions for PI. Herein, we prepare a zwitterionic skin sensor that enables pro-healing as well as domestic real-time monitoring the multi-indicators of PI. To apply for a PI dressing that requires to tolerate patient body weight, organosilicon nanoparticles (OSNPs) are designed as crosslinks in the zwitterionic conductive hydrogel (CH-OSNP), which exhibits pressure-resistant properties (99.81% compression to recovery) as well as anti-bacterial adhesion. Moreover, the CH-OSNP-based skin sensor is developed, and the resultant sensor can be sensitive to stress stimuli even under a long-term constant heavy load, which stimulates the pressure of a PI person lying down. In vivo results show that this sensor can not only promote PI healing, but also continuously monitor and distinguish multiple information, such as exudate, swelling, and infection, to prevent PI from being worsen. This work provides a domestic feasible device to cure and monitor the PI of patients.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Shu Tian
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Sijia Xu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Wenyi Lu
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| | - Cheng Zhong
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| | - You Long
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Yiming Ma
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Kai Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin, 301700, China.
| |
Collapse
|
21
|
Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. MICROMACHINES 2022; 13:1356. [PMID: 36014277 PMCID: PMC9412724 DOI: 10.3390/mi13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
As an important branch of wearable electronics, highly flexible and wearable sensors are gaining huge attention due to their emerging applications. In recent years, the participation of wearable devices in sports has revolutionized the way to capture the kinematical and physiological status of athletes. This review focuses on the rapid development of flexible and wearable sensor technologies for sports. We identify and discuss the indicators that reveal the performance and physical condition of players. The kinematical indicators are mentioned according to the relevant body parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally, the available wearable devices and their significant applications in monitoring these kinematical and physiological parameters are described with emphasis. The potential challenges and prospects for the future developments of wearable sensors in sports are discussed comprehensively. This review paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the wearable techniques applied in different sports.
Collapse
Affiliation(s)
- Lei Liu
- Department of Sports, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuefeng Zhang
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Kim SR, Lee S, Kim J, Kim E, Kil HJ, Yoo JH, Oh JH, Jeon J, Lee EI, Jeon JW, Jeon KH, Lee JH, Park JW. A fabric-based multifunctional sensor for the early detection of skin decubitus ulcers. Biosens Bioelectron 2022; 215:114555. [PMID: 35863135 DOI: 10.1016/j.bios.2022.114555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
Monitoring biosignals at the skin interface is necessary to suppress the potential for decubitus ulcers in immobile patients confined to bed. We develop conformally contacted, disposable, and breathable fabric-based electronic devices to detect skin impedance, applied pressure, and temperature, simultaneously. Based on the experimental evaluation of the multifunctional sensors, a combination of robust AgNW electrodes, soft ionogel capacitive pressure sensor, and resistive temperature sensor on fabric provides alarmed the initiation of early-stage decubitus ulcers without signal distortion under the external stimulus. For clinical verification, an animal model is established with a pair of magnets to mimic a human decubitus ulcers model in murine in vivo. The evidence of pressure-induced ischemic injury is confirmed with the naked eye and histological and molecular biomarker analyses. Our multifunctional integrated sensor detects the critical time for early-stage decubitus ulcer, establishing a robust correlation with the biophysical parameters of skin ischemia and integrity, including temperature and impedance.
Collapse
Affiliation(s)
- Seung-Rok Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soyeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Asen Company, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jihee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea; Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, College of Medicine, Yonsei University, Seoul, 03722, South Korea; Department of Dermatology, Yongin Severance Hospital, Yongin, 16995, South Korea
| | - Eunbin Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea; Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Hye-Jun Kil
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ju-Hyun Yoo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Je-Heon Oh
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ey-In Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jun-Woo Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kun-Hoo Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ju Hee Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea; Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, College of Medicine, Yonsei University, Seoul, 03722, South Korea.
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Asen Company, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
23
|
Smartphone-based wound dressings: A mini-review. Heliyon 2022; 8:e09876. [PMID: 35832346 PMCID: PMC9272343 DOI: 10.1016/j.heliyon.2022.e09876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 06/30/2022] [Indexed: 01/13/2023] Open
Abstract
In spite of remarkable progress in the field of wound curation, treatment of chronic wounds remains a challenge for medical services. The constant rise in the number of patients with chronic wounds and their related financial burden has caused concern for the healthcare system. The complicated and dynamic nature of chronic wounds has increased the curation time and difficulty of wound healing with conventional bandages. Efficient healing of these wounds requires new bandages with the ability of real-time monitoring, data analysis, and drug delivery, which protect the wound against infection and accelerate the treatment process. The recent development of smartphone applications and digital equipment in medicine provides an opportunity for significant improvement in wound care through the incorporation of “smart” technologies into clinical practice. The focus of this review is to provide an overview of the current status of smartphones and digital technology in the management of wounds.
Collapse
|
24
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
25
|
Deroco PB, Wachholz Junior D, Kubota LT. Paper‐based Wearable Electrochemical Sensors: a New Generation of Analytical Devices. ELECTROANAL 2022. [DOI: 10.1002/elan.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patricia Batista Deroco
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| | - Dagwin Wachholz Junior
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| | - Lauro Tatsuo Kubota
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| |
Collapse
|
26
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci Rep 2022; 12:7972. [PMID: 35562402 PMCID: PMC9106706 DOI: 10.1038/s41598-022-11982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabric types currently used in wound dressings. These sensors were experimentally evaluated and compared to each other by using albumin protein solution of pH 7. A comprehensive set of cyclic voltammetry measurements was used to determine the optimal sensor design the measurement of protein in solution. As a result, the best sensor design is comprised of silver conductive tracks but a carbon layer as the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL with a sensitivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.0026 \mu $$\end{document}0.0026μA/M. Further testing was performed to assess the sensor’s ability to identify BSA from other interferential substances usually present in wound fluids and the results show that it can be distinguishable.
Collapse
|
29
|
Wang C, Sani ES, Gao W. Wearable Bioelectronics for Chronic Wound Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2111022. [PMID: 36186921 PMCID: PMC9518812 DOI: 10.1002/adfm.202111022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/05/2023]
Abstract
Chronic wounds are a major healthcare issue and can adversely affect the lives of millions of patients around the world. The current wound management strategies have limited clinical efficacy due to labor-intensive lab analysis requirements, need for clinicians' experiences, long-term and frequent interventions, limiting therapeutic efficiency and applicability. The growing field of flexible bioelectronics enables a great potential for personalized wound care owing to its advantages such as wearability, low-cost, and rapid and simple application. Herein, recent advances in the development of wearable bioelectronics for monitoring and management of chronic wounds are comprehensively reviewed. First, the design principles and the key features of bioelectronics that can adapt to the unique wound milieu features are introduced. Next, the current state of wound biosensors and on-demand therapeutic systems are summarized and highlighted. Furthermore, we discuss the design criteria of the integrated closed loop devices. Finally, the future perspectives and challenges in wearable bioelectronics for wound care are discussed.
Collapse
Affiliation(s)
- Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Sun X, Zhang Y, Ma C, Yuan Q, Wang X, Wan H, Wang P. A Review of Recent Advances in Flexible Wearable Sensors for Wound Detection Based on Optical and Electrical Sensing. BIOSENSORS 2021; 12:10. [PMID: 35049637 PMCID: PMC8773881 DOI: 10.3390/bios12010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Chronic wounds that are difficult to heal can cause persistent physical pain and significant medical costs for millions of patients each year. However, traditional wound care methods based on passive bandages cannot accurately assess the wound and may cause secondary damage during frequent replacement. With advances in materials science and smart sensing technology, flexible wearable sensors for wound condition assessment have been developed that can accurately detect physiological markers in wounds and provide the necessary information for treatment decisions. The sensors can implement the sensing of biochemical markers and physical parameters that can reflect the infection and healing process of the wound, as well as transmit vital physiological information to the mobile device through optical or electrical signals. Most reviews focused on the applicability of flexible composites in the wound environment or drug delivery devices. This paper summarizes typical biochemical markers and physical parameters in wounds and their physiological significance, reviews recent advances in flexible wearable sensors for wound detection based on optical and electrical sensing principles in the last 5 years, and discusses the challenges faced and future development. This paper provides a comprehensive overview for researchers in the development of flexible wearable sensors for wound detection.
Collapse
Affiliation(s)
- Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Yanchi Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
31
|
Pusta A, Tertiș M, Cristea C, Mirel S. Wearable Sensors for the Detection of Biomarkers for Wound Infection. BIOSENSORS 2021; 12:1. [PMID: 35049629 PMCID: PMC8773884 DOI: 10.3390/bios12010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors. In this work, an overview of the main types of wearable sensors for wound infection detection will be provided. These sensors will be divided into electrochemical, colorimetric and fluorimetric sensors and the examples will be presented and discussed comparatively.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
32
|
Jia Z, Müller M, Le Gall T, Riool M, Müller M, Zaat SA, Montier T, Schönherr H. Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioact Mater 2021; 6:4286-4300. [PMID: 33997506 PMCID: PMC8105640 DOI: 10.1016/j.bioactmat.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
We report on the fabrication and characterization of color-encoded chitosan hydrogels for the rapid, sensitive and specific detection of bacterial enzymes as well as the selective detection of a set of tested bacteria through characteristic enzyme reactions. These patterned sensor hydrogels are functionalized with three different colorimetric enzyme substrates affording the multiplexed detection and differentiation of α-glucosidase, β-galactosidase and β-glucuronidase. The limits of detection of the hydrogels for an observation time of 60 min using a conventional microplate reader correspond to concentrations of 0.2, 3.4 and 4.5 nM of these enzymes, respectively. Based on their different enzyme expression patterns, Staphylococcus aureus strain RN4220, methicillin-resistant S. aureus (MRSA) strain N315, both producing α-glucosidase, but not β-glucuronidase and β-galactosidase, Escherichia coli strain DH5α, producing β-glucuronidase and α-glucosidase, but not β-galactosidase, and the enterohemorrhagic E. coli (EHEC) strain E32511, producing β-galactosidase, but none of the other two enzymes, can be reliably and rapidly distinguished from each other. These results confirm the applicability of enzyme sensing hydrogels for the detection and discrimination of specific enzymes to facilitate differentiation of bacterial strains. Patterned hydrogels thus possess the potential to be further refined as detection units of a multiplexed format to identify certain bacteria for future application in point-of-care microbiological diagnostics in food safety and medical settings.
Collapse
Affiliation(s)
- Zhiyuan Jia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Max Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
- CHRU de Brest, Service de génétique médicale et de biologie de la reproduction, Centre de Référence des Maladies Rares « Maladies neuromusculaires », F-29200, Brest, France
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| |
Collapse
|
33
|
Dong M, Sun X, Li L, He K, Wang J, Zhang H, Wang L. A bacteria-triggered wearable colorimetric band-aid for real-time monitoring and treating of wound healing. J Colloid Interface Sci 2021; 610:913-922. [PMID: 34863552 DOI: 10.1016/j.jcis.2021.11.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023]
Abstract
Early diagnosis of bacterial infection and tracking of treatment effect are of great importance for developing a "sense-and-treat" integrated system. Herein, we developed a bacteria-triggered, portable, wearable and colorimetric film-based band-aid (FBA) for closed-loop monitoring and light-controlled therapy of wound infection. FBA with high photothermal conversion efficiency of 52.56% was prepared by wrapping Bi2S3 nanoflowers (BS NFs) loaded with rhodium nanoparticles (Rh NPs) and bromothymol blue (BTB) into LB agar film, integrating bacteria-triggered color change, photothermal/photodynamic therapy (PTT/PDT) synergistic bactericidal therapy and agar-based band aid in one intelligent system. Initially, FBA effectively simulates the pH sensing mechanism, and monitors the occurrence of bacterial infections within 5 min through color changes of Staphylococcus aureus (S. aureus) from blue to yellow and Escherichia coli (E. coli) from yellow to blue. Additionally, the short-term and controlled antibacterial strategy of "one light dual-mode responses" (photothermal and photodynamic responses) was implemented with the introduce of near-infrared (NIR). Ultimately, the effectiveness of FBA was fully validated in the monitoring and treating of S. aureus-infected mouse wounds. Notably, the designed FBA decisively abandoned off-target side effects maximizing the treatment effect and nakedly tracking therapeutic situation in real time, contributing an effective antibacterial alternative strategy for reducing the use of antibiotics. To the best of our knowledge, such integrated system is still unreported on film-fixed model. In view of the advantages of the low cost and convenience of the simple device, the integrated design is expected to provide a solution for the development of a closed-loop biomedical system combining diagnosis and treatment.
Collapse
Affiliation(s)
- Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
34
|
Bhar B, Chouhan D, Pai N, Mandal BB. Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:7738-7763. [PMID: 35006758 DOI: 10.1021/acsabm.1c00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of sequential and synchronized events of skin regeneration often results in the impairment of chronic wounds. Conventional wound dressings fail to trigger the normal healing mechanism owing to the pathophysiological conditions. Tissue engineering approaches that deal with the fabrication of dressings using various biomaterials, growth factors, and stem cells have shown accelerated healing outcomes. However, most of these technologies are associated with difficulties in scalability and cost-effectiveness of the products. In this review, we survey the latest developments in wound healing strategies that have recently emerged through the multidisciplinary approaches of bioengineering, nanotechnology, 3D bioprinting, and similar cutting-edge technologies to overcome the limitations of conventional therapies. We also focus on the potential of wearable technology that supports complete monitoring of the changes occurring in the wound microenvironment. In addition, we review the role of advanced devices that can precisely enable the delivery of nanotherapeutics, oligonucleotides, and external stimuli in a controlled manner. These technological advancements offer the opportunity to actively influence the regeneration process to benefit the treatment regime further. Finally, the clinical relevance, trajectory, and prospects of this field have been discussed in brief that highlights their potential in providing a beneficial wound care solution at an affordable cost.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nakhul Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
35
|
Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, Wu X, Zhang K, Zhao Z, Dong Y, Wen Y. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol 2021; 9:765987. [PMID: 34790653 PMCID: PMC8591136 DOI: 10.3389/fbioe.2021.765987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
The intelligent wearable sensors promote the transformation of the health care from a traditional hospital-centered model to a personal portable device-centered model. There is an urgent need of real-time, multi-functional, and personalized monitoring of various biochemical target substances and signals based on the intelligent wearable sensors for health monitoring, especially wound healing. Under this background, this review article first reviews the outstanding progress in the development of intelligent, wearable sensors designed for continuous, real-time analysis, and monitoring of sweat, blood, interstitial fluid, tears, wound fluid, etc. Second, this paper reports the advanced status of intelligent wound monitoring sensors designed for wound diagnosis and treatment. The paper highlights some smart sensors to monitor target analytes in various wounds. Finally, this paper makes conservative recommendations regarding future development of intelligent wearable sensors.
Collapse
Affiliation(s)
- Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kaiyu Song
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaochao Wu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Kexin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zeya Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
36
|
|
37
|
Tang N, Zheng Y, Cui D, Haick H. Multifunctional Dressing for Wound Diagnosis and Rehabilitation. Adv Healthc Mater 2021; 10:e2101292. [PMID: 34310078 DOI: 10.1002/adhm.202101292] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/12/2022]
Abstract
A wound dressing is a sterile pad or compress that is used in direct contact with a wound to help it heal and prevent further issues or complications. Though wound healing is an intricate dynamic process that involves multiple biomolecular species, conventional wound dressings have a limited ability to provide timely information of abnormal conditions, missing the best time for early treatment. The current perspective presents and discusses the design and development of smart wound dressings that are integrated with multifunctional materials, wearable sensors and drug delivery systems as well as their application ranging from wound monitoring to timely application of therapeutics. The perspective also discusses the ongoing challenges and exciting opportunities associated with the development of wearable sensor-based smart wound dressing and provide critical insights into wound healing monitoring and management.
Collapse
Affiliation(s)
- Ning Tang
- School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
38
|
Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. Adv Healthc Mater 2021; 10:e2100734. [PMID: 34165240 DOI: 10.1002/adhm.202100734] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/06/2021] [Indexed: 12/12/2022]
Abstract
The emergence and development of noninvasive biosensors largely facilitate the collection of physiological signals and the processing of health-related data. The utilization of appropriate machine learning algorithms improves the accuracy and efficiency of biosensors. Machine learning-reinforced biosensors are started to use in clinical practice, health monitoring, and food safety, bringing a digital revolution in healthcare. Herein, the recent advances in machine learning-reinforced noninvasive biosensors applied in healthcare are summarized. First, different types of noninvasive biosensors and physiological signals collected are categorized and summarized. Then machine learning algorithms adopted in subsequent data processing are introduced and their practical applications in biosensors are reviewed. Finally, the challenges faced by machine learning-reinforced biosensors are raised, including data privacy and adaptive learning capability, and their prospects in real-time monitoring, out-of-clinic diagnosis, and onsite food safety detection are proposed.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jianwu Wang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Tianyi Liu
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
39
|
Abstract
Skin-interfaced wearable electronics can find a broad spectrum of applications in healthcare, human-machine interface, robotics, and others. The state-of-the-art wearable electronics usually suffer from costly and complex fabrication procedures and nonbiodegradable polymer substrates. Paper, comprising entangled micro- or nano-scale cellulose fibers, is compatible with scalable fabrication techniques and emerges as a sustainable, inexpensive, disposable, and biocompatible substrate for wearable electronics. Given various attractive properties (e.g., breathability, flexibility, biocompatibility, and biodegradability) and rich tunability of surface chemistry and porous structures, paper offers many exciting opportunities for wearable electronics. In this review, we first introduce the intriguing properties of paper-based wearable electronics and strategies for cellulose modifications to satisfy specific demands. We then overview the applications of paper-based devices in biosensing, energy storage and generation, optoelectronics, soft actuators, and several others. Finally, we discuss some challenges that need to be addressed before practical uses and wide implementation of paper-based wearable electronics.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Samuel B Stoll
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA.,Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
40
|
Sung WH, Tsao YT, Shen CJ, Tsai CY, Cheng CM. Small-volume detection: platform developments for clinically-relevant applications. J Nanobiotechnology 2021; 19:114. [PMID: 33882955 PMCID: PMC8058587 DOI: 10.1186/s12951-021-00852-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Biochemical analysis of human body fluids is a frequent and fruitful strategy for disease diagnosis. Point-of-care (POC) diagnostics offers the tantalizing possibility of providing rapid diagnostic results in non-laboratory settings. Successful diagnostic testing using body fluids has been reported on in the literature; however, small-volume detection devices, which offer remarkable advantages such as portability, inexpensiveness, capacity for mass production, and tiny sample volume requirements have not been thoroughly discussed. Here, we review progress in this research field, with a focus on developments since 2015. In this review article, we provide a summary of articles that have detailed the development of small-volume detection strategies using clinical samples over the course of the last 5 years. Topics covered include small-volume detection strategies in ophthalmology, dermatology or plastic surgery, otolaryngology, and cerebrospinal fluid analysis. In ophthalmology, advances in technology could be applied to examine tear or anterior chamber (AC) fluid for glucose, lactoferrin, interferon, or VEGF. These approaches could impact detection and care for diseases including diabetic mellitus, dry-eye disease, and age-related maculopathy. Early detection and easy monitoring are critical approaches for improving overall care and outcome. In dermatology or plastic surgery, small-volume detection strategies have been applied for passive or interactive wound dressing, wound healing monitoring, and blister fluid analysis for autoimmune disease diagnosis. In otolaryngology, the analysis of nasal secretions and mucosa could be used to differentiate between allergic responses and infectious diseases. Cerebrospinal fluid analysis could be applied in neurodegenerative diseases, central neural system infection and tumor diagnosis. Other small-volume fluids that have been analyzed for diagnostic and monitoring purposes include semen and cervico-vaginal fluids. We include more details regarding each of these fluids, associated collection and detection devices, and approaches in our review.
Collapse
Affiliation(s)
- Wei-Hsuan Sung
- Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ting Tsao
- Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Ying Tsai
- Department of Ophthalmology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
41
|
Yokus BMA, Daniele MA. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens Bioelectron 2021; 184:113249. [PMID: 33895689 DOI: 10.1016/j.bios.2021.113249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Advances in materials, bio-recognition elements, transducers, and microfabrication techniques, as well as progress in electronics, signal processing, and wireless communication have generated a new class of skin-interfaced wearable health monitoring systems for applications in personalized medicine and digital health. In comparison to conventional medical devices, these wearable systems are at the cusp of initiating a new era of longitudinal and noninvasive sensing for the prevention, detection, diagnosis, and treatment of diseases at the molecular level. Herein, we provide a review of recent developments in wearable biochemical and biophysical systems. We survey the sweat sampling and collection methods for biochemical systems, followed by an assessment of biochemical and biophysical sensors deployed in current wearable systems with an emphasis on their hardware specifications. Specifically, we address how sweat collection and sample handling platforms may be a rate limiting technology to realizing the clinical translation of wearable health monitoring systems; moreover, we highlight the importance of achieving both longitudinal sensing and assessment of intrapersonal variation in sweat-blood correlations to have the greatest clinical impact. Lastly, we assess a snapshot of integrated wireless wearable systems with multimodal sensing capabilities, and we conclude with our perspective on the state-of-the-art and the required developments to achieve the next-generation of integrated wearable health and performance monitoring systems.
Collapse
Affiliation(s)
- By Murat A Yokus
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| | - Michael A Daniele
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA.
| |
Collapse
|
42
|
Modha S, Castro C, Tsutsui H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens Bioelectron 2021; 178:113026. [PMID: 33545552 DOI: 10.1016/j.bios.2021.113026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Over the last 10 years, researchers have shown that paper is a promising substrate for affordable biosensors. The field of paper-microfluidics has evolved rapidly in that time, with simple colorimetric assays giving way to more complex electrochemical devices that can handle multiple samples at a given time. As paper devices become more complex, the ability to precisely control different fluids simultaneously becomes a challenge. Specifically, automated flow control is a necessary attribute to make paper-based devices more useable in resource-limited settings. Flow control strategies on paper are typically developed experimentally through trial-and-error, with little focus on theory. This is because flow behavior in paper is not well understood and sometimes difficult to predict precisely. Additionally, popular theoretical models are too simplistic, making them unsuitable for complex device designs and application conditions. A better understanding of flow theory would allow devices conceived straight from theoretical models. This could save time and resources by reducing experimental work. In this review, we provide an overview of different theoretical models used to characterize imbibition in paper substrates and document the latest flow control strategies that have been applied to automated fluid control on paper. Additionally, we look at current efforts to commercialize paper-based devices along with challenges facing this industry.
Collapse
Affiliation(s)
- Sidharth Modha
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carlos Castro
- Department of Mechanical Engineering, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA; Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
43
|
O'Callaghan S, Galvin P, O'Mahony C, Moore Z, Derwin R. 'Smart' wound dressings for advanced wound care: a review. J Wound Care 2021; 29:394-406. [PMID: 32654609 DOI: 10.12968/jowc.2020.29.7.394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hard-to-heal wounds are a common side-effect of diabetes, obesity, pressure ulcers and age-related vascular diseases, the incidences of which are growing worldwide. The increasing financial burden of hard-to-heal wounds on global health services has provoked technological research into improving wound diagnostics and therapeutics via 'smart' dressings, within which elements such as microelectronic sensors, microprocessors and wireless communication radios are embedded. This review highlights the progress being made by research groups worldwide in producing 'smart' wound device prototypes. Significant advances have been made, for example, flexible substrates have replaced rigid circuit boards, sensors have been printed on commercial wound dressing materials and wireless communication has been demonstrated. Challenges remain, however, in the areas of power supply, disposability, low-profile components, multiparametric sensing and seamless device integration in commercial wound dressings.
Collapse
Affiliation(s)
- Suzanne O'Callaghan
- Department of Life Sciences Interface, Tyndall National Institute, University College Cork, Ireland
| | - Paul Galvin
- Department of Life Sciences Interface, Tyndall National Institute, University College Cork, Ireland
| | - Conor O'Mahony
- Department of Life Sciences Interface, Tyndall National Institute, University College Cork, Ireland
| | - Zena Moore
- Royal College of Surgeons in Ireland, School of Nursing, 123 St. Stephen's Green, Dublin 2 Dublin, Ireland.,Monash University, Melbourne, Australia.,Ghent University, Belgium.,Lida Institute, Shanghai, China.,University of Wales, Cardiff, Wales
| | - Rosemarie Derwin
- Royal College of Surgeons in Ireland, School of Nursing, 123 St. Stephen's Green, Dublin 2 Dublin, Ireland
| |
Collapse
|
44
|
A Systematic Investigation of Models for Color Image Processing in Wound Size Estimation. COMPUTERS 2021. [DOI: 10.3390/computers10040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years, research in tracking and assessing wound severity using computerized image processing has increased. With the emergence of mobile devices, powerful functionalities and processing capabilities have provided multiple non-invasive wound evaluation opportunities in both clinical and non-clinical settings. With current imaging technologies, objective and reliable techniques provide qualitative information that can be further processed to provide quantitative information on the size, structure, and color characteristics of wounds. These efficient image analysis algorithms help determine the injury features and the progress of healing in a short time. This paper presents a systematic investigation of articles that specifically address the measurement of wounds’ sizes with image processing techniques, promoting the connection between computer science and health. Of the 208 studies identified by searching electronic databases, 20 were included in the review. From the perspective of image processing color models, the most dominant model was the hue, saturation, and value (HSV) color space. We proposed that a method for measuring the wound area must implement different stages, including conversion to grayscale for further implementation of the threshold and a segmentation method to measure the wound area as the number of pixels for further conversion to metric units. Regarding devices, mobile technology is shown to have reached the level of reliable accuracy.
Collapse
|
45
|
Jose M, Oudebrouckx G, Bormans S, Veske P, Thoelen R, Deferme W. Monitoring Body Fluids in Textiles: Combining Impedance and Thermal Principles in a Printed, Wearable, and Washable Sensor. ACS Sens 2021; 6:896-907. [PMID: 33499590 DOI: 10.1021/acssensors.0c02037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work explores the feasibility of coupling two different techniques, the impedance and the transient plane source (TPS) principle, to quantify the moisture content and its compositional parameters simultaneously. The sensor is realized directly on textiles with the use of printing and coating technology. Impedance measurements use the fluid's electrical properties, while the TPS measurements are based on the thermal effusivity of the liquid. Impedance and TPS measurements show equal competency in measuring the fluid volume with a lowest measurable quantity of 0.5 μL, enabling ultralow volume passive measurements for sweat analysis. Both sensor principles were tested by monitoring the drying of a wet cloth and the measurements show perfect repeatability and accuracy. Nevertheless, when the biofluid property changes, the TPS sensor does not reflect this information on its readings, whereas, on the other hand, impedance can provide information on compositional changes. However, since the volume of the fluid changes simultaneously, one cannot differentiate between a volume change and a compositional change from impedance measurements alone. Therefore, we show in this work that we can apply impedance to measure the compositional properties; meanwhile, the TPS measurements accurately carry out volume measurements irrespective of the interferences from its compositional variations. To prove this, both of these techniques are applied for the quantification and composition monitoring of sweat, showing the capability to measure moisture content and compositional parameters simultaneously. TPS measurements can also be an indicator of the local temperature of the medium confined by the sensor, and it does not influence the fluid parameters. Compiling both impedance and thermal sensors in a single platform triggers smart wearable prospects of metering the liquid volume and simultaneously analyzing other compositional changes and body temperature. Finally, the repeatability and stability of the sensor readings and the washability of the device are tested. This device could be a potential sensing tool in real-life applications, such as wound monitoring and sweat analysis, and could be a promising addition toward future smart wearable sensors.
Collapse
Affiliation(s)
- Manoj Jose
- Hasselt University, Institute for Materials Research (IMO-IMOMEC) 1, 3590 Diepenbeek, Belgium
- IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Gilles Oudebrouckx
- Hasselt University, Institute for Materials Research (IMO-IMOMEC) 1, 3590 Diepenbeek, Belgium
- IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Seppe Bormans
- Hasselt University, Institute for Materials Research (IMO-IMOMEC) 1, 3590 Diepenbeek, Belgium
- IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Paula Veske
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 126, 9052 Gent, Belgium
| | - Ronald Thoelen
- Hasselt University, Institute for Materials Research (IMO-IMOMEC) 1, 3590 Diepenbeek, Belgium
- IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Wim Deferme
- Hasselt University, Institute for Materials Research (IMO-IMOMEC) 1, 3590 Diepenbeek, Belgium
- IMEC, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
46
|
Wang Y, Guo M, He B, Gao B. Intelligent Patches for Wound Management: In Situ Sensing and Treatment. Anal Chem 2021; 93:4687-4696. [PMID: 33715353 DOI: 10.1021/acs.analchem.0c04956] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intelligent wound patches have the potential properties of ultra-adhesion, self-healing ability, biosensing, antibacterial, anti-inflammatory, etc. In situ sensing (biosensing and monitoring) and intelligent drug delivery deserve more exploration, and new strategies of these two factors are of great importance. In this Feature, a comprehensive set of the progress in the area of intelligent wound patches, especially those based on multiple biosensing and electronics, and their potentials in drug release is deliberated. In addition, the major challenges in this field and opinions on its future developments are portrayed.
Collapse
Affiliation(s)
- Yuqiu Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Maoze Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.,School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
47
|
Yang C, Huang X, Li X, Yang C, Zhang T, Wu Q, liu D, Lin H, Chen W, Hu N, Xie X. Wearable and Implantable Intraocular Pressure Biosensors: Recent Progress and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002971. [PMID: 33747725 PMCID: PMC7967055 DOI: 10.1002/advs.202002971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/24/2020] [Indexed: 05/09/2023]
Abstract
Biosensors worn on or implanted in eyes have been garnering substantial attention since being proven to be an effective means to acquire critical biomarkers for monitoring the states of ophthalmic disease, diabetes. Among these disorders, glaucoma, the second leading cause of blindness globally, usually results in irreversible blindness. Continuous intraocular pressure (IOP) monitoring is considered as an effective measure, which provides a comprehensive view of IOP changes that is beyond reach for the "snapshots" measurements by clinical tonometry. However, to satisfy the applications in ophthalmology, the development of IOP sensors are required to be prepared with biocompatible, miniature, transparent, wireless and battery-free features, which are still challenging with many current fabrication processes. In this work, the recent advances in this field are reviewed by categorizing these devices into wearable and implantable IOP sensors. The materials and structures exploited for engineering these IOP devices are presented. Additionally, their working principle, performance, and the potential risk that materials and device architectures may pose to ocular tissue are discussed. This review should be valuable for preferable structure design, device fabrication, performance optimization, and reducing potential risk of these devices. It is significant for the development of future practical IOP sensors.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Dong liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| |
Collapse
|
48
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02400-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Hosseini ES, Bhattacharjee M, Manjakkal L, Dahiya R. Healing and monitoring of chronic wounds: advances in wearable technologies. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00014-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|