1
|
Jiang M, Wang M, Lai W, Hong C, Song X, Chen S. Smart modulation by bifunctional probes PNAI@Co 3O 4/Au NPs of the light/electric response of Au-Ag NCs to realize the dual-channel precise detection of AOH. Food Chem 2025; 463:141370. [PMID: 39316911 DOI: 10.1016/j.foodchem.2024.141370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Mycotoxin contamination currently poses a significant concern and presents a major challenge to global food safety management. In this research, gold‑silver nanoclusters (Au-AgNCs) were utilized as platforms for electrogenerated chemiluminescence (ECL) and electrochemical (EC) responses, while polyaniline-coated cobalt tetraoxide and gold (PANI@Co3O4/AuNPs) served as bifunctional probes with intelligently modulated light/electric signals to develop a dual mode adaptor sensor for sensitive detection of alternariol (AOH). The sensor's benefits are evident in three areas:(1) Bandgap modulation allows Au-Ag to exhibit enhanced light/electric response;(2) PANI@Co3O4/AuNPs exhibit both ECL quenching effects and the capability to activate KHSO5, along with improved electrical conductivity, which collectively improves the sensor's detection performance;(3) The dual-channel signal outputs significantly reduce the risk of false detections. Testing results indicated that the ECL and EC sensors performed exceptionally well across AOH concentration ranges of 0.001-100 ng/mL and 0.01-1000 ng/mL, with detection limit of 0.803 pg/mL and 0.378 pg/mL, respectively.
Collapse
Affiliation(s)
- Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xuetong Song
- Department of Geography and Tourism, College of Science, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Siyu Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Zhang H, Tian F, Shi Y, Zhang X, Zheng G, Li L. Integrating All-rounder TiO 2 Accelerated Electrochemiluminescence with Dual-Quenching PDA@COF Probes for Sensitive Quantification and Protein Profiling of Tumorous Exosomes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61692-61702. [PMID: 39496573 DOI: 10.1021/acsami.4c13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Exosomes have been perceived as promising biomarkers for noninvasive cancer diagnosis and treatment monitoring. However, the sensitive and accurate quantification and phenotyping of exosomes remains challenging. Herein, a versatile electrochemiluminescence (ECL) aptasensor was proposed for the sensitive analysis of tumorous exosomes. Specifically, a ternary nanohybrid (Ru-HAuTiO2), by covalently linking ECL luminophore Ru(dcbpy)32+ with gold nanoparticles (AuNPs)-decorated hollow urchin-like TiO2 (HTiO2), was ingeniously designed as a highly luminescent and self-enhanced ECL nanoemitter. Notably, the porous HTiO2 played an "all-rounder" role, including the carrier for ECL luminophores and AuNPs, coreaction accelerator, and specific exosome capturing scaffold through Ti-phosphate coordination interaction. On the other hand, a polydopamine modified covalent organic framework (PDA@COF) was employed as a quencher to remarkably attenuate the ECL of Ru-HAuTiO2 through a dual-quenching mechanism, and further labeled with a specific aptamer (Apt) of exosomal surface protein. Based on forming a Ru-HAuTiO2/exosome/Apt-PDA@COF sandwich structure on the electrode, a "signal on-off" ECL platform for tumorous exosomes was constructed, realizing sensitive detection within the range of 3.1 × 103 particles/mL to 1 × 108 particles/mL and a low limit of detection of 1.41 × 103 particles/mL, achieving phenotypic profiling of surface proteins on different tumorous exosomes. This work provides a promising alternative method for the detection and analysis of exosomes.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fang Tian
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yang Shi
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xia Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guocai Zheng
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lingling Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
4
|
Wu J, Wu J, Wei W, Zhang Y, Chen Q. Upconversion Nanoparticles Based Sensing: From Design to Point-of-Care Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311729. [PMID: 38415811 DOI: 10.1002/smll.202311729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) have achieved a wide range of applications in the sensing field due to their unique anti-Stokes luminescence property, minimized background interference, excellent biocompatibility, and stable physicochemical properties. However, UCNPs-based sensing platforms still face several challenges, including inherent limitations from UCNPs such as low quantum yields and narrow absorption cross-sections, as well as constraints related to energy transfer efficiencies in sensing systems. Therefore, the construction of high-performance UCNPs-based sensing platforms is an important cornerstone for conducting relevant research. This work begins by providing a brief overview of the upconversion luminescence mechanism in UCNPs. Subsequently, it offers a comprehensive summary of the sensors' types, design principles, and optimized design strategies for UCNPs sensing platforms. More cost-effective and promising point-of-care testing applications implemented based on UCNPs sensing systems are also summarized. Finally, this work addresses the future challenges and prospects for UCNPs-based sensing platforms.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Jiaxi Wu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| |
Collapse
|
5
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
7
|
Lan L, Kuang X, Sun X, Wei Q, Kuang R. MOF-Enhanced Chiral ECL Recognition System: Dual-Function in Phenylalanine Enantiomer Detection and Coreaction Acceleration. Anal Chem 2023. [PMID: 38016920 DOI: 10.1021/acs.analchem.3c04590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The accurate discernment and separation of chiral isomers with high precision remain a significant challenge in various industries and biological fields. In this investigation, an electrochemiluminescent (ECL) chiral recognition platform was devised to ascertain the presence of phenylalanine (Phe). Notably, a homochiral [Ni2(l-asp)2(bipy)] (Ni-LAB) was established as a dual-function coreactant accelerator and chiral recognition substrate. Ni-LAB facilitates the reaction between the coreactant (K2S2O8) and the luminescent entity 3,4,9,10-perylenetetracar-boxylic-l-cysteine (PTCA-cys), thereby enhancing the ECL luminescence efficiency and improving the sensitivity of the chiral sensor. The chiral recognition potential of Ni-LAB was assessed to differentiate between Phe chiral isomers, and the underlying mechanism was comprehensively elucidated. This system exhibited remarkable proficiency in detecting Phe enantiomers and precisely differentiating a single Phe enantiomer within a mixture, showcasing exceptional levels of selectivity, stability, and reproducibility. This study paves the way for the development of advanced chiral recognition systems, potentially revolutionizing the field of chiral sensing and discrimination.
Collapse
Affiliation(s)
- Lin Lan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Rui Kuang
- College of Traffic Civil Engineering, Shandong Jiaotong University, Jinan 250023, China
| |
Collapse
|
8
|
Shelash Al-Hawary SI, Malviya J, Althomali RH, Almalki SG, Kim K, Romero-Parra RM, Fahad Ahmad A, Sanaan Jabbar H, Vaseem Akram S, Hussien Radie A. Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff. Crit Rev Anal Chem 2023; 54:3614-3631. [PMID: 37728973 DOI: 10.1080/10408347.2023.2258971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
Collapse
Affiliation(s)
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Kibum Kim
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| | | | - Ahmad Fahad Ahmad
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Shaik Vaseem Akram
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | |
Collapse
|
9
|
Wang L, Liu Y, Yan J, Li H, Tu Y. Novel Electrochemiluminescent Immunosensor Using Dual Amplified Signals from a CoFe Prussian Blue Analogue and Au Nanoparticle for the Detection of Lp-PLA2. ACS Sens 2023; 8:2859-2868. [PMID: 37432366 DOI: 10.1021/acssensors.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Coronary heart disease (CHD) poses an important threat to human health, and its pathogenesis is the formation of atheromatous plaques in coronary ventricles. Compared to other biomarkers, lipoprotein-associated phospholipase A2 (Lp-PLA2), which is involved in multiple processes of atherosclerosis, is a noticeable inflammatory biomarker related to CHD. Herein, using a multifunctional nanocomposite containing a CoFe Prussian blue analogue (PBA) and Au nanoparticles (AuNPs) (AuNPs@CoFe PBA) as a sensing substrate, an electrochemiluminescent (ECL) immunosensor was developed for the highly sensitive detection of Lp-PLA2. Benefiting from the synergistic effect of the PBA and AuNPs, the nanocomposite exhibits excellent peroxidase-like activity and can catalyze the luminol-ECL reaction, amplifying the ECL signal by ∼29-fold. Meanwhile, the enlarged specific surface area of the nanocomposite and the presence of abundant AuNPs allow the immobilization of more antibody proteins, thereby improving the sensing response of the immunosensor. When the target Lp-PLA2 is captured by the antibody on the sensor surface, the sensor emits a reduced ECL signal because of the increased mass and electron transfer resistance due to the formation of the immune complex. Under optimized conditions, the constructed ECL immunosensor exhibits a broad linear range from 1 to 2200 ng/mL and a low detection limit of 0.21 ng/mL. Additionally, the ECL immunosensor exhibits high specificity, stability, and reproducibility. This work provides a new approach to diagnose CHD and broadened the application of the PBA in the field of ECL sensors.
Collapse
Affiliation(s)
- Lixin Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuhong Liu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Jilin Yan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Huiling Li
- First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
- Nursing School, Suzhou Medical College of Soochow University, Suzhou 215006, P. R. China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
11
|
Peng L, Li P, Chen J, Deng A, Li J. Recent progress in assembly strategies of nanomaterials-based ultrasensitive electrochemiluminescence biosensors for food safety and disease diagnosis. Talanta 2023; 253:123906. [PMID: 36122432 DOI: 10.1016/j.talanta.2022.123906] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
The Electrochemiluminescence (ECL)-based biosensors have received considerable attention in food contaminants and disease diagnosis, due to their fascinating advantages such as low cost, fast analysis speed, wide linear range, high sensitivity, and excellent anti-interference ability. Meanwhile, with the vigorous development and improvement of nanotechnology, biosensor assembly strategies tend to diversify and be multifunctional. This review focuses on the representative ECL biosensors in food safety and disease diagnosis reported by our research group and other research groups based on nanomaterials assembly strategies in recent years. According to the different roles of nanomaterials played in the constitution of ECL biosensors, nanomaterials would be divided into the following two categories to be summarized: (1) Nanomaterials for signal amplification. (2) Nanomaterials as ECL emitters. Finally, this review prospects the perspectives on the future development direction of ECL biosensor in food safety and disease diagnosis.
Collapse
Affiliation(s)
- Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Pengcheng Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jia Chen
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
12
|
Shen L, Wang YW, Shan HY, Chen J, Wang AJ, Liu W, Yuan PX, Feng JJ. Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome c. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4767-4774. [PMID: 36416105 DOI: 10.1039/d2ay01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome c (cyt c) plays a critical role in mitochondrial respiratory chain, whose absence is detrimental to electron transport and reduce adenosine triphosphate. For ultrasensitive detection of cyt c, sheet-like covalent organic frameworks (COFs) were prepared by orderly accumulation of 1,3,5-benzenetricarboxaldehyde (BTA) and p-phenylenediamine (PDA), and further grafted with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) - an electrochemiluminescence (ECL) emitter. Specifically, the morphology and structure of the COFs-ABEI were mainly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). In parallel, the optical properties of the emitter were certified by UV-vis absorbance spectroscopy, Fourier infrared spectroscopy (FTIR), fluorescence (FL), and ECL measurements, showing 2.25-time enhanced ECL efficiency over pure ABEI, coupled by illustrating the interfacial electron transport mechanism. On the above foundation, a label-free "signal off" ECL biosensor was constructed by virtue of the specific immune recognition between the aptamer of the target cyt c with its capture DNA (cDNA) anchored on the biosensing platform, exhibiting a wider linear range of 1.00 fg mL-1-0.10 ng mL-1 (R2 = 0.998) and a lower limit of detection (LOD) down to 0.73 fg mL-1. This work offers some constructive guidelines for sensitive bioassays of disease-related biomarkers in the clinical field.
Collapse
Affiliation(s)
- Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Wen Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hong-Yan Shan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
13
|
Lahcen A, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN. Metal-Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49399-49424. [PMID: 36315467 PMCID: PMC9650679 DOI: 10.1021/acsami.2c12842] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The use of porous materials as the core for synthesizing molecularly imprinted polymers (MIPs) adds significant value to the resulting sensing system. This review covers in detail the current progress and achievements regarding the synergistic combination of MIPs and porous materials, namely metal/covalent-organic frameworks (MOFs/COFs), including the application of such frameworks in the development of upgraded sensor platforms. The different processes involved in the synthesis of MOF/COF-MIPs are outlined, along with their intrinsic properties. Special attention is paid to debriefing the impact of the morphological changes that occur through the synergistic combination compared to those that occur due to the individual entities. Thereafter, the strategies used for building the sensors, as well as the transduction modes, are overviewed and discussed. This is followed by a full description of research advances for various types of MOF/COF-MIP-based (bio)sensors and their applications in the fields of environmental monitoring, food safety, and pharmaceutical analysis. Finally, the challenges/drawbacks, as well as the prospects of this research field, are discussed in detail.
Collapse
Affiliation(s)
- Abdellatif
Ait Lahcen
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Sandeep G. Surya
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Abderrahman Lamaoui
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Ceren Durmus
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Suna Timur
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Aziz Amine
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Liu D, Lv X, Zhao C, Li J, Huang J, Weng L, He L, Liu S. NaBiF 4 upconversion nanoparticle-based electrochemiluminescent biosensor for E. coli O157 : H7 detection. RSC Adv 2022; 12:30174-30180. [PMID: 36329935 PMCID: PMC9589827 DOI: 10.1039/d2ra05217b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Foodborne or water-borne pathogens pose great threats to human beings and animals. There is an urgent need to detect pathogens with cheap, rapid and sensitive point-of-care diagnostic assays. Herein, we report the electrochemiluminescent (ECL) behaviors of NaBiF4 : Yb3+/Er3+ upconversion nanoparticles (UCNPs) which were synthesized via a fast and environment-friendly method at room temperature for the first time. The UCNPs together with K2S2O8 exhibit high ECL intensity and stable cathodic signals. Further, the Au nanoparticles (Au NPs) and Anti-E. coli O157 : H7 antibody were assembled on the surface of UCNPs successively to construct a novel ECL immunosensor for the detection of deadly E. coli O157 : H7. The as-prepared ECL immunosensor reveals high sensitivity to E. coli O157 : H7 in a linear range of 200-100 000 CFU mL-1, and the minimum detection limit could reach up to 138 CFU mL-1. The designed UCNP-based biosensor demonstrates high specificity, good stability and remarkable repeatability, and the strategy will provide a sensitive and selective method for rapid detection of E. coli O157 : H7 in food safety and preclinical diagnosis.
Collapse
Affiliation(s)
- Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 China
| | - Xingxing Lv
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 China
| | - Chaoyue Zhao
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 China
| | - Jiayue Li
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 China
| | - Jinmei Huang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 China
| | - Ling Weng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 China
| | - Liangcan He
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001 China
| | - Shaoqin Liu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
15
|
Feng Y, Wang N, Ju H. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Akçapınar R, Özgür E, Goodarzi V, Uzun L. Surface imprinted upconversion nanoparticles for selective albumin recognition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang L, Xie H, Lin Y, Wang M, Sha L, Yu X, Yang J, Zhao J, Li G. Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosens Bioelectron 2022; 217:114668. [DOI: 10.1016/j.bios.2022.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
|
18
|
Liu C, Cai L, Wang X, Guo Y, Fang G, Wang S. Construction of molecularly imprinted sensor based on covalent organic frameworks DAFB-DCTP-doped carbon nitride nanosheets with high electrochemiluminescence activity for sensitive detection of carbaryl. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
20
|
Li Z, Zhou Y, Cui Y, Liang G. A flexible and bright surface-enhanced electrochemiluminescence film constructed from efficient aggregation-induced emission luminogens for biomolecular sensing. J Mater Chem B 2022; 10:3320-3328. [PMID: 35380155 DOI: 10.1039/d2tb00400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bright surface-enhanced electrochemiluminescence film (SEEF) was fabricated from an organic luminogen with aggregation-induced emission (AIEgen) features on flexible substrates. Flexible carbonous substrates including carbon fiber cloth (GCFC) and carbon fiber paper (GCFP) were decorated with gold nanoparticles (AuNPs) through electrochemical deposition methods, followed by facilely casting AIEgen solutions. The resulting SEEF had a low driving potential of +0.84 V, and its electrochemiluminescence (ECL) was readily observed by the naked eye. The systematic investigation showed that the bright ECL was associated with the promoted electrochemical oxidation and radiative decay of excited AIEgens enhanced by AuNP deposition. Intriguingly, the ECL intensity of the film was linearly enhanced by increasing AIEgen loadings, which allowed tuning of ECL brightness on demand. Moreover, the SEEF was flexible and immune to folding. The ECL intensity rarely changed even when consecutively folding the film 20 times due to the strong interaction between the AIEgen and substrate. The SEEF was further used to sense biomolecules in aqueous media. The ECL of the film was linearly quenched in the presence of dopamine (DA) in the range of 10-15-10-6 M with a record-low limit of detection of 3.16 × 10-16 M. Furthermore, a simple method based on grayscale analysis of ECL images (GAEI) was used for visual sensing of DA. This work provides a kind of novel bright ECL film, useful for the ultrasensitive monitoring of biomolecules in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yusheng Zhou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuhan Cui
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
21
|
Zhang S, Liu D, Wang G. Covalent Organic Frameworks for Chemical and Biological Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082586. [PMID: 35458784 PMCID: PMC9029239 DOI: 10.3390/molecules27082586] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with polygonal porosity and highly ordered structures. The most prominent feature of the COFs is their excellent crystallinity and highly ordered modifiable one-dimensional pores. Since the first report of them in 2005, COFs with various structures were successfully synthesized and their applications in a wide range of fields including gas storage, pollution removal, catalysis, and optoelectronics explored. In the meantime, COFs also exhibited good performance in chemical and biological sensing, because their highly ordered modifiable pores allowed the selective adsorption of the analytes, and the interaction between the analytes and the COFs’ skeletons may lead to a detectable change in the optical or electrical properties of the COFs. In this review, we firstly demonstrate the basic principles of COFs-based chemical and biological sensing, then briefly summarize the applications of COFs in sensing some substances of practical value, including some gases, ions, organic compounds, and biomolecules. Finally, we discuss the trends and the challenges of COFs-based chemical and biological sensing.
Collapse
Affiliation(s)
- Shiji Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
- Correspondence: (D.L.); (G.W.)
| | - Guangtong Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150080, China
- Correspondence: (D.L.); (G.W.)
| |
Collapse
|
22
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
23
|
Moini N, Jahandideh A, Shahkarami F, Kabiri K, Piri F. Linear and star-shaped π-conjugated oligoanilines: a review on molecular design in syntheses and properties. Polym Chem 2022. [DOI: 10.1039/d2py00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular Design and Synthesis of Linear and Star-shaped π-conjugated Oligoanilines with reversible optoelectrochemical properties.
Collapse
Affiliation(s)
- N. Moini
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
| | - A. Jahandideh
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - F. Shahkarami
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - K. Kabiri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
- Biobased Monomers and Polymers Division (BIOBASED Division), Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965-115, Tehran, Iran
| | - F. Piri
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
24
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
25
|
Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021; 94:349-365. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
26
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Development of a molecular imprinted electrochemiluminescence sensor for amitriptyline detection: From MD simulations to experimental implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Mu J, Peng Y, Shi Z, Zhang D, Jia Q. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Mikrochim Acta 2021; 188:384. [PMID: 34664135 DOI: 10.1007/s00604-021-05011-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
As an ideal substitute for traditional organic fluorescent dyes or up-conversion nanomaterials, copper nanoclusters (CuNCs) have developed rapidly and have been involved in exciting achievements in versatile applications. The emergence of novel CuNCs composites improves the poor stability and fluorescence intensity of CuNCs. With this in mind, great efforts have been made to develop a wide variety of CuNCs composites, and impressive progress has been made in the past few years. In this review, we systematically summarize absorption, fluorescence, electrochemiluminescence, and catalytic properties and focus on the multiple factors that affect the fluorescence properties of CuNCs. The fluorescence properties of CuNCs are discussed from the point of view of core size, surface ligands, self-assembly, metal defects, pH, solvent, ions, metal doping, and confinement effect. Especially, we illustrate the research progress and representative applications of CuNCs composites in bio-related fields, which have received considerable interests in the past years. Additionally, the sensing mechanism of CuNCs composites is highlighted. Finally, we summarize current challenges and look forward to the future development of CuNCs composites. Schematic diagram of the categories, possible sensing mechanisms, and bio-related applications of copper nanoclusters composites.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Peng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
29
|
Sun G, Xie Y, Sun L, Zhang H. Lanthanide upconversion and downshifting luminescence for biomolecules detection. NANOSCALE HORIZONS 2021; 6:766-780. [PMID: 34569585 DOI: 10.1039/d1nh00299f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecules play critical roles in biological activities and are closely related to various disease conditions. The reliable, selective and sensitive detection of biomolecules holds much promise for specific and rapid biosensing. In recent years, luminescent lanthanide probes have been widely used for monitoring the activity of biomolecules owing to their long luminescence lifetimes and line-like emission which allow time-resolved and ratiometric analyses. In this review article, we concentrate on recent advances in the detection of biomolecule activities based on lanthanide luminescent systems, including upconversion luminescent nanoparticles, lanthanide-metal organic frameworks, and lanthanide organic complexes. We also introduce the latest remarkable accomplishments of lanthanide probes in the design principles and sensing mechanisms, as well as the forthcoming challenges and perspectives for practical achievements.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
30
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
31
|
Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln 3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021; 20:3531-3578. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
The food safety issue has gradually become the focus of attention in modern society. The presence of food contaminants poses a threat to human health and there are a number of interesting researches on the detection of food contaminants. Upconversion nanoparticles (UCNPs) are superior to other fluorescence materials, considering the benefits of large anti-Stokes shifts, high chemical stability, non-autofluorescence, good light penetration ability, and low toxicity. These properties render UCNPs promising candidates as luminescent labels in biodetection, which provides opportunities as a sensitive, accurate, and rapid detection method. This paper intended to review the research progress of food contaminants detection by UCNPs-based sensors. We have proposed the key criteria for UCNPs in the detection of food contaminants. Additionally, it highlighted the construction process of the UCNPs-based sensors, which includes the synthesis and modification of UCNPs, selection of the recognition elements, and consideration of the detection principle. Moreover, six kinds of food contaminants detected by UCNPs technology in the past 5 years have been summarized and discussed fairly. Last but not least, it is outlined that UCNPs have great potential to be applied in food safety detection and threw new insight into the challenges ahead.
Collapse
Affiliation(s)
- Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Mahmoud AM, Mahnashi MH, Alhazzani K, Az A, Algahtani MM, Alaseem A, Alyami BA, AlQarni AO, El-Wekil MM. Nitrogen doped graphene quantum dots based on host guest interaction for selective dual readout of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119516. [PMID: 33561682 DOI: 10.1016/j.saa.2021.119516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Herein, yellow emissive nitrogen doped graphene quantum dots (N@GQDs) were prepared by a novel advanced thermal driven oxidation. The N@GQDs was functionalized with β-cyclodextrin (β-CD) to improve its catalytic performance towards dopamine (DA) detection. The β-CD/N@GQDs exhibited strong fluorescence at λem. = 550 nm after excitation at 460 nm with a quantum yield of 38.6%. The β-CD/N@GQDs showed good peroxidase like activity via catalyzing the oxidation of tetramethylbenzidine (TMB) in presence of H2O2 to form blue colored product at λmax = 652 nm. In the colorimetric assay of DA, the detection based on the oxidation of TMB by H2O2 in presence of β-CD/N@GQDs as a catalyst. Then, the color of the blue oxidized TMB (oxTMB) product was reduced by addition of DA. While the fluorometric detection of DA based on the "inner filter effect" of the overlapped emission spectrum of β-CD/N@GQDs with the absorption spectrum of oxTMB, where, addition of DA reduces oxTMB to TMB and restores the fluorescence intensity of β-CD/N@GQDs. Under the optimized conditions, the colorimetric method achieved linearity range of 0.12-7.5 µM and LOD (S/N = 3) of 0.04 µM, while the fluorometric method achieved linearity range of 0.028-1.5 µM and LOD (S/N = 3) of 0.009 µM. The peroxidase like activity of β-CD/N@GQDs was used to detect DA in human plasma and serum samples with good % recoveries. The colorimetric and fluorometric methods exhibited good sensitivity and selectivity toward DA detection.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alanazi Az
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alaseem
- Pharmacology Department, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
33
|
A multifunctional near-infrared fluorescent sensing material based on core-shell upconversion nanoparticles@magnetic nanoparticles and molecularly imprinted polymers for detection of deltamethrin. Mikrochim Acta 2021; 188:165. [PMID: 33856578 DOI: 10.1007/s00604-021-04811-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
The construction of multifunctional sensors has attracted considerable attention due to their multifunctional properties, such as high sensitivity and rapid detection. Herein, near-infrared multifunctional fluorescent sensing materials based on core-shell upconversion nanoparticle@magnetic nanoparticle and molecularly imprinted polymers were synthesized for rapid detection of deltamethrin. The difunctional core-shell upconversion nanoparticle@magnetic nanoparticle was introduced as the optical signal and rapid separator. Firstly, the difunctional core-shell materials were prepared through solvothermal method. Then, molecularly imprinted polymers (MIPs) as recognition elements for deltamethrin were coated on the surface of upconversion nanoparticle@magnetic nanoparticle through polymerization. The structure and recognition characterizations of multifunctional fluorescent sensing materials were evaluated. Under optimal condition, the imprinting factor of sensing materials was 3.63, and the fluorescence intensity of sensing materials decreased linearly with increasing concentration of deltamethrin from 0.001 to 1 mg L-1 with a detection limit of 0.749 μg L-1, and a relative standard deviation of 3.10% was obtained with 5 mg L-1 deltamethrin. The sensing materials showed a high selectivity and were successfully utilized for the detection of deltamethrin in grapes and cabbages; the results showed that the recoveries for two samples obtained were 95.6-102% and 91.8-105%.
Collapse
|
34
|
Alqarni AO, Alkahtani SA, Mahmoud AM, El-Wekil MM. Design of "Turn On" fluorometric nanoprobe based on nitrogen doped graphene quantum dots modified with β-cyclodextrin and vitamin B 6 cofactor for selective sensing of dopamine in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119180. [PMID: 33234475 DOI: 10.1016/j.saa.2020.119180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Herein, a novel and rapid fluorometric nanoprobe was constructed for quantitation of dopamine (DA) in presence of biologically interfering compounds. The nanoprobe based on synthesis of yellow emissive nitrogen doped graphene quantum dots (N@GQDs) by advanced thermal driven oxidation. After that, the synthesized N@GQDs was capped with β-cyclodextrin (β-CD), followed by interaction with pyridoxal (PYL) vitamin B6 cofactor. This interaction resulted in diminishing the yellow fluorescence of β-CD/N@GQDs, and appearance of blue emission peak at 420 nm. Upon addition of DA, the blue emission of β-CD/N@GQDs was increased after excitation at λ = 330 nm. Under optimum conditions, the nanoprobe exhibited a linear range of 0.36-400 nM with limit of detection (LOD) of 0.117 nM. In addition, the fluorescent nanoprobe shows high selectivity and can be used for detection of DA in complicated biological matrices and human serum. This strategy might provide a potential tool for clinical diagnosis and biomedical research for DA related diseases.
Collapse
Affiliation(s)
- Ali O Alqarni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudia Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
35
|
Yuan X, Gao X, Yuan Y, Ji Y, Xiong Z, Zhao L. Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues. Talanta 2021; 224:121843. [DOI: 10.1016/j.talanta.2020.121843] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
|
36
|
Li S, Ma X, Pang C, Wang M, Yin G, Xu Z, Li J, Luo J. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens Bioelectron 2021; 176:112944. [DOI: 10.1016/j.bios.2020.112944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022]
|
37
|
Fu C, Sun Y, Huang C, Wang F, Li N, Zhang L, Ge S, Yu J. Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO2 as signal tags and double molecular recognition for cerebral dopamine detection. Talanta 2021; 223:121719. [DOI: 10.1016/j.talanta.2020.121719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
|
38
|
Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020; 220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Upconversion materials have been the focus of a large body of research in analytical and clinical fields in the last two decades owing to their ability to convert light between various spectral regions and their particular photophysical features. They emit efficient and sharp ultraviolet (UV) or visible luminescence after excitation with near-infrared (NIR) light. These features overcome some of the disadvantages reported for conventional fluorescent materials and provide opportunities for high sensitivity chemo-and bio-sensing. Here, we review studies that used upconversion materials as sensors for the determination of pharmaceuticals and biomolecules in the last two decades. The articles included in this review were retrieved from the SCOPUS database using the search phrases: "upconversion nanoparticles for determination of pharmaceutical compounds", and "upconversion nanoparticles for determination of biomolecules". Details of each developed upconversion nanoparticles based sensor along with their relevant analytical parameters are reported and carefully explained.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
39
|
Li G, Zhang X, Zheng F, Liu J, Wu D. Emerging nanosensing technologies for the detection of β-agonists. Food Chem 2020; 332:127431. [DOI: 10.1016/j.foodchem.2020.127431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
40
|
A 433-MHz surface acoustic wave sensor with Ni-TiO 2-poly(L-lysine) composite film for dopamine determination. Mikrochim Acta 2020; 187:671. [PMID: 33225378 DOI: 10.1007/s00604-020-04635-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 01/30/2023]
Abstract
A ternary hybrid material composed of Ni nanoparticles (NPs), TiO2 NPs, and poly(L-lysine) (Ply) was used as a sensing material. It was electrodeposited in situ onto a commercial 433-MHz surface acoustic wave (SAW) resonator to construct a Ni-TiO2-Ply/SAW sensor. The Ni-TiO2-Ply sensing layer fully covered the resonant cavity of the SAW resonator. As the sensing layer completely covers the interdigital transducer and piezoelectric substrate, the sensing area is significantly increased, and the resonator is protected from damage or contamination. To detect the level of dopamine (DA) in serum, the fabrication of the Ni-TiO2-Ply sensing layer, distributions of various components in the sensing layer, and responses of the SAW biosensor to DA were investigated in detail. In addition, an electric field-assisted liquid-phase oxidation technique was developed for loading analytes onto the SAW sensors. After optimizing the pH value and L-lysine content of the sensing layer electrolyte and the pH value of the DA solution, the SAW biosensor responded to DA with a linear concentration range of 1 to 1000 nM, sensitivity of 5.77 MHz nM-1 cm-2, and limit of detection of 0.067 nM. Moreover, the sensor exhibited good selectivity, reproducibility, and stability at ambient temperature.Graphical abstract.
Collapse
|
41
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|
42
|
Wang Z, Hu T, Liang R, Wei M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front Chem 2020; 8:320. [PMID: 32373593 PMCID: PMC7182656 DOI: 10.3389/fchem.2020.00320] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Zero-dimensional (0D) nanomaterials, including graphene quantum dots (GQDs), carbon quantum dots (CQDs), fullerenes, inorganic quantum dots (QDs), magnetic nanoparticles (MNPs), noble metal nanoparticles, upconversion nanoparticles (UCNPs) and polymer dots (Pdots), have attracted extensive research interest in the field of biosensing in recent years. Benefiting from the ultra-small size, quantum confinement effect, excellent physical and chemical properties and good biocompatibility, 0D nanomaterials have shown great potential in ion detection, biomolecular recognition, disease diagnosis and pathogen detection. Here we first introduce the structures and properties of different 0D nanomaterials. On this basis, recent progress and application examples of 0D nanomaterials in the field of biosensing are discussed. In the last part, we summarize the research status of 0D nanomaterials in the field of biosensing and anticipate the development prospects and future challenges in this field.
Collapse
Affiliation(s)
| | | | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
43
|
Hu X, Wang C, Zhang M, Zhao F, Zeng B. Ionic liquid assisted molecular self-assemble and molecular imprinting on gold nanoparticles decorated boron-doped ordered mesoporous carbon for the detection of zearalenone. Talanta 2020; 217:121032. [PMID: 32498821 DOI: 10.1016/j.talanta.2020.121032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 01/05/2023]
Abstract
Accurate and early diagnosis of zearalenone (ZEN) is particularly significant to the food safety. Herein, we propose an ionic liquid assisted self-assembly molecular imprinting strategy for ZEN based on ionic liquid functionalized boron-doped ordered mesoporous carbon -gold nanoparticles composite (BOMC-IL-Au NPs). During the composite synthesis, increased well-dispersed and uniform Au NPs are deposited on the surface of IL modified BOMC, due to the strong electrostatic interaction between AuCl4- and positively charged IL. For molecular imprinting, the BOMC-IL-Au NPs/GCE is immersed into p-aminothiophenol (p-ATP) solution and template solution in turn. Thus, the mercapto group contained p-ATP self-assembles on the Au NPs. Subsequently, the template molecules self-assemble onto the composite to form dense template layer, because of the hydrophobic interaction, π-π and hydrogen bond between template and IL/or p-ATP. After electropolymerization, the template layer is embedded into the p-ATP polymer membrane and produces lots of imprinting sites. Hence, the obtained sensor exhibits high sensitivity and selectivity. Under the optimal conditions, zearalenone can be quantified from 5 × 10-4 to 1 ng mL-1 with the low detection limit of 1 × 10-4 ng mL-1, by using [Fe(CN)6]3-/4- probe and square wave voltammetry. This strategy can also be employed to construct sensors for the detection of other substances.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Caiyun Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Meng Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China.
| |
Collapse
|
44
|
Le D, Dhamecha D, Gonsalves A, Menon JU. Ultrasound-Enhanced Chemiluminescence for Bioimaging. Front Bioeng Biotechnol 2020; 8:25. [PMID: 32117914 PMCID: PMC7016203 DOI: 10.3389/fbioe.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue imaging has emerged as an important aspect of theragnosis. It is essential not only to evaluate the degree of the disease and thus provide appropriate treatments, but also to monitor the delivery of administered drugs and the subsequent recovery of target tissues. Several techniques including magnetic resonance imaging (MRI), computational tomography (CT), acoustic tomography (AT), biofluorescence (BF) and chemiluminescence (CL), have been developed to reconstruct three-dimensional images of tissues. While imaging has been achieved with adequate spatial resolution for shallow depths, challenges still remain for imaging deep tissues. Energy loss is usually observed when using a magnetic field or traditional ultrasound (US), which leads to a need for more powerful energy input. This may subsequently result in tissue damage. CT requires exposure to radiation and a high dose of contrast agent to be administered for imaging. The BF technique, meanwhile, is affected by strong scattering of light and autofluorescence of tissues. The CL is a more selective and sensitive method as stable luminophores are produced from physiochemical reactions, e.g. with reactive oxygen species. Development of near infrared-emitting luminophores also bring potential for application of CL in deep tissues and whole animal studies. However, traditional CL imaging requires an enhancer to increase the intensity of low-level light emissions, while reducing the scattering of emitted light through turbid tissue environment. There has been interest in the use of focused ultrasound (FUS), which can allow acoustic waves to propagate within tissues and modulate chemiluminescence signals. While light scattering is decreased, the spatial resolution is increased with the assistance of US. In this review, chemiluminescence detection in deep tissues with assistance of FUS will be highlighted to discuss its potential in deep tissue imaging.
Collapse
Affiliation(s)
| | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
45
|
He Y, Du J, Luo J, Chen S, Yuan R. Coreactant-free electrochemiluminescence biosensor for the determination of organophosphorus pesticides. Biosens Bioelectron 2020; 150:111898. [DOI: 10.1016/j.bios.2019.111898] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023]
|
46
|
Li Z, Kang Q, Chen L, Zhang B, Zou G, Shen D. Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Fu K, Zhang H, Guo Y, Li J, Nie H, Song X, Xu K, Wang J, Zhao C. Rapid and selective recognition of Vibrio parahaemolyticus assisted by perfluorinated alkoxysilane modified molecularly imprinted polymer film. RSC Adv 2020; 10:14305-14312. [PMID: 35498485 PMCID: PMC9051946 DOI: 10.1039/d0ra00306a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/25/2020] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinting technology offers a means of tailor-made materials with high affinity and selectivity for certain analysts. However, the recognition and separation of specific bacteria in complex matrices are still challenging. Herein, a bacteria-imprinted polydimethylsiloxane (PDMS) film was facilely prepared and modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS). Employing Vibrio parahaemolyticus as a model bacterium, the imprinted surface exhibited three-dimensionality cavities with mean size of 1000 × 800 nm in square and 100 nm in depth. After incubation for 2 h with 6 × 107 CFU mL−1 of V. parahaemolyticus, the imprinted polymer film can reach a 62.9% capture efficiency. Furthermore, the imprinted POTS-modified PDMS film based solid phase extraction combined with polymerase chain reaction and agarose gel electrophoresis allows for detecting 104 CFU mL−1 with excellent selectivity in fresh oyster samples. As a result, the developed selective sample pretreatment method using molecular imprinting technology provides a promising platform for separation, identification, and analysis of pathogens. Molecular imprinting technology offers a means of tailor-made materials with high affinity and selectivity for certain analysts.![]()
Collapse
Affiliation(s)
- Kaiyue Fu
- School of Public Health
- Jilin University
- Changchun
- PR China
- Hebi Center for Disease Control and Prevention
| | - Huiwen Zhang
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Yuanyuan Guo
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Juan Li
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Heran Nie
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Xiuling Song
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Kun Xu
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Juan Wang
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Chao Zhao
- School of Public Health
- Jilin University
- Changchun
- PR China
| |
Collapse
|
48
|
One-step preparation of poly(glyoxal-bis(2-hydroxyanil))-amino-functionalized graphene quantum dots-MnO2 composite on electrode surface for simultaneous determination of vitamin B2 and dopamine. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Shao K, You J, Ye S, Gu D, Wang T, Teng Y, Shen Z, Pan Z. Gold nanoclusters-poly(9,9-dioctylfluorenyl-2,7-diyl) dots@zeolitic imidazolate framework-8 (ZIF-8) nanohybrid based probe for ratiometric analysis of dopamine. Anal Chim Acta 2019; 1098:102-109. [PMID: 31948572 DOI: 10.1016/j.aca.2019.10.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/17/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
Abstract
Ratiometric analysis of dopamine (DA) in complex biological system is urgently desired. In this work, a novel dual-emission fluorescence probe was fabricated by embedding both gold nanoclusters (AuNCs) and poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) dots into zeolitic imidazolate framework-8 (ZIF-8) (abbreviated as ZIF-8@AuNCs-PFO) and applied to ratiometric analysis of DA. Remarkably, encapsulating AuNCs and PFO dots into ZIF-8 not only achieved an excellent aggregation induced emission (AIE) enhancement effect on AuNCs (5 times increase), but also brought about an unique DA-triggered asynchronous fluorescence changes of AuNCs and PFO dots. The as-prepared probe exhibited excellent performance toward DA in the concentrations range from 0.01 to 10000 μmol L-1 and good selectivity over interfering substances. The detection limit of DA was as low as 4.8 nmol L-1. Furthermore, good stability and practicability of the probe in human serum samples suggesting its great potential for diagnostic purposes. Moreover, the quenching mechanism of AuNCs was intensively studied and summarized as three synergistic processes: (i) electron transfer between AuNCs and DA; (ii) DA-triggered architecture change of ZIF-8; (iii) fluorescence resonance energy transfer (FRET) between AuNCs and polydopamine (PDA), which offered an important theory for ZIF-based fluorescent probes.
Collapse
Affiliation(s)
- Kang Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jia You
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shiyi Ye
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Danyu Gu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanjie Teng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|