1
|
Li S, Miao S, Chen M, Zhang Y, Li H, Xia F. Localized high probe density greatly improves the signaling stability of supramolecular electrochemical aptamer-based (Supra-EAB) sensors. Chem Commun (Camb) 2024; 61:274-277. [PMID: 39611223 DOI: 10.1039/d4cc05396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
DNA aptamers have emerged as a promising class of probes for the development of biosensors. However, the only viable strategy thus far for adjustment of probe densities is tuning DNA concentrations. Herein, we constructed a class of Supra-EAB sensors to introduce localized high probe densities and achieved significantly improved stability against enzymes.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Ming Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yaqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Saadh MJ, Muhammad FA, Albadr RJ, Bishoyi AK, Ballal S, Bareja L, Naidu KS, Rizaev J, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. Nanoparticle biosensors for cardiovascular disease detection. Clin Chim Acta 2024; 567:120094. [PMID: 39681229 DOI: 10.1016/j.cca.2024.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Early detection and management of cardiovascular diseases (CVDs) are crucial for patient survival and long-term health. CVD biomarkers such as cardiac Troponin-I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase MB (CK-MB), Galectin-3 (Gal-3), etc are released into the circulation following heart muscle injury, ie, acute myocardial infarction (AMI). Biosensor technology including the use of nanoparticles can be designed to target specific biomarkers associated with CVD, enabling early detection and more rapid intervention to decrease morbidity and mortality. To date, with the combination of developed nanoparticles, several optical and electrochemical-based biosensors have successfully been used detection of CVD biomarkers. Nanomaterials, when introduced as the modifiers of sensor surfaces like electrodes and gold chips, can result in the more comprehensive and more effective immobilization of capture molecules, ie, antibodies, aptamers and other ligands, due to their large surface area. In recent years, inorganic nanoparticles have regularly been used in the production of biosensors mostly due to their excellent response intensification, adaptable functionalization chemistry, shape control, good biocompatibility, and great stability. In this review, we discuss the application of different kinds of nanoparticles for the sensitive and specific detection of CVD biomarkers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot 360003, Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mariem Alwan
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq.
| | | | | |
Collapse
|
3
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
4
|
Wu M, Ma Y, Huang Y, Zhang X, Dong J, Sun D. An ultrasensitive electrochemical aptasensor based on zeolitic imidazolate framework-67 loading gold nanoparticles and horseradish peroxidase for detection of aflatoxin B1. Food Chem 2024; 456:140039. [PMID: 38906010 DOI: 10.1016/j.foodchem.2024.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins and poses a high risk to human health. Highly sensitive and rapid detection is one of the most effective preventive measures to avoid potential hazards. Herein, an electrochemical aptasensor based on DNA nanotetrahedron and zeolitic imidazolate framework-67 loading gold nanoparticles, horseradish peroxidase, and aptamers was designed for the ultrasensitive detection of AFB1. The high specific surface area and large pore volume of zeolitic imidazolate framework-67 can increase the loading capacity and further improve the detection sensitivity of electrochemical aptasensors. DNA nanotetrahedron can enhance the capture ability of AFB1 with steady immobilization. The developed aptasensor showed good analytical performance for AFB1 detection, with a detection limit of 3.9 pg mL-1 and a wide linear range of 0.01-100 ng mL-1. The aptasensor detected AFB1 in corn samples with recovery rates ranging from 94.19%-105.77% and has potential for use in food safety monitoring.
Collapse
Affiliation(s)
- Maoqiang Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Ying Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Yaru Huang
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiaohui Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jun Dong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
5
|
Han GR, Goncharov A, Eryilmaz M, Joung HA, Ghosh R, Yim G, Chang N, Kim M, Ngo K, Veszpremi M, Liao K, Garner OB, Di Carlo D, Ozcan A. Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification. ACS NANO 2024; 18:27933-27948. [PMID: 39365271 PMCID: PMC11483942 DOI: 10.1021/acsnano.4c05153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing.
Collapse
Affiliation(s)
- Gyeo-Re Han
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Artem Goncharov
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Merve Eryilmaz
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Hyou-Arm Joung
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Rajesh Ghosh
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Geon Yim
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Nicole Chang
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Minsoo Kim
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Kevin Ngo
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Marcell Veszpremi
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Kun Liao
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Omai B. Garner
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, Bioengineering Department, Department of Chemistry
and Biochemistry, Department of Pathology and Laboratory Medicine, California NanoSystems Institute
(CNSI), Department
of Surgery, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Li X, Liu R, Zhang N, Zhao J, Zhou Y, Zhou Q, Gu Z, Zhang D. Carbon nanotubes integrated photonic barcodes in Herringbone Microfluidics for Multiplex Biomarker Quantification. Biosens Bioelectron 2024; 258:116350. [PMID: 38705075 DOI: 10.1016/j.bios.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Early monitoring of cardiovascular disease (CVD) is crucial for its treatment and prognosis. Hence, highly specific and sensitive detection method is urgently needed. In this study, we propose a novel herringbone microfluid chip with aptamer functionalized core-shell photonic crystal (PhC) barcode integration for high throughput multiplex CVD detection. Based on the PhC derived from co-assembled carboxylated single-wall carbon nanotubes and silicon dioxide nanoparticles, we obtain core-shell PhC barcodes by hydrogel replicating and partially etching. These core-shell PhC barcodes not only retain the original structural colors coding element, but also fully expose a large number of carboxyl elements in the ore for the probe immobilization. We further combine the functionalized barcodes with herringbone groove microfluidic chip to elucidate its acceptability in testing clinical sample. It is demonstrated that the special design of microfluidic chip can significantly enhance fluid vortex resistance and contact frequency, improving the sample capture efficiency and detection sensitivity. These features indicate that our core-shell PhC barcodes-integrated herringbone microfluidic system possesses great potential for multiplex biomarker detection in clinical application.
Collapse
Affiliation(s)
- Xueqin Li
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China; Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Junqi Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanyang Zhou
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Qing Zhou
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Zhuxiao Gu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
7
|
Singh N, Kaushik A, Ghori I, Rai P, Dong L, Sharma A, Malhotra BD, John R. Electrochemical and Plasmonic Detection of Myocardial Infarction Using Microfluidic Biochip Incorporated with Mesoporous Nanoscaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32794-32811. [PMID: 38860871 DOI: 10.1021/acsami.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
This paper reports a microfluidic device for the electrochemical and plasmonic detection of cardiac myoglobin (cMb) and cardiac troponin I (cTnI) with noticeable limits of detection (LoD) as low as a few picograms per milliliter (pg/mL) ranges, achieved in a short detection time. The device features two working electrodes, each with a mesoporous Ni3V2O8 nanoscaffold grafted with reduced graphene oxide (rGO) that improves the interaction of diffusing analyte molecules with the sensing surface by providing a high surface area and reaction kinetics. Electrochemical studies reveal sensitivities as high as 9.68 μA ng/mL and a LoD of 2.0 pg/mL for cTnI, and 8.98 μA ng/mL and 4.7 pg/mL for cMb. Additionally, the surface plasmon resonance (SPR) studies demonstrate a low-level LoD of 8.8 pg/mL for cMb and 7.3 pg/mL for cTnI. The dual-modality sensor enables dynamic tracking of kinetic antigen-antibody interactions during sensing, self-verification through providing signals of two modes, and reduced false readout. This study demonstrates the complementary nature of the electrochemical and SPR modes in biosensing, with the electrochemical mode being highly sensitive and the SPR mode providing superior tracking of molecular recognition behaviors. The presented sensor represents a significant innovation in cardiovascular disease management and can be applied to monitor other clinically important biomolecules.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Ajeet Kaushik
- Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Inayathullah Ghori
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Prabhakar Rai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bansi D Malhotra
- Environment & Biomedical Metrology Section, CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Renu John
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|
8
|
Liu Y, Lai H, Ming P, Chen P, Wang S, Zhai H. A ratiomectic aptasensor with enhanced signals based on peroxidase-like enzymes and NH 2-MIL-101@MoS 2 for trace detection of deoxynivalenol in traditional Chinese herbs. Food Chem 2024; 441:138381. [PMID: 38218150 DOI: 10.1016/j.foodchem.2024.138381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH2-MIL-101@MoS2, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH2-MIL-101(NH2-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties. The ratio (IBQ /ITB) was changed by varying the electrochemical signal of benzoquinone (BQ) (IBQ) and the amount of TB deposition (ITB). This aptasensor was successfully applied to detect DON in malt and peach seed, which exhibited a great linear range from 1 fg/mL to 10 ng/mL and low detection limit of 0.31 fg/mL for DON.
Collapse
Affiliation(s)
- Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengsheng Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Zhang Y, Yu W, Zhang L, Li P. Nanozyme-based visual diagnosis and therapeutics for myocardial infarction: The application and strategy. J Adv Res 2024:S2090-1232(24)00162-0. [PMID: 38657902 DOI: 10.1016/j.jare.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a heart injury caused by ischemia and low oxygen conditions. The occurrence of MI lead to the activation of a large number of neutrophils and macrophages, inducing severe inflammatory injury. Meanwhile, the inflammatory response produces much more free radicals, further exacerbating the inflammatory response and tissue damage. Efforts are being dedicated to developing antioxidants and enzymes, as well as small molecule drugs, for treating myocardial ischemia. However, poor pharmacokinetics and potential side effects limit the clinical application of these drugs. Recent advances in nanotechnology have paved new pathways in biomedical and healthcare environments. Nanozymes exhibit the advantages of biological enzymes and nanomaterials, including with higher catalytic activity and stability than natural enzymes. Thus, nanozymes provide new possibilities for the diagnosis and treatment of oxidative stress and inflammation-related diseases. AIM OF REVIEW We describe the application of nanozymes in the diagnosis and therapy of MI, aiming to bridge the gap between the diagnostic and therapeutic needs of MI. KEY SCIENTIFIC CONCEPTS OF REVIEW We describe the application of nanozymes in the diagnosis and therapy of MI, and discuss the new strategies for improving the diagnosis and treatment of MI. We review in detail the applications of nanozymes to achieve highly sensitive detection of biomarkers of MI. Due to their unique enzyme catalytic capabilities, nanozymes have the ability to sensitively detect biomolecules through colorimetric, fluorescent, and electrochemical assays. In addition, nanozymes exhibit excellent antioxidase-mimicking activity to treat MI by modulating reduction/oxidation (REDOX) homeostasis. Nanozymes can also passively or actively target MI tissue sites, thereby protecting ischemic myocardial tissue and reducing the infarct area. These innovative applications of nanozymes in the field of biomedicine have shown promising results in the diagnosis and treatment of MI, offering a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The Nanozyme Revolution: Enhancing the Performance of Medical Biosensing Platforms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300184. [PMID: 37102628 DOI: 10.1002/adma.202300184] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Nanozymes represent a class of nanosized materials that exhibit innate catalytic properties similar to biological enzymes. The unique features of these materials have positioned them as promising candidates for applications in clinical sensing devices, specifically those employed at the point-of-care. They notably have found use as a means to amplify signals in nanosensor-based platforms and thereby improve sensor detection limits. Recent developments in the understanding of the fundamental chemistries underpinning these materials have enabled the development of highly effective nanozymes capable of sensing clinically relevant biomarkers at detection limits that compete with "gold-standard" techniques. However, there remain considerable hurdles that need to be overcome before these nanozyme-based sensors can be utilized in a platform ready for clinical use. An overview of the current understandings of nanozymes for disease diagnostics and biosensing applications and the unmet challenges that must be considered prior to their translation in clinical diagnostic tests is provided.
Collapse
Affiliation(s)
- André Shamsabadi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Tabasom Haghighi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sara Carvalho
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
12
|
Chen X, Zhang C, Liu X, Dong Y, Meng H, Qin X, Jiang Z, Wei X. Low-noise fluorescent detection of cardiac troponin I in human serum based on surface acoustic wave separation. MICROSYSTEMS & NANOENGINEERING 2023; 9:141. [PMID: 37954038 PMCID: PMC10632424 DOI: 10.1038/s41378-023-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 11/14/2023]
Abstract
Acute myocardial infarction (AMI) is a life-threatening disease when sudden blockage of coronary artery occurs. As the most specific biomarker, cardiac troponin I (cTnI) is usually checked separately to diagnose or eliminate AMI, and achieving the accurate detection of cTnI is of great significance to patients' life and health. Compared with other methods, fluorescent detection has the advantages of simple operation, high sensitivity and wide applicability. However, due to the strong fluorescence interference of biological molecules in body fluids, it is often difficult to obtain high sensitivity. In order to solve this problem, in this study, surface acoustic wave separation is designed to purify the target to achieve more sensitive detection performance of fluorescent detection. Specifically, the interference of background noise is almost completely removed on a microfluidic chip by isolating microbeads through acoustic radiation force, on which the biomarkers are captured by the immobilized detection probe. And then, the concentration of cTnI in human serum is detected by the fluorescence intensity change of the isolated functionalized beads. By this way, the detection limit of our biosensor calculated by 3σ/K method is 44 pg/mL and 0.34 ng/mL in PBS buffer and human serum respectively. Finally, the reliability of this method has been validated by comparison with clinical tests from the nephelometric analyzer in hospital.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Chuanyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xianglian Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Hao Meng
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Xianming Qin
- School of Mechano-Electronic Engineering, Xidian University, Xi’an, 710071 China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
13
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Shu Y, Yan L, Ye M, Chen L, Xu Q, Hu X. A bimetallic metal-organic framework with high enzyme-mimicking activity for an integrated electrochemical immunoassay of carcinoembryonic antigen. Analyst 2023; 148:4721-4729. [PMID: 37642295 DOI: 10.1039/d3an01221b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal-organic frameworks (MOFs) show excellent catalytic activity and have been widely applied in diagnosis of diseases and tumors. However, current assay methods usually involve cumbersome configurations and complicated procedures, which inhibit their practical applications. Hence, a Cu-Ni MOF/carbon printed electrode (CPE)-based integrated electrochemical immunosensor was constructed for highly sensitive and efficient determination of carcinoembryonic antigen (CEA). First, highly conductive carbon ink was screen-printed onto a polyethylene terephthalate substrate to manufacture a CPE. Afterward, an aminated Cu-Ni MOF was prepared by a typical solvothermal strategy and modified on the CPE. Owing to its excellent peroxidase activity, the Cu-Ni MOF can catalytically oxidize hydroquinone using hydrogen peroxide, which greatly amplifies the peak current signal. Then the formation of an immune complex inhibited the catalytic activity of the MOF, thus enabling the quantitative determination of CEA content with a wide linear range of 0.5 pg mL-1-500 ng mL-1 and a low detection limit of 0.16 pg mL-1. Furthermore, the Cu-Ni MOF/CPE-based integrated portable electrochemical immunosensor also showed satisfactory performance in the detection of CEA in clinical serum samples with excellent accuracy, showing great potential for application in point-of-care disease diagnosis.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Lu Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Mingli Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Long Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| |
Collapse
|
15
|
Ma J, Feng L, Li J, Zhu D, Wang L, Su S. Biological Recognition-Based Electrochemical Aptasensor for Point-of-Care Detection of cTnI. BIOSENSORS 2023; 13:746. [PMID: 37504144 PMCID: PMC10377036 DOI: 10.3390/bios13070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
As a "gold standard biomarker", cardiac troponin I (cTnI) is widely used to diagnose acute myocardial infarction (AMI). For an early clinical diagnosis of AMI, it is necessary to develop a facile, fast and on-site device for cTnI detection. According to this demand, a point-of-care electrochemical aptasensor was developed for cTnI detection by coupling the advantages of screen-printed carbon electrode (SPCE) with those of an aptamer. Thiol and methylene blue (MB) co-labelled aptamer (MB-Apt-SH) was assembled on the surface of hierarchical flower-like gold nanostructure (HFGNs)-decorated SPCE (SPCE-HFGNs) to recognize and analyze cTnI. In the presence of cTnI, the specific biological recognition reaction between cTnI and aptamer caused the decrease in electrochemical signal. Under the optimal condition, this designed aptasensor showed wide linear range (10 pg/mL-100 ng/mL) and low detection limit for (8.46 pg/mL) for cTnI detection with high selectivity and stability. More importantly, we used a mobile phone coupled with a simple APP to efficiently detect cTnI in 10 μL 100% human serum samples, proving that this aptasensor has a promising potential in point-of-care testing.
Collapse
Affiliation(s)
- Jianfeng Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lin Feng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
16
|
Zhou Z, Gao T, Zhao Y, Yang P, Cheng D, Yang H, Wang Y, Li X. Dual signal amplified electrochemical aptasensor based on PEI-functionalized GO and ROP for highly sensitive detection of cTnI. Bioelectrochemistry 2023; 151:108402. [PMID: 36841148 DOI: 10.1016/j.bioelechem.2023.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Cardiac troponin I (cTnI) is considered as the gold standard for the diagnosis of acute myocardial infarction (AMI) because of its excellent specificity and sensitivity. Herein, a novel aptasensor based on the dual signal amplification strategy of Polyethyleneimine functionalized Graphene oxide (GO) and ring-opening polymerization (ROP) for the first time was successfully constructed to achieve high sensitivity detection of cTnI. Briefly, cTnI-aptamer 1 (Apt1) was immobilized on the surface of gold electrode by self-assembly of Au-S bonds to specifically capture cTnI. After specific recognition of cTnI, Apt2 coated PEI-functionalized GO composites acted as macroinitiators for the subsequent ROP reaction. Next, α-amino acid-N-carboxylic acid anhydride ferrocene derivatives (NCA-Fc), the monomer for ROP reaction, was added to the electrode surface. The combined application of PEI-functionalized GO and NCA-Fc better achieves the high sensitivity and signal amplification of the aptasensor. Under optimal conditions, the aptasensor exhibited a wide linear range of 10 fg mL-1 to 10 ng mL-1 and the limit of detection was 3.78 fg mL-1. Moreover, this method displayed the advantages of good selectivity, simple operation and excellent stability. Meanwhile, the aptasensor had good accuracy and applicability even in real serum samples analysis, demonstrating its considerable application potential in biomedical assays.
Collapse
Affiliation(s)
- Zhenbo Zhou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tianyu Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450046, PR China
| | - Yuning Zhao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Peng Yang
- Department of Geriatric Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Di Cheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Ying Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xiaofei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
17
|
Shang Z, Su T, Jin D, Xu Q, Hu X, Shu Y. An integrated and flexible PDMS/Au film-based electrochemical immunosensor via Fe–Co MOF as a signal amplifier for alpha fetoprotein detection. Biosens Bioelectron 2023; 230:115245. [PMID: 36989661 DOI: 10.1016/j.bios.2023.115245] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Ultrasensitive determination of tumor marker (TM) is of great significance in cancer prevention and diagnosis. Traditional TM detection methods involve large instrumentation and professional manipulation, which complicate the assay procedures and increase the cost of investment. To resolve these problems, an integrated electrochemical immunosensor based on the flexible polydimethylsiloxane/gold (PDMS/Au) film with Fe-Co metal-organic framework (Fe-Co MOF) as a signal amplifier was fabricated for ultrasensitive determination of alpha fetoprotein (AFP). First, gold layer was deposited on the hydrophilic PDMS film to form the flexible three-electrode system, and then the thiolated aptamer for AFP was immobilized. Afterward, the aminated Fe-Co MOF possessing high peroxidase-like activity and large specific surface area was prepared by a facile solvothermal method, and subsequently the biofunctionalized MOF could effectively capture biotin antibody (Ab) to form MOF-Ab as a signal probe and amplify the electrochemical signal remarkably, thereby realizing highly sensitive detection of AFP with a wide linear range of 0.01-300 ng/mL and a low detection limit of 0.71 pg/mL. In addition, the PDMS based-immunosensor showed good accuracy for assaying of AFP in clinical serum samples. The integrated and flexible electrochemical immunosensor based on the Fe-Co MOF as a signal amplifier demonstrates great potential for application in the personalized point-of-care (POC) clinical diagnosis.
Collapse
|
18
|
Meng G, Long F, Zeng Z, Kong L, Zhao B, Yan J, Yang L, Yang Y, Liu XY, Yan Z, Lin N. Silk fibroin based wearable electrochemical sensors with biomimetic enzyme-like activity constructed for durable and on-site health monitoring. Biosens Bioelectron 2023; 228:115198. [PMID: 36921388 DOI: 10.1016/j.bios.2023.115198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/12/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Flexible biomimetic sensors have encountered a bottleneck of sensitivity and durability, as the sensors must directly work within complex body fluid with ultra-trace biomarkers. In this work, a wearable electrochemical sensor on a modified silk fibroin substrate is developed using gold nanoparticles hosted into N-doped porous carbonizated silk fibroin (AuNPs@CSF) as active materials. Taking advantage of the inherent biocompatibility and flexibility of CSF, and the high stability and enzyme-like catalytic activity of AuNPs, AuNPs@CSF-based sensor exhibits durable stability and superior sensitivity to monitor H2O2 released from cancer cell (4T1) and glucose in sweat. The detection limits for H2O2 and glucose are low to be 1.88 μM and 23 μM respectively, and the sensor can be applied in succession within 30 days at room temperature. Further, physical cross-linking of polyurethane (PU) with SF well matches with the skin tissue mechanically and provides a flexible, robust and stable electrode-tissue interface. AuNPs@CSF is applied successfully for wearable electrochemical monitoring of glucose in human sweat.The present AuNPs@CSF will possess a potential application in clinical diagnosing of H2O2- or glucose-related diseases in future.
Collapse
Affiliation(s)
- Guoqing Meng
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Fen Long
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Zhicheng Zeng
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Lingqing Kong
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Bicheng Zhao
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Jiaqi Yan
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Likun Yang
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Yun Yang
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Xiang-Yang Liu
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, 57 Jingxuan Xi Road, Qufu, 273165, People's Republic of China.
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
19
|
Lai H, Ming P, Wu M, Wang S, Sun D, Zhai H. An electrochemical aptasensor based on P-Ce-MOF@MWCNTs as signal amplification strategy for highly sensitive detection of zearalenone. Food Chem 2023; 423:136331. [PMID: 37182496 DOI: 10.1016/j.foodchem.2023.136331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In this research, a signal-off electrochemical aptasensor with high sensitivity was constructed for trace detection of zearalenone (ZEN). Specifically, Ce-based metal-organic framework and multi-walled carbon nanotubes nanocomposite was functionalized with polyethyleneimine (P-Ce-MOF@MWCNTs) and served as sensing platform for its high surface area and excellent electrochemical active. Subsequently, toluidine blue (TB) was electrodeposited as the signal probe, and platinum@gold nanoparticles (Pt@Au) were dropped for the attachment of aptamer (ZEA). In the presence of ZEN, the ZEA would specifically recognize and combine with the target, causing a decrease of electrochemical signal from TB. Under the optimal conditions, the aptasensor exhibited good linear relationship for ZEN in a concentration range from 5.0 × 10-5 to 50.0 ng/mL, while the limit of detection (LOD, S/N = 3) and limit of quantitation (LOQ, S/N = 10) were 1.0 × 10-5 ng/mL and 2.9 × 10-5 ng/mL, respectively. Ultimately, the aptasensor was successfully applied into ZEN detection in semen coicis real samples.
Collapse
Affiliation(s)
- Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Maoqiang Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Gomez Cardoso A, Rahin Ahmed S, Keshavarz-Motamed Z, Srinivasan S, Reza Rajabzadeh A. Recent advancements of nanomodified electrodes - Towards point-of-care detection of cardiac biomarkers. Bioelectrochemistry 2023; 152:108440. [PMID: 37060706 DOI: 10.1016/j.bioelechem.2023.108440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
The increasing number of deaths from cardiovascular diseases has become a substantial concern in both developed and underdeveloped countries. Rapid and on-site monitoring of this disease is urgently important to control, prevent and make awareness of public health. Recently, a lot of focus has been placed on nanomaterials and modify these nanomaterials have been explored to detect cardiac biomarkers. By implementing biosensors that are modified with novel recognition elements and more stable nanomaterials, the use of electrochemistry for point-of-care devices is more realistic every day. This review focuses on the current state of nanomaterials conjugated biorecognition elements (enzyme integrated with nanomaterials, antibody conjugated nanomaterials and aptamer conjugated nanomaterials) for electrochemical cardiovascular disease detection. Specifically, a lot of attention has been given to the trends toward more stable biosensors that have increased the potential to be used as point-of-care devices for the detection of cardiac biomarkers due to their high stability and specificity. Moreover, the recent progress on biomolecule-free electrochemical nanosensors for cardiovascular disease detection has been considered. At last, the possibility and drawbacks of some of these techniques for point-of-care cardiac device development in the future have been discussed.
Collapse
Affiliation(s)
- Ana Gomez Cardoso
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Syed Rahin Ahmed
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
21
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
23
|
Huang Y, Zhang Y, Lv J, Shao Y, Yang D, Cong Y. Direct fabrication of NbS 2 nanoflakes on carbon fibers by atomic layer deposition for ultrasensitive cardiac troponin I detection. NANOSCALE ADVANCES 2023; 5:830-839. [PMID: 36756515 PMCID: PMC9890598 DOI: 10.1039/d2na00827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
The sensitive detection of cardiac troponin I (cTnI) is of great significance for the early diagnosis of acute myocardial infarction (AMI). Herein, in order to fabricate an electrochemical biosensor for ultrasensitive cTnI detection, atomic layer deposition (ALD) was employed to directly deposit NbS2 nanoflakes (NFs) on carbon fiber paper (CFP). Due to the self-limiting reaction of ALD, NbS2NFs were deposited uniformly and accurately on the surface of carbon fibers by controlling the number of ALD cycles, which ensured ultrasensitive detection. Precise regulation of the nanoscale morphology and electrochemical performance of NbS2 nanoflakes via ALD cycles was observed in depth. Owing to the high surface area and conductivity, an anodic/cathodic current of ∼3.01 mA of NbS2NFs/CFP can be obtained. Subsequently, an electrochemical biosensor based on the excellent performance of NbS2NFs/CFP was fabricated. The ultrasensitive detection of cTnI in a linear range of 1 fM to 0.1 nM with a detection limit of 0.32 fM was achieved.
Collapse
Affiliation(s)
- Yazhou Huang
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Yunfei Zhang
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Junyan Lv
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Yinfeng Shao
- Industrial Center, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Dongfang Yang
- School of Energy and Power Engineering, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| | - Yuan Cong
- School of Materials Science and Engineering, Nanjing Institute of Technology Nanjing 211167 People's Republic of China
| |
Collapse
|
24
|
Koyappayil A, Yagati AK, Lee MH. Recent Trends in Metal Nanoparticles Decorated 2D Materials for Electrochemical Biomarker Detection. BIOSENSORS 2023; 13:91. [PMID: 36671926 PMCID: PMC9855691 DOI: 10.3390/bios13010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 05/29/2023]
Abstract
Technological advancements in the healthcare sector have pushed for improved sensors and devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for various specific physiological conditions, early disease screening has become a possibility. Biomarkers are the body's early warning systems, which are indicators of a biological state that provides a standardized and precise way of evaluating the progression of disease or infection. Owing to the extremely low concentrations of various biomarkers in bodily fluids, signal amplification strategies have become crucial for the detection of biomarkers. Metal nanoparticles are commonly applied on 2D platforms to anchor antibodies and enhance the signals for electrochemical biomarker detection. In this context, this review will discuss the recent trends and advances in metal nanoparticle decorated 2D materials for electrochemical biomarker detection. The prospects, advantages, and limitations of this strategy also will be discussed in the concluding section of this review.
Collapse
Affiliation(s)
| | | | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
25
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Rhouati A, Rhouati A, Marty JL. A Review on Aptamers Selection and Application in Heart Diseases Diagnosis. Curr Top Med Chem 2022; 22:2463-2473. [PMID: 36045527 DOI: 10.2174/1568026622666220831114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 01/20/2023]
Abstract
Biomarkers detection and quantification in biological fluids play a key role in the screening, diagnosing and treating several diseases. Recently, a large number of aptamers have been selected and applied for the sensing of different biomarkers. Combined with different transducers, aptamers provide simple and rapid tools that allow highly sensitive and selective detection. Cardiology requires an accurate assessment of cardiac biomarkers for a complete diagnosis of cardiovascular diseases. The analysis is generally performed by immunoassays using antibodies as biorecognition elements. This review paper focuses on using aptamers as a promising alternative for antibodies in cardiac biomarkers biosensing. First, the different aptamers specific to the most important cardiac biomarkers are Troponin I, the peptide of B-type natriuretic peptide and myoglobin. Then, in the second part, we overview the electrochemical aptasensors principle and characteristics reported in the literature in the last five years.
Collapse
Affiliation(s)
- Amina Rhouati
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100-Algeria
| | - Adel Rhouati
- Cardiology Department, Ibn Badis University Hospital, University of Constantine 3, Constantine, Algeria
| | | |
Collapse
|
28
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
29
|
Zhao F, Wu W, Zhao M, Ding S, Lin Y, Hu Q, Yu L. Enzyme-like nanomaterials-integrated microfluidic technology for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Ruthenium and Nickel Molybdate-Decorated 2D Porous Graphitic Carbon Nitrides for Highly Sensitive Cardiac Troponin Biosensor. BIOSENSORS 2022; 12:bios12100783. [PMID: 36290921 PMCID: PMC9599711 DOI: 10.3390/bios12100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Two-dimensional (2D) layered materials functionalized with monometallic or bimetallic dopants are excellent materials to fabricate clinically useful biosensors. Herein, we report the synthesis of ruthenium nanoparticles (RuNPs) and nickel molybdate nanorods (NiMoO4 NRs) functionalized porous graphitic carbon nitrides (PCN) for the fabrication of sensitive and selective biosensors for cardiac troponin I (cTn-I). A wet chemical synthesis route was designed to synthesize PCN-RuNPs and PCN-NiMoO4 NRs. Morphological, elemental, spectroscopic, and electrochemical investigations confirmed the successful formation of these materials. PCN-RuNPs and PCN-NiMoO4 NRs interfaces showed significantly enhanced electrochemically active surface areas, abundant sites for immobilizing bioreceptors, porosity, and excellent aptamer capturing capacity. Both PCN-RuNPs and PCN-NiMoO4 NRs materials were used to develop cTn-I sensitive biosensors, which showed a working range of 0.1–10,000 ng/mL and LODs of 70.0 pg/mL and 50.0 pg/mL, respectively. In addition, the biosensors were highly selective and practically applicable. The functionalized 2D PCN materials are thus potential candidates to develop biosensors for detecting acute myocardial infractions.
Collapse
|
31
|
Duan C, Cheng W, Yao Y, Li D, Wang Z, Xiang Y. Universal and Flexible Signal Transduction Module Based on Overload Triggering Probe Escape for Sensitive Detection of Tau Protein. Anal Chem 2022; 94:12919-12926. [PMID: 36069206 DOI: 10.1021/acs.analchem.2c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aptamer-based methods have attracted increasing interest due to flexible engineering, but their generality is limited by the heterogeneity of signal transduction mechanisms. Given the fact that nonlinear and large molecules are more likely to make the nanosurface overloaded, we investigated a novel signal transduction process to extend the application of aptasensors. In this work, an aptamer complementary element (ACE) is designed with a primer region to serve as the signal probe, which can fully hybridize with an aptamer and be separated by magnetic beads (MBs). Upon target binding, the formed aptamer/target complex is much larger than the linear aptamer/ACE-primer dimer, causing overload of MBs on account of steric hindrance. An extra aptamer/ACE-primer can escape from the surface to the supernatant, which can be amplified by a catalytic hairpin assembly (CHA) circle. The size-dependent signal transduction and the modular design endow the method with high generality and flexibility for protein analysis. The proposed aptasensor was successfully applied to the detection of tau proteins ranging from 0.5 to 1000 ng mL-1 with a limit of detection (LOD) as low as 0.254 ng mL-1. The recovery tests in both human serum and cerebra spinal fluid confirmed the high accuracy and stability. Furthermore, a successful distinction was made between AD patients and healthy controls by the method, suggesting the possible applicability for practical analysis of tau proteins.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
32
|
Chen Y, Liu Y, Wang D, Gao G, Zhi J. Three-Mediator Enhanced Collisions on an Ultramicroelectrode for Selective Identification of Single Saccharomyces cerevisiae. Anal Chem 2022; 94:12630-12637. [PMID: 36068505 DOI: 10.1021/acs.analchem.2c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective detection of colliding entities, especially cells and microbes, is of great challenge in single-entity electrochemistry. Herein, based on the different cellular electron transport pathways between microbes and mediators, we report a three-mediator system [K3Fe(CN)6, K4Fe(CN)6, and menadione] to achieve redox activity analysis and selective identification of single Saccharomyces cerevisiae without the usage of antibodies. K4Fe(CN)6 in the three-mediator system will oxidize near the electrode surface and increase the local concentration of K3Fe(CN)6, which will promote the redox reaction of S. cerevisiae. The hydrophobic mediator─menadione─can selectively penetrate through the S. cerevisiae membrane and get access to its intracellular redox center and can further react with K3Fe(CN)6 in the bulk solution. In contrast, the mediator can only get access to the bacterial membranes of Escherichia coli and Staphylococcus aureus, which results in different electrochemical collision signals between the above microbes. In the three-mediator system, upward step-like collision signals were observed in S. cerevisiae suspension, which are related to their microbial redox activity. In comparison, E. coli or S. aureus only generated downward current steps because the blockage effect of mediator diffusion suppresses their redox activities. When S. cerevisiae co-existed with E. coli or S. aureus, transients generated by both blockage and redox activity were observed. The approach enables us to trace the collision behaviors of different microbes and distinguish their simultaneous collisions, which is the foundation for further application of electrochemical collision technique in the specific identification of single biological entities.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| |
Collapse
|
33
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
34
|
Campu A, Muresan I, Craciun AM, Cainap S, Astilean S, Focsan M. Cardiac Troponin Biosensor Designs: Current Developments and Remaining Challenges. Int J Mol Sci 2022; 23:ijms23147728. [PMID: 35887073 PMCID: PMC9318943 DOI: 10.3390/ijms23147728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myocardial infarction (AMI) is considered as one of the main causes of death, threating human lives for decades. Currently, its diagnosis relies on electrocardiography (ECG), which has been proven to be insufficient. In this context, the efficient detection of cardiac biomarkers was proposed to overcome the limitations of ECG. In particular, the measurement of troponins, specifically cardiac troponin I (cTnI) and cardiac troponin T (cTnT), has proven to be superior in terms of sensitivity and specificity in the diagnosis of myocardial damage. As one of the most life-threatening conditions, specific and sensitive investigation methods that are fast, universally available, and cost-efficient to allow for early initiation of evidence-based, living-saving treatment are desired. In this review, we aim to present and discuss the major breakthroughs made in the development of cTnI and cTnT specific biosensor designs and analytical tools, highlighting the achieved progress as well as the remaining challenges to reach the technological goal of simple, specific, cheap, and portable testing chips for the rapid and efficient on-site detection of cardiac cTnI/cTnT biomarkers in order to diagnose and treat cardiovascular diseases at an incipient stage.
Collapse
Affiliation(s)
- Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania; (A.C.); (I.M.); (A.-M.C.); (S.A.)
| | - Ilinca Muresan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania; (A.C.); (I.M.); (A.-M.C.); (S.A.)
| | - Ana-Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania; (A.C.); (I.M.); (A.-M.C.); (S.A.)
| | - Simona Cainap
- Department of Pediatric Cardiology, Pediatric Clinic 2, Emergency County Hospital for Children, Crisan No. 3-5, 400124 Cluj-Napoca, Romania;
- Department of Mother & Child, Iuliu Hatieganu University of Medicine and Pharmacology, Louis Pasteur No. 4, 400349 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania; (A.C.); (I.M.); (A.-M.C.); (S.A.)
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu No. 1, 400084 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania; (A.C.); (I.M.); (A.-M.C.); (S.A.)
- Correspondence: ; Tel.: +40-264-454-554 (ext. 116)
| |
Collapse
|
35
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
36
|
Cheng D, Zhou Z, Shang S, Wang H, Guan H, Yang H, Liu Y. Electrochemical immunosensor for highly sensitive detection of cTnI via in-situ initiated ROP signal amplification strategy. Anal Chim Acta 2022; 1219:340032. [DOI: 10.1016/j.aca.2022.340032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
|
37
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|
38
|
Jiao Y, Huang Z, Chen M, Zhou X, Lu H, Wang B, Dai X. A label-free amperometric immunosensor with improved electrocatalytic 3D braided AuPtCu-SWCNTs@MoS 2-rGO for human growth differentiation factor-15 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1420-1429. [PMID: 35315459 DOI: 10.1039/d1ay02198b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growth differentiation factor-15 (GDF-15) is a member of the transforming growth factor-β family. GDF-15 is overexpressed in cardiovascular diseases and has become a novel biomarker for these diseases. In this study, we fabricated a label-free electrochemical immunosensor for sensitive detection of GDF-15. Briefly, a three-dimensional braided composite of AuPtCu-SWCNTs@MoS2-rGO (denoted A@M), which served as a label-free immunosensor platform, was obtained by wrapping single-walled carbon nanotubes (SWCNTs) with trimetallic nanoflowers (AuPtCu NFs) woven on a three-dimensional network nanostructure composed of Molybdenum disulfide (MoS2) and reduced graphene oxide (rGO) nanosheets. This optimization improved the ability of the platform to immobilize antibodies, accelerated the reduction of hydrogen peroxide, and promoted the migration rate of electrons on the electrode surface, thereby further amplifying the electrical signal and improving the sensitivity. The constructed sensor exhibited high sensitivity over a wide linear range from 1 pg mL-1 to 50 ng mL-1, with a low detection limit of 0.825 pg mL-1 for GDF-15. The fabricated label-free immunosensor exhibits satisfactory reproducibility, selectivity, and stability. The detection of actual samples was successful, enabling a broad scope of application in the early diagnosis, prognosis, and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yinghui Jiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Mei Chen
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| | - Xiaojun Zhou
- Chengdu Coe Technology Co., Ltd, Chengdu, Sichuan 611731, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Xiaozhen Dai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
39
|
Karimzadeh Z, Mahmoudpour M, Guardia MDL, Nazhad Dolatabadi JE, Jouyban A. Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: Promising development opportunities and translational challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:2238. [PMID: 35336408 PMCID: PMC8953394 DOI: 10.3390/s22062238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Many studies have addressed electrochemical biosensors because of their simple synthesis process, adjustability, simplification, manipulation of materials' compositions and features, and wide ranges of detection of different kinds of biomedical analytes. Performant electrochemical biosensors can be achieved by selecting materials that enable faster electron transfer, larger surface areas, very good electrocatalytic activities, and numerous sites for bioconjugation. Several studies have been conducted on the metal-organic frameworks (MOFs) as electrode modifiers for electrochemical biosensing applications because of their respective acceptable properties and effectiveness. Nonetheless, researchers face challenges in designing and preparing MOFs that exhibit higher stability, sensitivity, and selectivity to detect biomedical analytes. The present review explains the synthesis and description of MOFs, and their relative uses as biosensors in the healthcare sector by dealing with the biosensors for drugs, biomolecules, as well as biomarkers with smaller molecular weight, proteins, and infectious disease.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | | | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Antonio Di Bartolomeo
- Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
42
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
43
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
44
|
Wang X, Dong S, Wei H. Recent advances on nanozyme‐based electrochemical biosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Ahmadi A, Khoshfetrat SM, Mirzaeizadeh Z, Kabiri S, Rezaie J, Omidfar K. Electrochemical immunosensor for determination of cardiac troponin I using two-dimensional metal-organic framework/Fe 3O 4-COOH nanosheet composites loaded with thionine and pCTAB/DES modified electrode. Talanta 2022; 237:122911. [PMID: 34736648 DOI: 10.1016/j.talanta.2021.122911] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
Cardiac troponin-I (CTnI) is one of the most popular biomarkers which can be utilized for the diagnosis and control of acute myocardial infarction in clinical practice. Here, a sandwich-type electrochemical immunosensor has been established using the zinc-based metal-organic framework/Fe3O4-COOH/thionine labeled anti-CTnI monoclonal antibody (Ab1-Zn-MOF/Fe3O4-COOH/Thi) nanocomposite as signaling molecule and a polymer film of cetyltrimethylammonium bromide (pCTAB) in the presence of choline chloride-urea deep eutectic solvent (DES) and anti-CTnI polyclonal antibody (Ab2) as immobilization substance of detecting surface. The porous ultrathin layers of Zn-MOF nanosheets successfully prepare a well-defined structure for Fe3O4-COOH electrocatalyst and Thi within a certain two dimensional (2D) regions, which enhances electrochemical reduction of Thi. The Ab1-Zn-MOF/Fe3O4-COOH/Thi nanocomposites were introduced to CTnI in the specimen and on the surface of pCTAB/DES-Au-SPE quantitative determination of CTnI was achieved using differential pulse voltammetry after sandwiching the CTnI target between Ab1-nanocomposite and Ab2 which was encapsulated into the pCTAB/DES-Au-SPE. This immunosensor indicated the appropriate assay performance for CTnI with the detection range of 0.04 ng mL-1 to 50 ng mL-1 and the limit of detection of 0.0009 ng mL-1. This study provides convenient plan for sensitive detection of bioanalytes and opens a path for the establishment of user-friendly and cost-effective device.
Collapse
Affiliation(s)
- Anita Ahmadi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Mirzaeizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Kabiri
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Rezaie
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Li YL, Xie FT, Yao C, Zhang GQ, Guan Y, Yang YH, Yang JM, Hu R. A DNA tetrahedral nanomaterial-based dual-signal ratiometric electrochemical aptasensor for the detection of ochratoxin A in corn kernel samples. Analyst 2022; 147:4578-4586. [DOI: 10.1039/d2an00934j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) is a highly toxic food contaminant and is harmful to human beings.
Collapse
Affiliation(s)
- Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Cao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| |
Collapse
|
47
|
Wang Y, Liu X, Wu L, Ding L, Effah CY, Wu Y, Xiong Y, He L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens Bioelectron 2022; 195:113661. [PMID: 34592501 DOI: 10.1016/j.bios.2021.113661] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Aptamer-based dual recognition strategy, using dual aptamers or the cooperation of aptamers with other recognition elements, can better utilize the advantages of each recognition molecule and increase the design flexibility to effectively overcome the limitations of a single molecule recognition strategy, thereby improving the sensitivity and selectivity and facilitating the regulation of biological process. Hence, this review systematically tracks the construction and application of dual aptamers recognition strategy in the versatile detection of protein biomarkers, pathogenic microorganisms, cancer cells, and the treatment of some diseases and, more importantly, in functional regulation and imaging of cell-surface protein receptors. Then, the cooperation of aptamers with other recognition elements are briefly introduced. Potential challenges facing this field have been highlighted, aiming to expand bioanalytical applications of aptamer-based dual or multiple recognition strategies and meet the growing demand for precision medicine.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinlian Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Longjie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
48
|
Wang Z, Zhao H, Chen K, Li H, Lan M. Sandwich-type electrochemical aptasensor based on hollow mesoporous carbon spheres loaded with porous dendritic Pd@Pt nanoparticles as signal amplifier for ultrasensitive detection of cardiac troponin I. Anal Chim Acta 2021; 1188:339202. [PMID: 34794569 DOI: 10.1016/j.aca.2021.339202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
Signal amplification is crucial to improve the sensitivity for the electrochemical detection of cardiac troponin I (cTnI), one of the ideal biomarkers for early acute myocardial infarction (AMI) diagnosis. Herein, we developed a novel signal amplification strategy to construct a sandwich-type electrochemical aptasensor for the detection of cTnI. Core-shell Pd@Pt dendritic bimetallic nanoparticles loaded on melamine modified hollow mesoporous carbon spheres (Pd@Pt DNs/NH2-HMCS) was prepared as labels to conjugate with thiol-modification DNA aptamers probe for signal amplification. While introducing numerous amino groups, the melamine functionalized hollow mesoporous carbon spheres (NH2-HMCS) retained the edge-plane-like defective sites for the adhesion and electrocatalytic reduction of H2O2. With the unique characteristics of NH2-HMCS, it not only enhanced the dispersity and loading capacity of core-shell Pd@Pt dendritic bimetallic nanoparticles (Pd@Pt DNs), but also improved the stability of bonding by the affinity interaction between Pd@Pt DNs and amino groups of melamine. Meanwhile, the synergistic catalysis effect between Pd@Pt DNs and NH2-HMCS significantly enhanced the electrocatalytic reduction of H2O2 and further amplified the signal. Under optimal conditions, this recommended aptasensor for cTnI detection displayed a wide dynamic range from 0.1 pg/mL to 100.0 ng/mL and a low detection limit of 15.4 fg/mL (S/N = 3). The sensor also successfully realized the analysis of cTnI-spiked human serum samples, meaning potential applications in AMI diagnosis.
Collapse
Affiliation(s)
- Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongyuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
49
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
50
|
Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021; 193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Christian Sonne
- Aarhus University, Arctic Research Centre Department of Bioscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 133-791, South Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| |
Collapse
|