1
|
Xiao J, Sheng L, Li M, Liu J, Liu D, Lu Y, Gao X. Simultaneous detection of multiple food allergens using high signal-to-background SERS probes. Food Chem 2025; 465:142098. [PMID: 39571445 DOI: 10.1016/j.foodchem.2024.142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Avoiding exposure to food allergens remains the most reliable way to protect allergic individuals. Therefore, it is essential to develop selective, sensitive, and rapid methods for detecting food allergens. Herein, we introduce a novel SERS-based sandwich immunoassay that utilizes three distinct types of SERS detection probes: Ag@CA NPs, AgAu@PB NPs, and Ag@MB NPs, along with magnetic capture probes, to simultaneously detect almond, lactoglobulin, and gliadin allergens. These SERS probes generate unique Raman peaks at 1987 cm-1, 2151 cm-1, and 2223 cm-1 in the Raman-silent region (1800-2800 cm-1), effectively avoiding interference from the Raman-fingerprint region (400-1800 cm-1) of potential food matrix substrates. This design ensures high signal-to-background ratios and detection accuracy, achieving limits of detection (LODs) of 7.4 pg/mL for almonds, 66 pg/mL for lactoglobulin, and 0.36 pg/mL for gliadin, with corresponding recoveries ranging from 83.7 % to 118.8 %, 98.9 % to 112.2 %, and 91.9 % to 109.5 %, respectively, demonstrating satisfactory analytical performance.
Collapse
Affiliation(s)
- Jinru Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingjie Sheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingmin Li
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Zhu C, Du H, Liu H, Qin H, Yan M, Li L, Qu F. Screening, identification, and application of aptamers against allergens in food matrices. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39659225 DOI: 10.1080/10408398.2024.2439037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Food allergies have become one of the most pressing issues in food safety and public health globally along with their incidence increasing in recent years. The reliable recognition of allergens from different sources, especially food-hidden allergens, is essential for preventing and controlling food allergies. Recently, aptamers, as emerging recognition elements, have gained considerable attention in food allergy, especially in the detection of food allergens. This review systematically summarizes the latest progress in screening, identification, and application of aptamers against food allergens over the past five years. We first introduce a brief overview of food allergy and aptamers, followed by a detailed focus on the aptamers' research against different food allergens broadly based on the major categories of the Big-8 allergens: highlighting the newly screened aptamers and their applied systematic evolution of ligands by exponential enrichment (SELEX) strategies, and emphasizing their practical applications including aptasensors, allergy inhibitors, or affinity adsorptions. Finally, the remaining challenges and future exploitations faced by aptamers in food allergens are comprehensively discussed and depicted. This review holds the promise of inspiring a broader range of researchers to gain an in-depth understanding of food allergy assisted by aptamer recognition and to facilitate improved biochemical analyses and successful application.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongxia Du
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hao Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
3
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Feng X, Yan Z, Ren X, Jia Y, Sun J, Guo J, Gao Z, Li H, Long F. Sea Buckthorn Flavonoid Extracted with High Hydrostatic Pressure Alleviated Shrimp Allergy in Mice through the Microbiota and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25094-25102. [PMID: 39495351 DOI: 10.1021/acs.jafc.4c06928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Sea buckthorn (Hippophaë rhamnoides L.) known as the deciduous shrub has been reported to have effects of antioxidant, anti-inflammatory, and immunomodulatory activities. Tropomyosin (TM) induced a regulatory immune response associated with food allergy. In this study, a mouse model of food allergy sensitized to tropomyosin (TM) was established to assess the antiallergic properties of sea buckthorn flavonoid extract (SBF). SBF alleviated mice's allergic symptoms and exhibited a significant reduction in the levels of IgE and histamine. Meanwhile, SBF repaired the allergic Th2 cell overpolarization generated by TM, via downregulating the IL-4 production and upregulating IFN-γ production to restore the balance of Th1/Th2 cells. Furthermore, the 16S RNA analysis showed that SBF primarily restored the gut microbiota via increasing the abundance in Chitinophilidae and decreasing in Burkholderiaceae, Pneumatobacteriaceae, and Sphingomonadaceae. Gut metabolomes determined by liquid chromatography-mass spectrometry (LC-MS) suggested that TM upregulated PE (14:0/22:1(13Z)) and SBF decreased formimino-l-glutamic acid and urocanic acid levels. According to the KEGG pathway analysis, SBF treatment has been shown to modulate glycerophospholipid and histidine metabolism to improve allergic reactions. SBF holds great promise as a novel potential agent for the treatment of food allergies.
Collapse
Affiliation(s)
- Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojing Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yining Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiao Sun
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Zhu H, Chu L, Lv H, Ye Q, Juodkazis S, Chen F. Ultrafast Laser Manipulation of In-Lattice Plasmonic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402840. [PMID: 39023166 PMCID: PMC11481187 DOI: 10.1002/advs.202402840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Plasmonic nanoparticles enable manipulation and enhancement of light fields at deep subwavelength scales, leading to structures and devices for diverse applications in optics. Despite hybrid plasmonic materials display remarkable optical properties due to interactions between components in nanoproximity, scalable production of plasmonic nanostructures within a single-crystalline matrix to achieve an ideal plasmon-crystal interface remains challenging. Here, a novel approach is presented to realize efficient manipulation of in-lattice plasmonic nanoparticles. Employing ultrafast-laser-driven plasmonic nanolithography, metallic nanoparticles with controllable morphology are precisely defined in the crystalline lattice of yttrium aluminum garnet (YAG) crystal. Through direct ion implantation, hybrid plasmonic material composed of nanoparticles embedded in a sub-surface amorphous YAG layer is created. Subsequently, femtosecond laser pulses guide formation and reshaping of plasmonic nanoparticles from the amorphous layer into the single-crystalline matrix along direction of light propagation, facilitated by a plasmon-mediated evolution of laser energy deposition. By tailoring resonance modes and optimizing the coupling between structured particle assemblies, a range of applications including polarization-dependent absorption and nonlinearity, controllable photoluminescence, and structural color generation is demonstrated. This research introduces a new approach for fabricating advanced optical materials featuring in-lattice plasmonic nanostructures, paving the way for the development of diverse functional photonic devices.
Collapse
Affiliation(s)
- Han Zhu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Lingrui Chu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Hengyue Lv
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Qingchuan Ye
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Saulius Juodkazis
- Optical Sciences CentreFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyHawthornVIC3122Australia
| | - Feng Chen
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
6
|
Yao Z, Li W, He K, Wang H, Xu Y, Xu X, Wu Q, Wang L. Precise pathogen quantification by CRISPR-Cas: a sweet but tough nut to crack. Crit Rev Microbiol 2024:1-19. [PMID: 39287550 DOI: 10.1080/1040841x.2024.2404041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Pathogen detection is increasingly applied in medical diagnosis, food processing and safety, and environmental monitoring. Rapid, sensitive, and accurate pathogen quantification is the most critical prerequisite for assessing protocols and preventing risks. Among various methods evolved, those based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) have been developed as important pathogen detection strategies due to their distinct advantages of rapid target recognition, programmability, ultra-specificity, and potential for scalability of point-of-care testing (POCT). However, arguments and concerns on the quantitative capability of CRISPR-based strategies are ongoing. Herein, we systematically overview CRISPR-based pathogen quantification strategies according to the principles, properties, and application scenarios. Notably, we review future challenges and perspectives to address the of precise pathogen quantification by CRISPR-Cas. We hope the insights presented in this review will benefit development of CRISPR-based pathogen detection methods.
Collapse
Affiliation(s)
- Zhihao Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanglu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
7
|
Yu N, Yang Y, Li Y, Kang W, Zhang J, Chen Y. Screening of specific binding peptide for β-lactoglobulin using phage display technology. Food Chem 2024; 452:139522. [PMID: 38723568 DOI: 10.1016/j.foodchem.2024.139522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
β-lactoglobulin (β-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting β-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using β-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to β-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for β-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with β-Lg. Therefore, this peptide can be used for the recognition of β-Lg, becoming a new recognition element for detecting β-Lg.
Collapse
Affiliation(s)
- Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Yan Yang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Biological Science and Technology, Beijing Forestry University, Bejing 100083, People's Republic of China
| | - Yang Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
8
|
Guo P, Lv L, Ma J, Luo Z, Jia Y, Ren X, Sun J, Long F. The alleviated symptoms in ovalbumin‐allergic mice treated with selenium‐enriched tea polysaccharide by modulation of intestinal flora and gut metabolites. FOOD FRONTIERS 2024; 5:1784-1795. [DOI: 10.1002/fft2.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractOvalbumin (OVA) in egg is one of the predominant causes of food allergy around the world. In the present study, the alleviating effect of selenium‐enriched tea polysaccharide (Se‐TPS) on OVA allergy was evaluated, and the underlying mechanistic insights were investigated. Se‐TPS significantly alleviated the clinical manifestations and diarrhea of allergic mice, accelerated the recovery of jejunal injury, and decreased the immune organ index. Meanwhile, Se‐TPS decreased the levels of immunoglobulin E (IgE), histamine, and IL‐4 in serum, increased the levels of IFN‐γ, and promoted the balance of Th1/Th2 cells. Furthermore, the intervention of Se‐TPS reshaped the gut microbiota structure of OVA‐allergic mice. Se‐TPS increased the abundance of Lachnospiraceae_NK4A136_group, unclassified_f_Lachnospiraceae, and Alistipes, whereas decreased the Faecalibaculum abundance. Analysis of intestinal metabolites showed that Se‐TPS treatment caused a significant increase in homocitrulline and 7a‐hydroxyandrost‐4‐ene‐3,17‐dione levels. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment results indicated that Se‐TPS treatment may alleviate allergic symptoms by enhancing the anti‐inflammatory ability of OVA‐allergic mice through neuroimmunity.
Collapse
Affiliation(s)
- Peng Guo
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Liuqing Lv
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Jing Ma
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Zining Luo
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Yining Jia
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Xiaojing Ren
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Jiao Sun
- Department of Breast Surgery The Affiliated Hospital of Qingdao University Qingdao China
| | - Fangyu Long
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
9
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
10
|
Yadav PK, Kumar A, Upadhyay S, Kumar A, Srivastava A, Srivastava M, Srivastava SK. 2D material-based surface plasmon resonance biosensors for applications in different domains: an insight. Mikrochim Acta 2024; 191:373. [PMID: 38842697 DOI: 10.1007/s00604-024-06442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.
Collapse
Affiliation(s)
- Prateek Kumar Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Awadhesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Xia Y, Dong X, Chang H, Zhang X, Li J, Wang S, Lu Y, Yue T. Fabrication of an Antifouling Surface Plasmon Resonance Sensor with Stratified Zwitterionic Peptides for Highly Efficient Detection of Peanut Allergens in Biscuits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11259-11267. [PMID: 38691423 DOI: 10.1021/acs.jafc.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.
Collapse
Affiliation(s)
- Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinru Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Heng Chang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiwen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jinyu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Siqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yang Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| |
Collapse
|
12
|
Qi S, Dong X, Hamed EM, Jiang H, Cao W, Yau Li SF, Wang Z. Ratiometric Fluorescence Aptasensor of Allergen Protein Based on Multivalent Aptamer-Encoded DNA Flowers as Fluorescence Resonance Energy Transfer Platform. Anal Chem 2024; 96:6947-6957. [PMID: 38656889 DOI: 10.1021/acs.analchem.3c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Life-threatening allergic reactions to food allergens, particularly peanut protein Ara h1, are a growing public health concern affecting millions of people worldwide. Thus, accurate and rapid detection is necessary for allergen labeling and dietary guidance and ultimately preventing allergic incidents. Herein, we present a novel ratiometric fluorescence aptasensor based on multivalent aptamer-encoded DNA flowers (Mul-DNFs) for the high-stability and sensitive detection of allergen Ara h1. The flower-shaped Mul-DNFs were spontaneously packaged using ultralong polymeric DNA amplicons driven by a rolling circle amplification reaction, which contains a large number of Ara h1 specific recognition units and has excellent binding properties. Furthermore, dual-color fluorescence-labeled Mul-DNFs probes were developed by hybridizing them with Cy3- and Cy5-labeled complementary DNA (cDNA) to serve as a ratiometric fluorescence aptasensor platform based on fluorescence resonance energy transfer. Benefiting from the combined merits of the extraordinary synergistic multivalent binding ability of Mul-DNFs, the excellent specificity of the aptamer, and the sensitivity of the ratiometric sensor to avoid exogenous interference. The developed ratiometric aptasensor showed excellent linearity (0.05-2000 ng mL-1) with a limit of detection of 0.02 ng mL-1. Additionally, the developed ratiometric fluorescence aptasensor was utilized for quantifying the presence of Ara h1 in milk, infant milk powder, cookies, bread, and chocolate with recoveries of 95.7-106.3%. The proposed ratiometric aptasensor is expected to be a prospective universal aptasensor platform for the rapid, sensitive, and accurate determination of food and environmental hazards.
Collapse
Affiliation(s)
- Shuo Qi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Hongtao Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenbo Cao
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Hu X, Lv D, Qi M, Zhang Y, Wang X, Gu J, Wang D, Chen X, Liu Y, Cao Y, Zhang H. A new surface plasmon resonance-based immunoassay for rapid and sensitive quantification of D-dimer in human plasma for thrombus screening. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124102. [PMID: 38583228 DOI: 10.1016/j.jchromb.2024.124102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
D-dimer is a protein fragment generated during the fibrin breakdown by plasmin, and it serves as a mature biomarker for diagnosing thrombotic disorders. A novel immunoassay method based on surface plasmon resonance (SPR) has been developed, validated, and successfully applied for the quantification of D-dimer in human plasma with high sensitivity and rapidity. In this methodological study, we investigated the activity and stability of the SPR biosensor, sample pre-processing, washing conditions, intra-day and inter-day precision and accuracy and detection parameters, including a limit of detection of 8.3 ng/mL, a detection range spanning from 31.25 to 4000 ng/mL, and a detection time of 20 min. We compared D-dimer plasma concentration determination results using SPR with a classical latex-enhanced immunoturbidimetric immunoassay in 29 healthy individuals and thrombotic patients, and both methods exhibited consistency. Furthermore, we propose a hypothesis about the relationship between the concentration of D-dimer and its molecular weight. With an increase in the D-dimer concentration in plasma, the D-dimer approaches its simplest form (190 kDa).
Collapse
Affiliation(s)
- Xin'er Hu
- Department of Pharmacy, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Diya Lv
- Center for Instrumental Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Minyu Qi
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Zhang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiayu Gu
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dongyao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- Center for Instrumental Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yan Cao
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Hai Zhang
- Department of Pharmacy, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Echavarría JAC, El Hajj S, Irankunda R, Selmeczi K, Paris C, Udenigwe CC, Canabady-Rochelle L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct 2024; 15:3300-3326. [PMID: 38488016 DOI: 10.1039/d3fo05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.
Collapse
Affiliation(s)
| | - Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
15
|
Wang W, Xia L, Xiao X, Li G. Recent Progress on Microfluidics Integrated with Fiber-Optic Sensors for On-Site Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2067. [PMID: 38610279 PMCID: PMC11014287 DOI: 10.3390/s24072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This review introduces a micro-integrated device of microfluidics and fiber-optic sensors for on-site detection, which can detect certain or several specific components or their amounts in different samples within a relatively short time. Fiber-optics with micron core diameters can be easily coated and functionalized, thus allowing sensors to be integrated with microfluidics to separate, enrich, and measure samples in a micro-device. Compared to traditional laboratory equipment, this integrated device exhibits natural advantages in size, speed, cost, portability, and operability, making it more suitable for on-site detection. In this review, the various optical detection methods used in this integrated device are introduced, including Raman, ultraviolet-visible, fluorescence, and surface plasmon resonance detections. It also provides a detailed overview of the on-site detection applications of this integrated device for biological analysis, food safety, and environmental monitoring. Lastly, this review addresses the prospects for the future development of microfluidics integrated with fiber-optic sensors.
Collapse
Affiliation(s)
| | | | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| |
Collapse
|
16
|
Zhang X, Li Z, Yan W, Li A, Zhang F, Li X, Lu M, Peng W. Customizable miniaturized SPR instrument. Talanta 2024; 269:125440. [PMID: 38000241 DOI: 10.1016/j.talanta.2023.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Prism-based surface Plasmon resonance (SPR) system, as one of the leading candidate concepts for scale application and commercial solution, has good stability, high-sensitivity and greater theoretical/technical maturity. Therefore, to take advantage of prism-based SPR system fully, and break up limitations of complicated and bulky traditional prism-based SPR system, optimal and compact design of optical system is an effective solution. Herein, a customizable miniaturized prism-based SPR system is developed by optical system optimization and integrated design, combining portable data acquisition and processing technology (FPGA-based multifunctional data processing). This proposed prism-based SPR system can achieve a miniaturized SPR system, thus, it also can meet the requirements of flexibility configuration and customizable performance to accommodate the various needs of different users and application scenes. Additionally, the customizable features can make it to achieve the best performance optimization and differentiation.
Collapse
Affiliation(s)
- Xinpu Zhang
- School of Physics, Dalian University of Technology, Dalian, 116024, China.
| | - Zeliu Li
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Wen Yan
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| | - Ang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Fenglin Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Xiaotong Li
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Mengdi Lu
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Qin L, Yu Q, Huang Y, Zhang L, Yan X, Wu W, Liao F, Zhang J, Cui H, Zhang J, Fan H. A novel fluorescent sensor with an overtone peak reference for highly sensitive detection of mercury (II) ions and hydrogen sulfide: Mechanisms and applications in environmental monitoring and bioanalysis. Anal Chim Acta 2024; 1287:342086. [PMID: 38182341 DOI: 10.1016/j.aca.2023.342086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
The present study introduces a novel fluorescent sensor with an overtone peak reference designed for the detection of mercury (Ⅱ) ions (Hg2+) and hydrogen sulfide (H2S). The study proposes two novel response mechanisms that hinges on the synergistic effect of cation exchange dissociation (CED) and photo-induced electron transfer (PET). This sensor exhibits a remarkable detection limit of 2.9 nM for Hg2+. Additionally, the sensor reacts with H2S to generate nickel sulfide (NiS) semiconductor nanoparticles, which amplify the fluorescence signal and enable a detection limit of 3.1 nM for H2S. The detection limit for H2S is further improved to 29.1 pM through the surface functionalization of the nanomaterial with pyridine groups (increasing reactivity) and chelation of gold nanoparticles (AuNPs), which enhances the sensor's specificity. This improvement is primarily due to the surface plasmon resonance (SPR) of AuNPs and their affinity for H2S. The single-emission strategy can yield skewed results due to environmental changes, whereas the overtone peak reference strategy enhances result accuracy and reliability by detecting environmental interference through reference emission peaks. In another observation, the low-toxicity dihydropyrene-bipyridine nanorods (TPP-BPY) has been successfully utilized for both endogenous and exogenous H2S detection in vivo using a mouse model. The successful development of TPP-BPY is expected to provide an effective tool for studying the role of H2S in biomedical systems.
Collapse
Affiliation(s)
- Longshua Qin
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Qiangqiang Yu
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yong Huang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Leichang Zhang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinying Yan
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wenqi Wu
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Fusheng Liao
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jie Zhang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Hanfeng Cui
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Jing Zhang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Hao Fan
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
18
|
Li K, An N, Wu L, Wang M, Li F, Li L. Absolute quantification of microRNAs based on mass transport limitation under a laminar flow SPR system. Biosens Bioelectron 2024; 244:115776. [PMID: 37951205 DOI: 10.1016/j.bios.2023.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023]
Abstract
As an important biomarker for diagnostics and therapeutics of various diseases, the low-cost, quantitative detection method of microRNAs (miRNAs) has recently caught broad attention. However, their small size and low abundance still derive challenges to quantification detection. In this study, we developed an ultrasensitive and multiplexed surface plasmon resonance (SPR) biosensor for quantifying miRNAs without standard. We introduced the mass transport limitation (MTL) strategy for the absolute quantification of miRNAs. We first explore the mechanism of DNA capture and the condition for triggering MTL on the SPR biosensor. We demonstrated that probes of 22-25 nt in length with fewer influences of the secondary structure provide better triggering of MTL. For proof of concept studies, let-7a, miR-155 and miR-21 were selected as candidate targets. Based on the structure and kinetics analysis, we demonstrate the best capture probe efficiency, and this biosensor's limit of detection (LOD) is 500 fM without any signal amplification. Furthermore, our biosensor achieves multiplex detection, which could detect three targets simultaneously. The quantitative results of miRNA indicated the great prospects of our biosensor in nucleic acid-related early diagnosis and biosensing.
Collapse
Affiliation(s)
- Kai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Na An
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, 100029, China.
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Vasilescu A, Polonschii C, Marty JL. Biosensors for the Detection of Food Allergens. Methods Mol Biol 2024; 2717:239-250. [PMID: 37737989 DOI: 10.1007/978-1-0716-3453-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Biosensors enable fast and specific detection of various molecules, including allergens. Surface plasmon resonance (SPR) aptasensors combine the capabilities of SPR detection, i.e., sensitive, fast, label-free, and real-time monitoring with the specificity and stability of aptamers for the biorecognition of various ligands. Compared to other toxic compounds in food, allergens pose specific analytical challenges. Among allergens, lysozyme, also named Gal d 4, is a food additive used in cheese, wine, beer, sausages, etc., to control bacterial activity. In this chapter, we describe an SPR aptasensor that is applicable for lysozyme analysis in wines. Besides detecting residual allergen amounts, the aptasensor can be used to monitor the interaction of lysozyme with phenolic compounds in wine.
Collapse
|
20
|
Yu IS, Choi YR, Choi J, Kim MK, Jung CH, Um MY, Kim MJ. Discovery of Novel Stimulators of Pax7 and/or MyoD: Enhancing the Efficacy of Cultured Meat Production through Culture Media Enrichment. BIOSENSORS 2023; 14:24. [PMID: 38248401 PMCID: PMC10813534 DOI: 10.3390/bios14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
The principles of myogenesis play crucial roles in the production of cultured meat, and identifying protein stimulators associated with myogenesis holds great potential to enhance the efficiency of this process. In this study, we used surface plasmon resonance (SPR)-based screening of a natural product library to discover ligands for Pax7 and MyoD, key regulators of satellite cells (SCs), and performed cell-based assays on Hanwoo SCs (HWSCs) to identify substances that promote cell proliferation and/or differentiation. Through an SPR analysis, we found that six chemicals, including one Pax7+/MyoD- chemical, four Pax7+/MyoD+ chemicals, and one Pax7-/MyoD+ chemical, bound to Pax7 and/or MyoD proteins. Among four Pax7+/MyoD+ chemicals, parthenolide (0.5 and 1 µM) and rutin (100 and 200 µM) stimulated cell proliferation in the medium with 10% FBS similar to the medium with 20% FBS, without affecting differentiation. Adenosine, a Pax7-/MyoD+ chemical, accelerated differentiation. These chemicals could be potential additives to reduce the reliance of FBS required for HWSC proliferation and differentiation in cultured meat production.
Collapse
Affiliation(s)
- In-Sun Yu
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
| | - Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea;
| | - Mina K. Kim
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| | - Min Young Um
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| |
Collapse
|
21
|
Yuan X, Niu Z, Liu L, Zeng Y, Ma L, Nie Z, Tian Z, Kai D, Zhang F, Liu G, Li S, Yuan Z. Intensity Interrogation-Based High-Sensitivity Surface Plasmon Resonance Imaging Biosensor for Apoptosis Detection in Cancer. BIOSENSORS 2023; 13:946. [PMID: 37887139 PMCID: PMC10605221 DOI: 10.3390/bios13100946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Intensity interrogation-based surface plasmon resonance imaging (ISPRi) sensing has a simple schematic design and is the most widely used surface plasmon resonance technology at present. In this study, we report the successful development of a novel high-sensitivity ISPRi biosensor and its application for apoptosis detection in cancer cells. By optimizing the excitation wavelength and excitation angle, we achieved a refractive index resolution (RIR) of 5.20 × 10-6 RIU. Importantly, the biosensor has been tested and validated for high-throughput and label-free detection of activated caspase-3 with its specific inhibitor Z-DEVD-FMK in apoptotic cells. Therefore, this study describes a novel molecular imaging system to monitor apoptosis in cancers for disease diagnosis and/or evaluation of therapeutic efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (X.Y.); (L.L.)
| | - Zhenxiao Niu
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (X.Y.); (L.L.)
| | - Youjun Zeng
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
| | - Lin Ma
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
| | - Zhaogang Nie
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Zhen Tian
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Dongyun Kai
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
| | - Fangteng Zhang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
| | - Guanyu Liu
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (L.M.); (Z.N.); (D.K.); (F.Z.); (G.L.)
| | - Siwei Li
- School of Mechano-Electronic Engineering, Zhuhai City Polytechnic, Zhuhai 519000, China;
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (X.Y.); (L.L.)
| |
Collapse
|
22
|
Ansari MTI, Raghuwanshi SK, Kumar S. Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection-A Review. IEEE Trans Nanobioscience 2023; 22:978-988. [PMID: 37216266 DOI: 10.1109/tnb.2023.3278468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Food safety is a scientific discipline that requires sophisticated handling, production, and storage. Food is common for microbial development; it acts as a source for growth and contamination. The traditional procedures for food analysis are time-consuming and labor-intensive, but optical sensors overcome these constraints. Biosensors have replaced rigorous lab procedures like chromatography and immunoassays with more precise and quick sensing. It offers quick, nondestructive, and cost-effective food adulteration detection. Over the last few decades, the significant spike in interest in developing surface plasmon resonance (SPR) sensors for the detection and monitoring of pesticides, pathogens, allergens, and other toxic chemicals in foods. This review focuses on fiber-optic SPR (FO-SPR) biosensors for detecting various adulterants in food matrix while also discussing the future perspective and the key challenges encountered by SPR based sensors.
Collapse
|
23
|
Ma C, Jiang N, Sun X, Kong L, Liang T, Wei X, Wang P. Progress in optical sensors-based uric acid detection. Biosens Bioelectron 2023; 237:115495. [PMID: 37442030 DOI: 10.1016/j.bios.2023.115495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
The escalating number of patients affected by various diseases, such as gout, attributed to abnormal uric acid (UA) concentrations in body fluids, has underscored the need for rapid, efficient, highly sensitive, and stable UA detection methods and sensors. Optical sensors have garnered significant attention due to their simplicity, cost-effectiveness, and resistance to electromagnetic interference. Notably, research efforts have been directed towards UA on-site detection, enabling daily monitoring at home and facilitating rapid disease screening in the community. This review aims to systematically categorize and provide detailed descriptions of the notable achievements and emerging technologies in UA optical sensors over the past five years. The review highlights the advantages of each sensor while also identifying their limitations in on-site applications. Furthermore, recent progress in instrumentation and the application of UA on-site detection in body fluids is discussed, along with the existing challenges and prospects for future development. The review serves as an informative resource, offering technical insights and promising directions for future research in the design and application of on-site optical sensors for UA detection.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Liang
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, 310000, China.
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
24
|
Zeng Y, Nie Z, Kai D, Chen J, Shao Y, Kong W, Yuan Z, Ho HP, Zhang F. Quasi-phase extraction-based surface plasmon resonance imaging method for coffee ring effect monitoring and biosensing. Anal Bioanal Chem 2023; 415:5735-5743. [PMID: 37453938 DOI: 10.1007/s00216-023-04854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Wavelength interrogation surface plasmon resonance imaging (WSPRi) sensing has unique advantages in high-throughput imaging detection. The refractive index resolution (RIR) of WSPRi is limited to the order of 10-6 RIU. This paper demonstrates a novel WSPRi sensing system with a wavelength scanning device of an acousto-optic tunable filter (AOTF) and a low-cost speckle-free SPR excitation source of a halogen lamp. We developed a sensitive quasi-phase extraction method for data processing. The new technique achieved an RIR of 8.84×10-7 RIU, which is the first WSPRi system that has an RIR in the order of 10-7 RIU. Moreover, we performed a real-time recording of the formation of the coffee ring effect during brine evaporation and enhanced the biosensor performance of SPR for the first time. We believe the higher RIR and accuracy of the system will benefit more potential applications toward exploring the biomolecules' behaviors in biological and biochemistry studies.
Collapse
Affiliation(s)
- Youjun Zeng
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangdong, 510006, China
| | - Zhaogang Nie
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangdong, 510006, China
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Dongyun Kai
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangdong, 510006, China
| | - Jiajie Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yonghong Shao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weifu Kong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqiang Yuan
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangdong, 510006, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Fangteng Zhang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangdong, 510006, China.
| |
Collapse
|
25
|
Xing Z, Zogona D, Wu T, Pan S, Xu X. Applications, challenges and prospects of bionic nose in rapid perception of volatile organic compounds of food. Food Chem 2023; 415:135650. [PMID: 36868065 DOI: 10.1016/j.foodchem.2023.135650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Bionic nose, a technology that mimics the human olfactory system, has been widely used to assess food quality due to their high sensitivity, low cost, portability and simplicity. This review briefly describes that bionic noses with multiple transduction mechanisms are developed based on gas molecules' physical properties: electrical conductivity, visible optical absorption, and mass sensing. To enhance their superior sensing performance and meet the growing demand for applications, a range of strategies have been developed, such as peripheral substitutions, molecular backbones, and ligand metals that can finely tune the properties of sensitive materials. In addition, challenges and prospects coexist are covered. Cross-selective receptors of bionic nose will help and guide the selection of the best array for a particular application scenario. It provides an odour-based monitoring tool for rapid, reliable and online assessment of food safety and quality.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China.
| |
Collapse
|
26
|
Shi F, Yan F, Zhang X, Liu R, Jiang G, Li J, Malinick A, Cheng Q, Yang Z. "Two-in-one" core-shell nanozyme probes with double signal amplification for high-performing surface plasmon resonance immunosensing. Chem Commun (Camb) 2023. [PMID: 37318544 DOI: 10.1039/d3cc01855e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a "two-in-one" Ag@Au core-shell nanozyme probe inducing double-signal amplification has been developed to significantly elevate the sensitivity of SPR sensors via sandwich immunoassay. The Ag@Au core-shell nanozyme with intrinsic peroxide-like activity was demonstrated to catalyze a polymerization reaction leading to formation of polyaniline, allowing further improvement of detection performance of SPR immunosensor. The method demonstrated here offers a universal strategy for enhanced SPR detection and further expands the application of nanozymes.
Collapse
Affiliation(s)
- Feng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Fei Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Ruixin Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Guomin Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Alexander Malinick
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
27
|
Herrera-Domínguez M, S Lambert A, Morales-Luna G, Pisano E, Aguilar-Hernandez I, Mahlknecht J, Cheng Q, Ornelas-Soto N. Development of a surface plasmon resonance based immunosensor for diclofenac quantification in water. CHEMOSPHERE 2023:139156. [PMID: 37290514 DOI: 10.1016/j.chemosphere.2023.139156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
A Surface Plasmon Resonance (SPR) biosensor based on an inhibition immunoassay was developed for the detection of diclofenac (DCF) in aqueous solution. Due to the small size of DCF, an hapten-protein conjugate was produced by coupling DCF to bovine serum albumin (BSA). DCF-BSA conjugate formation was confirmed via MALDI-TOF mass spectrometry. The resulting conjugate was immobilized onto the surface of a sensor fabricated via e-beam deposition of a 2 nm chromium adhesion layer followed by a 50 nm gold layer onto precleaned BK7 glass slides. Immobilization onto the nano thin gold surface was accomplished by covalent amide linkage through a self-assembled monolayer. Samples were composed of a mixture of antibody at a fixed concentration and DCF at different known concentrations in deionized water, causing the inhibition of anti-DCF on the sensor. The DCF-BSA was obtained with a ratio of 3 DCF molecules per BSA. A calibration curve was performed using concentrations between 2 and 32 μg L-1. The curve was fitted using the Boltzmann equation, reaching a limit of detection (LOD) of 3.15 μg L-1 and limit of quantification (LOQ) of 10.52 μg L-1, the inter-day precision was calculated and an RSD value of 1.96% was obtained; and analysis time of 10 min. The developed biosensor is a preliminary approach to the detection of DCF in environmental water samples, and the first SPR biosensor developed for DCF detection using a hapten-protein conjugate.
Collapse
Affiliation(s)
- Marcela Herrera-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Alexander S Lambert
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Gesuri Morales-Luna
- Departamento de Física y Matemáticas, Universidad Iberoamericana, Ciudad de Mexico, Prolongación Paseo de La Reforma 880, Ciudad de Mexico, 01219, Mexico
| | - Eduardo Pisano
- CONACYT - Centro de Investigación en Materiales Avanzados, S.C., Monterrey, Parque PIIT, 66628, Apodaca, Nuevo León, Mexico
| | - Iris Aguilar-Hernandez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| | - Nancy Ornelas-Soto
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico.
| |
Collapse
|
28
|
Yang K, Chen Y, Yan S, Yang W. Nanostructured surface plasmon resonance sensors: Toward narrow linewidths. Heliyon 2023; 9:e16598. [PMID: 37292265 PMCID: PMC10245261 DOI: 10.1016/j.heliyon.2023.e16598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Surface plasmon resonance sensors have found wide applications in optical sensing field due to their excellent sensitivity to the slight refractive index change of surrounding medium. However, the intrinsically high optical losses in metals make it nontrivial to obtain narrow resonance spectra, which greatly limits the performance of surface plasmon resonance sensors. This review first introduces the influence factors of plasmon linewidths of metallic nanostructures. Then, various approaches to achieve narrow resonance linewidths are summarized, including the fabrication of nanostructured surface plasmon resonance sensors supporting surface lattice resonance/plasmonic Fano resonance or coupling with a photonic cavity, the preparation of surface plasmon resonance sensors with ultra-narrow resonators, as well as strategies such as platform-induced modification, alternating different dielectric layers, and the coupling with whispering-gallery-modes. Lastly, the applications and some existing challenges of surface plasmon resonance sensors are discussed. This review aims to provide guidance for the further development of nanostructured surface plasmon resonance sensors.
Collapse
Affiliation(s)
- Kang Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yan Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| |
Collapse
|
29
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
30
|
Xiao C, Ross G, Nielen MWF, Eriksson J, Salentijn GI, Mak WC. A portable smartphone-based imaging surface plasmon resonance biosensor for allergen detection in plant-based milks. Talanta 2023; 257:124366. [PMID: 36863294 DOI: 10.1016/j.talanta.2023.124366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Food allergies are hypersensitivity immune responses triggered by (traces of) allergenic compounds in foods and drinks. The recent trend towards plant-based and lactose-free diets has driven an increased consumption of plant-based milks (PBMs) with the risk of cross-contamination of various allergenic plant-based proteins during the food manufacturing process. Conventional allergen screening is usually performed in the laboratory, but portable biosensors for on-site screening of food allergens at the production site could improve quality control and food safety. Here, we developed a portable smartphone imaging surface plasmon resonance (iSPR) biosensor composed of a 3D-printed microfluidic SPR chip for the detection of total hazelnut protein (THP) in commercial PBMs and compared its instrumentation and analytical performance with a conventional benchtop SPR. The smartphone iSPR shows similar characteristic sensorgrams compared with the benchtop SPR and enables the detection of trace levels of THP in spiked PBMs with the lowest tested concentration of 0.625 μg/mL THP. The smartphone iSPR achieved LoDs of 0.53, 0.16, 0.14, 0.06, and 0.04 μg/mL THP in 10x-diluted soy, oat, rice, coconut, and almond PBMs, respectively, with good correlation with the conventional benchtop SPR system (R2 0.950-0.991). The portability and miniaturized characteristics of the smartphone iSPR biosensor platform make it promising for the future on-site detection of food allergens by food producers.
Collapse
Affiliation(s)
- Chi Xiao
- Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden
| | - Georgina Ross
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Michel W F Nielen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jens Eriksson
- Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden
| | - Gert Ij Salentijn
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wing Cheung Mak
- Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
31
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
32
|
Adenosine cyclic phosphate with ultrasonic-assisted pectinase extraction alleviated allergic reactions in RBL-2H3 through inhibiting the influx of intracellular Ca2+. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Ren H, Zhu X, Zhai S, Feng X, Yan Z, Sun J, Liu Y, Gao Z, Long F. Seabuckthorn juice alleviates allergic symptoms in shrimp-induced food allergy mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Vergara-Barberán M, Simó-Alfonso EF, Herrero-Martínez JM, Benavente F. Accurate determination of the milk protein allergen β-lactoglobulin by on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry. Talanta 2023; 259:124542. [PMID: 37086682 DOI: 10.1016/j.talanta.2023.124542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/24/2023]
Abstract
An on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry (AA-SPE-CE-MS) method was developed to purify, preconcentrate, separate, and characterize the milk allergenic protein β-lactoglobulin (β-LG) in food samples. The sorbent to pack into the SPE microcartidges was prepared by immobilizing an aptamer against β-LG onto magnetic bead particles. After optimizing the SPE-CE-MS method, the sample (ca. 75 μL) was loaded in separation background electrolyte (BGE, 2 M acetic acid pH 2.2), while a solution of 100 mM NH4OH (pH 11.2) (ca. 100 nL) was used for the protein elution. The linearity of the method ranged between 0.1 and 20 μg mL-1 and the limit of detection (LOD) was 0.05 μg mL-1, which was 200 times lower than by CE-MS. The method was repeatable in terms of relative standard deviation (RSD) for migration times and peak areas (<0.5% and 2.4%, respectively) and microcartridge lifetime was more than 25 analyses. The applicability of the method for the determination of low levels of β-LG was shown by analyzing milk-free foods (i.e. a 100% cocoa dark chocolate, a hypoallergenic formula for infants, and a dairy-free white bread) and milk-containing white breads. Results were satisfactory in all cases, thus demonstrating the great potential of the developed method for accurate food safety and quality control.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA •UB), University of Barcelona, C/ Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner 50, 46100 Burjassot, Spain
| | | | | | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA •UB), University of Barcelona, C/ Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
35
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
36
|
Ferrari E. Gold Nanoparticle-Based Plasmonic Biosensors. BIOSENSORS 2023; 13:bios13030411. [PMID: 36979623 PMCID: PMC10046074 DOI: 10.3390/bios13030411] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/10/2023]
Abstract
One of the emerging technologies in molecular diagnostics of the last two decades is the use of gold nanoparticles (AuNPs) for biosensors. AuNPs can be functionalized with various biomolecules, such as nucleic acids or antibodies, to recognize and bind to specific targets. AuNPs present unique optical properties, such as their distinctive plasmonic band, which confers a bright-red color to AuNP solutions, and their extremely high extinction coefficient, which makes AuNPs detectable by the naked eye even at low concentrations. Ingenious molecular mechanisms triggered by the presence of a target analyte can change the colloidal status of AuNPs from dispersed to aggregated, with a subsequent visible change in color of the solution due to the loss of the characteristic plasmonic band. This review describes how the optical properties of AuNPs have been exploited for the design of plasmonic biosensors that only require the simple mixing of reagents combined with a visual readout and focuses on the molecular mechanisms involved. This review illustrates selected examples of AuNP-based plasmonic biosensors and promising approaches for the point-of-care testing of various analytes, spanning from the viral RNA of SARS-CoV-2 to the molecules that give distinctive flavor and color to aged whisky.
Collapse
Affiliation(s)
- Enrico Ferrari
- Department of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
37
|
Sun M, Song Y, Wu H, Wang Q. Design and Simulation of Au/SiO 2 Nanospheres Based on SPR Refractive Index Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:3163. [PMID: 36991874 PMCID: PMC10054871 DOI: 10.3390/s23063163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In this paper, three different structures of surface plasmon resonance (SPR) sensors based on the Kretschmann configuration: Au/SiO2 thin film structure, Au/SiO2 nanospheres and Au/SiO2 nanorods are designed by adding three different forms of SiO2 materials behind the gold film of conventional Au-based SPR sensors. The effects of SiO2 shapes on the SPR sensor are investigated through modeling and simulation with the refractive index of the media to be measured ranging from 1.330 to 1.365. The results show that the sensitivity of Au/SiO2 nanospheres could be as high as 2875.4 nm/RIU, which is 25.96% higher than that of the sensor with a gold array. More interestingly, the increase in sensor sensitivity is attributed to the change in SiO2 material morphology. Therefore, this paper mainly explores the influence of the shape of the sensor-sensitizing material on the performance of the sensor.
Collapse
|
38
|
Wang R, Li HD, Cao Y, Wang ZY, Yang T, Wang JH. M13 phage: a versatile building block for a highly specific analysis platform. Anal Bioanal Chem 2023:10.1007/s00216-023-04606-w. [PMID: 36867197 PMCID: PMC9982796 DOI: 10.1007/s00216-023-04606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Viruses are changing the biosensing and biomedicine landscape due to their multivalency, orthogonal reactivities, and responsiveness to genetic modifications. As the most extensively studied phage model for constructing a phage display library, M13 phage has received much research attention as building blocks or viral scaffolds for various applications including isolation/separation, sensing/probing, and in vivo imaging. Through genetic engineering and chemical modification, M13 phages can be functionalized into a multifunctional analysis platform with various functional regions conducting their functionality without mutual disturbance. Its unique filamentous morphology and flexibility also promoted the analytical performance in terms of target affinity and signal amplification. In this review, we mainly focused on the application of M13 phage in the analytical field and the benefit it brings. We also introduced several genetic engineering and chemical modification approaches for endowing M13 with various functionalities, and summarized some representative applications using M13 phages to construct isolation sorbents, biosensors, cell imaging probes, and immunoassays. Finally, current issues and challenges remaining in this field were discussed and future perspectives were also proposed.
Collapse
Affiliation(s)
- Rui Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Hui-Da Li
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Ying Cao
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Zi-Yi Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| |
Collapse
|
39
|
Geng Q, Zhang Y, Song M, Zhou X, Tang Y, Wu Z, Chen H. Allergenicity of peanut allergens and its dependence on the structure. Compr Rev Food Sci Food Saf 2023; 22:1058-1081. [PMID: 36624611 DOI: 10.1111/1541-4337.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
Food allergies are a global food safety problem. Peanut allergies are common due, in part, to their popular utilization in the food industry. Peanut allergy is typically an immunoglobulin E-mediated reaction, and peanuts contain 17 allergens belonging to different families in peanut. In this review, we first introduce the mechanisms and management of peanut allergy, followed by the basic structures of associated allergens. Subsequently, we summarize methods of epitope localization for peanut allergens. These methods can be instrumental in speeding up the discovery of allergenicity-dependent structures. Many attempts have been made to decrease the allergenicity of peanuts. The structures of hypoallergens, which are manufactured during processing, were analyzed to strengthen the desensitization process and allergen immunotherapy. The identification of conformational epitopes is the bottleneck in both peanut and food allergies. Further, the identification and modification of such epitopes will lead to improved strategies for managing and preventing peanut allergy. Combining traditional wet chemistry research with structure simulation studies will help in the epitopes' localization.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Min Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Zyubin AY, Kon II, Poltorabatko DA, Samusev IG. FDTD Simulations for Rhodium and Platinum Nanoparticles for UV Plasmonics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050897. [PMID: 36903775 PMCID: PMC10005487 DOI: 10.3390/nano13050897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
The article describes the results of finite-difference time-domain (FDTD) mathematical modeling of electromagnetic fields distortion near the surfaces of two transition metals: rhodium (Rh) and platinum (Pt) on glass (SiO2) substrates. Results were compared with calculated optical properties of classical SERS generating metals (Au and Ag). We have performed FDTD-based theoretical calculations for UV SERS-active nanoparticles (NPs) and structures based on hemispheres of Rh and Pt and planar surfaces, consisting of single NPs with varied gaps between them. The results have been compared with gold stars, silver spheres and hexagons. The prospects of the theoretical approach for single NPs and planar surfaces modeling to evaluate optimal field amplification and light scattering parameters have been shown. The presented approach could be applied as a basis for performing the methods of controlled synthesis for LPSR tunable colloidal and planar metal-based biocompatible optical sensors for UV and deep-UV plasmonics. The difference between UV-plasmonic NPs and plasmonics in a visible range has been evaluated.
Collapse
|
41
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
42
|
Li L, Li Y, Zong X, Zhao L, Li P, Yu K, Liu Y. Wedged Fiber Optic Surface Plasmon Resonance Sensor for High-Sensitivity Refractive Index and Temperature Measurements. SENSORS (BASEL, SWITZERLAND) 2022; 22:9099. [PMID: 36501796 PMCID: PMC9739012 DOI: 10.3390/s22239099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Here, we experimentally demonstrate a wedged fiber optic surface plasmon resonance (SPR) sensor enabling high-sensitivity temperature detection. The sensing probe has a geometry with two asymmetrical bevels, with one inclined surface coated with an optically thin film supporting propagating plasmons and the other coated with a reflecting metal film. The angle of incident light can be readily tuned through modifying the beveled angles of the fiber tip, which has a remarkable impact on the refractive index sensitivity of SPR sensors. As a result, we measure a high refractive index sensitivity as large as 8161 nm/RIU in a wide refractive index range of 1.333-1.404 for the optimized sensor. Furthermore, we carry out a temperature-sensitivity measurement by packaging the SPR probe into a capillary filled with n-butanol. This showed a temperature sensitivity reaching up to -3.35 nm/°C in a wide temperature range of 20 °C-100 °C. These experimental results are well in agreement with those obtained from simulations, thus suggesting that our work may be of significance in designing reflective fiber optic SPR sensing probes with modified geometries.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
43
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
44
|
You JJ, Liu H, Zhang RR, Pan QF, Sun AL, Zhang ZM, Shi XZ. Development and application of tricolor ratiometric fluorescence sensor based on molecularly imprinted nanoparticles for visual detection of dibutyl phthalate in seawater and fish samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157675. [PMID: 35907542 DOI: 10.1016/j.scitotenv.2022.157675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
A tricolor ratiometric fluorescence sensor was fabricated by mixing blue- and red-emission molecularly imprinted quantum dots (MIP-QDs) with green-emission quantum dots at the optimal ratio. The MIP-QDs were synthesized by coating CdSe/ZnS QDs in polymer by inverse microemulsion method. Compared with single-emission or dual-emission sensors, the tricolor ratiometric fluorescence sensor provided a wider range of color variations for visual DBP detection. The ratio fluorescence value I530/(I450 + I630) of the tricolor ratiometric fluorescence sensor linearly changed within the concentration of 2.0-20.0 × 103 μg/L DBP. The correlation coefficient was 0.9910, and the limits of detection were 1.0 μg/kg and 0.65 μg/L in fish and seawater, respectively. Meanwhile, the fluorescence color gradually changed from purple to plum to pink to salmon to yellowish green and finally to green. The recoveries of DBP in fish and seawater were 84.3 %-91.4 % and 88.3 %-110.3 %, respectively. Moreover, no obvious differences were observed between the detection results of the tricolor ratiometric fluorescence sensor and gas chromatography-tandem mass spectrometry. The tricolor ratiometric fluorescence sensor constructed herein provides an ideal choice for rapid and intuitive DBP detection in environmental and aquatic products.
Collapse
Affiliation(s)
- Jin-Jie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Rong-Rong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiao-Fen Pan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
45
|
Balevičius Z. Photonic Sensors in Chemical and Biological Applications. BIOSENSORS 2022; 12:1021. [PMID: 36421139 PMCID: PMC9688303 DOI: 10.3390/bios12111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Biosensors are described as analytical devices in which biological substances are detected by using various physicochemical detection systems [...].
Collapse
Affiliation(s)
- Zigmas Balevičius
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
46
|
Song Y, Sun M, Wu H, Zhao W, Wang Q. Temperature Sensor Based on Surface Plasmon Resonance with TiO 2-Au-TiO 2 Triple Structure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7766. [PMID: 36363358 PMCID: PMC9653889 DOI: 10.3390/ma15217766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Temperature sensors have been widely applied in daily life and production, but little attention has been paid to the research on temperature sensors based on surface plasmon resonance (SPR) sensors. Therefore, an SPR temperature sensor with a triple structure of titanium dioxide (TiO2) film, gold (Au) film, and TiO2 nanorods is proposed in this article. By optimizing the thickness and structure of TiO2 film and nanorods and Au film, it is found that the sensitivity of the SPR temperature sensor can achieve 6038.53 nm/RIU and the detection temperature sensitivity is -2.40 nm/°C. According to the results, the sensitivity of the optimized sensor is 77.81% higher than that of the sensor with pure Au film, which is attributed to the TiO2(film)-Au-TiO2(nanorods) structure. Moreover, there is a good linear correlation (greater than 0.99) between temperature and resonance wavelength in the range from 0 °C to 60 °C, which can ensure the detection resolution. The high sensitivity, FOM, and detection resolution indicate that the proposed SPR sensor has a promising application in temperature monitoring.
Collapse
Affiliation(s)
- Yutong Song
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng Sun
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Haoyu Wu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wanli Zhao
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
47
|
Yoo J, Han S, Park B, Sonwal S, Alhammadi M, Kim E, Aliya S, Lee ES, Jeon TJ, Oh MH, Huh YS. Highly Specific Peptide-Mediated Cuvette-Form Localized Surface Plasmon Resonance (LSPR)-Based Fipronil Detection in Egg. BIOSENSORS 2022; 12:914. [PMID: 36354423 PMCID: PMC9687660 DOI: 10.3390/bios12110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we have developed peptide-coated gold nanoparticles (AuNPs) based on localized surface plasmon resonance (LSPR) sensor chips that can detect fipronil with high sensitivity and selectivity. The phage display technique has been exploited for the screening of highly specific fipronil-binding peptides for the selective detection of the molecule. LSPR sensor chips are fabricated initially by attaching uniformly synthesized AuNPs on the glass substrate, followed by the addition of screened peptides. The parameters, such as the peptide concentration of 20 µg mL-1 and the reaction time of 30 min, are further optimized to maximize the efficacy of the fabricated LSPR sensor chips. The sensing analysis is performed systematically under standard fipronil solutions and spike samples from eggs. The developed sensor has shown excellent sensitivity towards both standard solutions and spike samples with limit of detection (LOD) values of 0.01 ppb, respectively. Significantly, the developed LSPR sensor chips offer distinct features, such as a facile fabrication approach, on-site sensing, rapid analysis, cost-effectiveness, and the possibility of mass production, in which the chips can be effectively used as a promising and potential on-site detection tool for the estimation of fipronil.
Collapse
Affiliation(s)
- Jingon Yoo
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Bumjun Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sheik Aliya
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Eun-Seon Lee
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| |
Collapse
|
48
|
Kim SY, Lee JP, Shin WR, Oh IH, Ahn JY, Kim YH. Cardiac biomarkers and detection methods for myocardial infarction. Mol Cell Toxicol 2022; 18:443-455. [PMID: 36105117 PMCID: PMC9463516 DOI: 10.1007/s13273-022-00287-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Background A significant heart attack known as a myocardial infarction (MI) occurs when the blood supply to the heart is suddenly interrupted, harming the heart muscles due to a lack of oxygen. The incidence of myocardial infarction is increasing worldwide. A relationship between COVID-19 and myocardial infarction due to the recent COVID-19 pandemic has also been revealed. Objective We propose a biomarker and a method that can be used for the diagnosis of myocardial infarction, and an aptamer-based approach. Results For the diagnosis of myocardial infarction, an algorithm-based diagnosis method was developed using electrocardiogram data. A diagnosis method through biomarker detection was then developed. Conclusion Myocardial infarction is a disease that is difficult to diagnose based on the aspect of a single factor. For this reason, it is necessary to use a combination of various methods to diagnose myocardial infarction quickly and accurately. In addition, new materials such as aptamers must be grafted and integrated into new ways. Purpose of Review The incidence of myocardial infarction is increasing worldwide, and some studies are being conducted on the association between COVID-19 and myocardial infarction. The key to properly treating myocardial infarction is early detection, thus we aim to do this by offering both tools and techniques as well as the most recent diagnostic techniques. Recent Findings Myocardial infarction is diagnosed using an electrocardiogram and echocardiogram, which utilize cardiac signals. It is required to identify biomarkers of myocardial infarction and use biomarker-based ELISA, SPR, gold nanoparticle, and aptamer technologies in order to correctly diagnose myocardial infarction.
Collapse
Affiliation(s)
- Sang Young Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435 Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| |
Collapse
|
49
|
Zhang B, Zhang J, Yu X, Peng J, Pan L, Tu K. Evaluation of the adsorption capacity and mechanism of soy protein isolate for volatile flavor compounds: Role of different oxygen-containing functional groups. Food Chem 2022; 386:132745. [PMID: 35334317 DOI: 10.1016/j.foodchem.2022.132745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Mechanism of soy protein isolate (SPI) adsorbing isomers of volatile flavor compounds (VFCs: 2-octanone, 1-octen-3-ol and octanal) were investigated by exploring the interaction between different oxygen-containing functional groups (OCF groups: carbonyl, alcohol hydroxyl and aldehyde group) and SPI in this study. VFCs made SPI aggregate into larger particle size, and an increase in β-sheet and β-turn was observed. Octanal has strongest binding capacity to SPI, followed by 1-octen-3-ol and 2-octanone. Fluorescence analysis revealed that static quenching occurred between the VFCs and SPI, which suggested that SPI-VFCs complex were formed. Double logarithmic Stern-Volmer indicated the strongest interaction between aldehyde group and SPI, which was proved by surface plasmon resonance. Finally, molecular docking results showed more hydrogen bonds between octanal and SPI. The results showed that aldehyde groups were more likely to interact with SPI than others, probably due to their tendency to form more hydrogen bonds.
Collapse
Affiliation(s)
- Bin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Yaiwong P, Lertvachirapaiboon C, Shinbo K, Kato K, Ounnunkad K, Baba A. Tunable surface plasmon resonance enhanced fluorescence via the stretching of a gold quantum dot-coated aluminum-coated elastomeric grating substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3188-3195. [PMID: 35938318 DOI: 10.1039/d2ay00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the surface plasmon resonance (SPR)-enhanced fluorescence properties of gold quantum dots (AuQDs) on an aluminum (Al)-coated polydimethylsiloxane (PDMS) grating substrate were investigated by changing the grating pitch via mechanical stretching. The SPR-excitation wavelength of the AuQDs/Al-coated PDMS-grating substrate was tuned by changing the incident light angle from 5° to 60° and stretching it from 0 to 1.0 mm. In addition, the SPR-enhanced fluorescence tuning ability was studied using an AuQD/Al-coated PDMS-grating film by stretching the substrate. The SPR-enhanced fluorescence (SPF) of the AuQDs on the Al-grating was observed using a violet laser as the excitation source at 405 nm with p-polarization. The wavelengths of the SPR excitation, corresponding to the SP-dispersion mode of +1, were shifted to a longer wavelength upon stretching the grating substrate from 0 to 1.0 mm. By stretching the AuQDs/Al-grating PDMS substrate, the SPR-enhanced fluorescence intensity increased at fixed incident angles of 15° and 35°, whereas the SPR-enhanced fluorescence intensity decreased at 40°. Moreover, the SPF could be tuned to exhibit different properties in tunable optical sensors.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chutiparn Lertvachirapaiboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Kazunari Shinbo
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Keizo Kato
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Kontad Ounnunkad
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Akira Baba
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|