1
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
2
|
Lu C, Qin J, Wu S, Zhang Z, Tang Z, Liu C. Structural optimization, characterization, and evaluation of binding mechanism of aptamers against bovine pregnancy-associated glycoproteins and their application in establishment of a colorimetric aptasensor using Fe-based metal-organic framework as peroxidase mimic tags. Mikrochim Acta 2024; 191:713. [PMID: 39470834 DOI: 10.1007/s00604-024-06775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
A truncated aptamer (designated A24-3) was identified that specifically binds to bovine pregnancy-associated glycoproteins (bPAG9) with a low dissociation constant (2.04 nM) through two truncation approaches. Circular dichroism spectroscopy indicated that A24-3 formed parallel G-quadruplexes, which was subsequently confirmed using nuclear magnetic resonance (NMR) spectroscopy. Furthermore, a molecular dynamics simulation was employed to investigate the recognition mechanism of A24-3 and bPAG9. Interaction analysis showed that A24-3 folded into a parallel G-quadruplex structure with three G-tetrads, primarily through numerous hydrogen bonds and hydrophobic and π-π interactions. Finally, a novel colorimetric aptasensor was developed for detecting bPAG9 using A24-3 and an Fe-based metal-organic framework as target recognition elements and enzyme mimics, respectively. The method demonstrated a broad detection range from 0.5 to 50 ng/mL, with a low detection limit of 0.03 ng mL-1, and exhibited a good recovery (91.0-102%) for bPAG9-spiked serum samples. Additionally, the aptasensor was successfully applied to detecting the pregnancy-specific biomarker bPAGs in serum samples.
Collapse
Affiliation(s)
- Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing, 408100, China
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Jiaxiang Qin
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - ZhenLiang Zhang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Zonggui Tang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
3
|
Martin DR, Mutombwera AT, Madiehe AM, Onani MO, Meyer M, Cloete R. Molecular modeling and simulation studies of SELEX-derived high-affinity DNA aptamers to the Ebola virus nucleoprotein. J Biomol Struct Dyn 2024:1-18. [PMID: 38217874 DOI: 10.1080/07391102.2024.2302922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ebola viral disease (EVD) is a highly infectious and potentially fatal illness with a case fatality rate ranging from 25% to 90%. To effectively control its spread, there is a need for rapid, reliable and lowcost point-of-care (P OC) diagnostic tests. While various EVD diagnostic tests exist, few are P OC tests, and many are not cost-effective. The use of antibodies in these tests has limitations, prompting the exploration of aptamers as potential alternatives. Various proteins from the Ebola virus (EBOV) proteome, including EBOV nucleoprotein (NP), are considered viable targets for diagnostic assays. A previous study identified three aptamers (Apt1. Apt2 and Apt3) with high affinity for EBOV NP using systemic evolution of ligands by exponential enrichment (SELEX). This study aimed to employ in silico methods, such as Phyre2, RNAfold, RNAComposer, HADDOCK and GROMACS, to model the structures of EBOV NP and the aptamers, and to investigate their binding. The in silico analysis revealed successful binding of all the three aptamers to EBOV NP, with a suggested ranking of Apt1 > Apt2 > Apt3 based on binding affinity. Microscale thermophoresis (MST) analysis confirmed the binding, providing dissociation constants of 25 ± 2.84, 56 ± 2.76 and 140 ±3.69 nM for Apt1, Apt2 and Apt3, respectively. The study shows that the findings of the in silico analysis was in agreement with the MST analysis. Inclusion of these in silico approaches in diagnostic assay development can expedite the selection of candidate aptamers, potentially overcoming challenges associated with aptamer application in diagnostics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D R Martin
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville, South Africa Cape Town, South Africa
| | - A T Mutombwera
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - A M Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M O Onani
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - R Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville, South Africa Cape Town, South Africa
| |
Collapse
|
4
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Cao J, Zhang F, Xiong W. Discovery of Aptamers and the Acceleration of the Development of Targeting Research in Ophthalmology. Int J Nanomedicine 2023; 18:4421-4430. [PMID: 37551274 PMCID: PMC10404440 DOI: 10.2147/ijn.s418115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 08/09/2023] Open
Abstract
Aptamers are widely applied to diagnosis and therapy because of their targeting. However, the current progress of research into aptamers for the treatment of eye disorders has not been well-documented. The current literature on aptamers was reviewed in this study. Aptamer-related drugs and biochemical sensors have been evaluated for several eye disorders within the past decade; S58 targeting TGF-β receptor II and pegaptanib targeting vascular endothelial growth factor (VEGF) are used to prevent fibrosis after glaucoma filtration surgery. Anti-brain-derived neurotrophic factor aptamer has been used to diagnose glaucoma. The first approved aptamer drug (pegaptanib) has been used to inhibit angiogenesis in age-related macular degeneration (AMD) and diabetic retinopathy (DR), and its efficacy and safety have been demonstrated in clinical trials. Aptamers, including E10030, RBM-007, AS1411, and avacincaptad pegol, targeting other angiogenesis-related biomarkers have also been discovered and subjected to clinical trials. Aptamers, such as C promoter binding factor 1, CD44, and advanced end products in AMD and DR, targeting other signal pathway proteins have also been discovered for therapy, and biochemical sensors for early diagnosis have been developed based on aptamers targeting VEGF, connective tissue growth factor, and lipocalin 1. Aptamers used for early detection and treatment of ocular tumors were derived from other disease biomarkers, such as CD71, nucleolin, and high mobility group A. In this review, the development and application of aptamers in eye disorders in recent years are systematically discussed, which may inspire a new link between aptamers and eye disorders. The aptamer development trajectory also facilitates the discovery of the pathogenesis and therapeutic strategies for various eye disorders.
Collapse
Affiliation(s)
- Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Liu X, Hou Y, Qin Y, Cheng J, Hou J, Wu Q, Liu Z. Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX. BIOSENSORS 2023; 13:bios13050564. [PMID: 37232925 DOI: 10.3390/bios13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
A capture systematic evolution of ligands by exponential enrichment (Capture-SELEX) was described to discover novel aptamers specific for 5-hydroxymethylfurfural (5-HMF), and a biosensor based on molecular beacon was constructed to detect 5-HMF. The ssDNA library was immobilized to streptavidin (SA) resin to select the specific aptamer. The selection progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing (HTS). Candidate and mutant aptamers were selected and identified by Isothermal Titration Calorimetry (ITC). The FAM-aptamer and BHQ1-cDNA were designed as the quenching biosensor to detect 5-HMF in milk matrix. After the 18th round selection, the Ct value decreased from 9.09 to 8.79, indicating that the library was enriched. The HTS results indicated that the total sequence numbers for 9th, 13th, 16th, and 18th were 417054, 407987, 307666, and 259867, but the number of sequences for the top 300 sequences was gradually increased from 9th to 18th, and the ClustalX2 analysis showed that there were four families with high homology rate. ITC results indicated that the Kd values of H1 and its mutants H1-8, H1-12, H1-14, and H1-21 were 2.5 μM, 1.8 μM, 1.2 μM, 6.5 μM, and 4.7 μM. The linear range of the quenching biosensor was from 0 μM to 75 μM, and it had a similar linear range in the 0.1% milk matrix. This is the first report to select a novel aptamer specific for 5-HMF and develop quenching biosensor for the rapid detection of 5-HMF in milk matrix.
Collapse
Affiliation(s)
- Xixia Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Yanlin Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Jiaxin Cheng
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| |
Collapse
|
7
|
Han J, Ma P, Khan IM, Zhang Y, Wang Z. Study of binding mechanism of aptamer to kanamycin and the development of fluorescent aptasensor in milk detection. Talanta 2023; 260:124530. [PMID: 37116356 DOI: 10.1016/j.talanta.2023.124530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Aptasensors being versatile sensing platforms presented higher sensitivity toward target detection. However, lacking theoretical basis of recognition between most targets and their corresponding aptamers has impeded their applications. Herein, we conducted a study to explore the binding mechanism of aptamer to kanamycin (Kana) and developed rapid fluorescent aptasensing methods. Based on the fluorescence polarization results, base mutations were performed at different sites of the aptamer. The key binding nucleotides of Kana was identified as T7, T8, C13 and A15 by using isothermal titration calorimetry (ITC). The Kmut3 (2.18 μM) with lower dissociation constants (Kd), one-third of the native aptamer (6.91 μM), was also obtained. In addition, the lower K+ concentration and temperature were found to be conducive to Kana binding. Circular dichroism (CD) results revealed that the binding of Kana can trigger the change of base stacking force and helix force. On the aforementioned basis, a fluorescent sensor was designed with the native aptamer and Kmut3 as recognition elements. The comparison results proved that the Kmut3 presented a 3 times lower limit of detection of 59 nM compared to the native aptamer (148 nM). Notably, this developed aptasensor can be finished in 45 min and was convenient to operate.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China.
| |
Collapse
|
8
|
Kumar P, Birader K, Suman P. Development of an Impedimetric Aptasensor for Detection of Progesterone in Undiluted Biological Fluids. ACS Pharmacol Transl Sci 2023; 6:92-99. [PMID: 36654753 PMCID: PMC9841775 DOI: 10.1021/acsptsci.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 12/03/2022]
Abstract
A cost-effective, deployable, and quantitative progesterone biosensor is desirable for regular progesterone sensing in biological and environmental samples to safeguard public health. Aptasensors have been shown to be affordable as compared to antibody-based sensors, but so far, none of the progesterone aptamers could detect it in undiluted and unprocessed biological samples. Thus, to select an aptamer suitable for biosensing in unprocessed biological samples, a modified magnetic bead-based approach with counter-selection in milk and serum was performed. G-quadruplex forming progesterone aptamers were preferentially screened through in silico, gold nanoparticle-based adsorption-desorption assay and circular dichroism spectroscopy. GQ5 aptamer showed extended stability and a high progesterone binding affinity (K D 5.29 ± 2.9 nM) as compared to any other reported progesterone aptamers (P4G11 and P4G13). Under optimized conditions, GQ5 aptamer was coated on the gold electrode to develop an impedimetric aptasensor (limit of detection: 0.53, 0.91, and 1.9 ng/mL in spiked buffer, undiluted milk, and serum, respectively, with the dynamic range of detection from 0.1 to 50 ng/mL in buffer and 0.1 to 30 ng/mL in both milk and serum). The aptasensor exhibited a very high level of κ value (>0.9) with ELISA to detect progesterone in milk and serum. The aptasensor could be regenerated three times and can be stored for up to 10 days at 4 °C. Therefore, GQ5 may be used to develop a portable impedimetric aptasensor for clinical and on-site progesterone sensing in various biological and environmental samples.
Collapse
Affiliation(s)
- Pankaj Kumar
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| | - Komal Birader
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
| | - Pankaj Suman
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| |
Collapse
|
9
|
Wu G, Liu C, Cao B, Cao Z, Zhai H, Liu B, Jin S, Yang X, Lv C, Wang J. Connective tissue growth factor-targeting DNA aptamer suppresses pannus formation as diagnostics and therapeutics for rheumatoid arthritis. Front Immunol 2022; 13:934061. [PMID: 35990694 PMCID: PMC9389230 DOI: 10.3389/fimmu.2022.934061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) has been recently acknowledged as an ideal biomarker in the early disease course, participating in the pathogenesis of pannus formation in rheumatoid arthritis (RA). However, existing approaches for the detection of or antagonist targeting CTGF are either lacking or unsatisfactory in the diagnosis and treatment of RA. To address this, we synthesized and screened high-affinity single-stranded DNA aptamers targeting CTGF through a protein-based SELEX procedure. The structurally optimized variant AptW2-1-39-PEG was characterized thoroughly for its high-affinity (KD 7.86 nM), sensitivity (minimum protein binding concentration, 2 ng), specificity (negative binding to other biomarkers of RA), and stability (viability-maintaining duration in human serum, 48 h) properties using various biochemical and biophysical assays. Importantly, we showed the antiproliferative and antiangiogenic activities of the aptamers obtained using functional experiments and further verified the therapeutic effect of the aptamers on joint injury and inflammatory response in collagen-induced arthritis (CIA) mice, thus advancing this study into actual therapeutic application. Furthermore, we revealed that the binding within AptW2-1-39-PEG/CTGF was mediated by the thrombospondin 1 (TSP1) domain of CTGF using robust bioinformatics tools together with immunofluorescence. In conclusion, our results revealed a novel aptamer that holds promise as an additive or alternative approach for CTGF-targeting diagnostics and therapeutics for RA.
Collapse
Affiliation(s)
- Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Can Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ben Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zelin Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haige Zhai
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| |
Collapse
|
10
|
Sun P, Su J, Wang X, Zhou M, Zhao Y, Gu H. Nucleic Acids for Potential Treatment of Rheumatoid Arthritis. ACS APPLIED BIO MATERIALS 2022; 5:1990-2008. [PMID: 35118863 DOI: 10.1021/acsabm.1c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease that severely affects the life quality of patients. Current therapeutics in clinic mainly focus on alleviating the development of RA or relieving the pain of patients. The emerging biological disease-modifying antirheumatic drugs (DMARDs) require long-term treatment to achieve the expected efficacy. With the development of bionanotechnology, nucleic acids fulfill characters as therapeutics or nanocarriers and can therefore be alternatives to combat RA. This review summarizes the therapeutic RNAs developed through RNA interference (RNAi), nucleic acid aptamers, DNA nanostructures-based drug delivery systems, and nucleic acid vaccines for the applications in RA therapy and diagnosis. Furthermore, prospects of nucleic acids for RA therapy are intensively discussed as well.
Collapse
Affiliation(s)
- Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingjing Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiaonan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mo Zhou
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Zhao Y, Li L, Yan X, Wang L, Ma R, Qi X, Wang S, Mao X. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126690. [PMID: 34315019 DOI: 10.1016/j.jhazmat.2021.126690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Shellfish toxins are derived from harmful algae and are easily accumulated in environment and marine food through the food chain, exposing high risks on human health. Preliminary rapid screening is one of the most effective monitoring ways to reduce the potential risks; however, the traditional methods encounter with many limitations, such as complicated procedures, low sensitivity and specificity, and ethical problems. Alternatively, bioaffinity sensors are proposed and draw particular attention. Among them, the aptasensors are springing up and emerging as superior alternatives in recent years, exhibiting high practicability to analyze shellfish toxins in real samples in the marine food chain. Herein, the latest research progresses of aptasensors towards shellfish toxins in the marine food chain in the past five years was reviewed for the first time, in terms of the aptamers applied in these aptasensors, construction principles, signal transduction techniques, response types, individual performance properties, practical applications, and advantages/disadvantages of these aptasensors. Synchronously, critical discussions were given and future perspectives were prospected. We hope this review can serve as a powerful reference to promote further development and application of aptasensors to monitor shellfish toxins, as well as other analytes with similar demands.
Collapse
Affiliation(s)
- Yinglin Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lele Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Rui Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoyan Qi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
12
|
Zheng X, Gao S, Wu J, Hu X. A Fluorescent Aptasensor Based on Assembled G-Quadruplex and Thioflavin T for the Detection of Biomarker VEGF165. Front Bioeng Biotechnol 2021; 9:764123. [PMID: 34869275 PMCID: PMC8636943 DOI: 10.3389/fbioe.2021.764123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
VEGF165, a regulator of angiogenesis, has been widely used as a serum biomarker for a number of human diseases, including cancer, rheumatoid arthritis, bronchial asthma, and diabetic eye disease. The rapid, accurate, and convenient detection of VEGF165 is a crucial step in effective healthcare monitoring, disease diagnosis, and prognosis assessment. In this study, a fluorescent aptasensor based on an assembled G-quadruplex and the signal molecule ThT was developed for VEGF165 detection. First, G-rich DNA fragments were assembled at both ends of the anti-VEGF165 aptamer, and the B-DNA form was converted into a G-quadruplex structure aptamer (G4-Apt). Then, ThT was introduced, and the G-quadruplex significantly enhanced the fluorescence intensity of the bound ThT. When VEGF165 was present, the higher affinity of the aptamer to the target protein allowed the G4-Apt/VEGF165 complex to form and release ThT, which emitted only weak fluorescence in the free state. Therefore, the aptasensor exhibited a good linear detection window from 1.56 to 25 nM VEGF165, with a limit of detection of 0.138 nM. In addition, the aptasensor was applied to detect VEGF165 in clinical serum samples, showing good accuracy, reproducibility, and stability. These results indicate that our developed fluorescent aptasensor can potentially be a reliable, convenient, and cost-effective approach for the sensitive, specific, and rapid detection of the VEGF165 biomarker.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaobo Hu
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Naseri M, Halder A, Mohammadniaei M, Prado M, Ashley J, Sun Y. A multivalent aptamer-based electrochemical biosensor for biomarker detection in urinary tract infection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Ma P, Guo H, Duan N, Ma X, Yue L, Gu Q, Wang Z. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta 2021; 230:122349. [PMID: 33934798 DOI: 10.1016/j.talanta.2021.122349] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
In this study, the original chloramphenicol aptamer containing 80 bases was truncated to 30 bases with high affinity by the SYBR Green I assay. It was found that the ionic strength and type affect the recognition of aptamers, especially magnesium ion played a vital role in the binding process. Furthermore, the binding performance of aptamer, including binding mode, key binding sites and conformational changes were further investigated by circular dichroism spectroscopy, UV-vis absorption spectrum and molecular docking. Based on these research data, we inferred that chloramphenicol bound to the minor groove region in the aptamer double helix. Finally, the optimized aptamer LLR10 was used to develop a novel label free fluorescence polarization assay to detect chloramphenicol within SYBR Green I as the source of fluorescence polarization signal. Under optimal conditions, the designed method showed a linear detection range of 0.1-10 nM with a detection limit of 0.06 nM. Additionally, the aptasensor exhibited a high accuracy to the detection of chloramphenicol in milk samples with a recovery rate from 93.7% to 98.4%. Therefore, the developed label free fluorescence polarization aptasensor provides a new idea for the rapid, reliable and sensitive detection of chloramphenicol, which can be applied to food safety control.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Hualin Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Qianhui Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Three Squirrels Inc., Wuhu, 241000, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
Zhao B, Qian M, Zhang Y, Yin F. Retracted: Stem cells from human exfoliated deciduous teeth transmit microRNA-26a to protect rats with experimental intracerebral hemorrhage from cerebral injury via suppressing CTGF. Brain Res Bull 2021; 168:146-155. [PMID: 33333175 DOI: 10.1016/j.brainresbull.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A large number of studies have shown that stem cells from human exfoliated deciduous teeth (SHED) has a protective effect on brain damage, but its specific mechanism is unclear. This research focused on the effect of microRNA (miR)-26a that transmitted by SHED in intracerebral hemorrhage (ICH). METHODS SHED were extracted from deciduous teeth of healthy children and miR-26a expression in SHED was altered through transfection, and then the SHED were conducted with neuron differentiated induction, expression of β3 tubulin, MAP-2 and glial fibrillary acidic protein (GFAP), number of dendritic spines and cell proliferation were detected. ICH rat models were established by stereotactic injection of collagenase VII into the left striatum and the modeled rats were injected with miR-26a mimic or inhibitor-transfected SHED suspension. Then, the brain water content, blood-brain barrier permeability, pathological changes, and injury and apoptosis in the nervous cells in brain were assessed. The expression of miR-26a and CTGF in SHED and rats' brain tissues was evaluated and the target relation between miR-26a and CTGF was detected. RESULTS In SHED after induction, upregulated miR-26a could increase number of dendritic spines, cell proliferation, and expression of β3 tubulin, MAP-2 and GFAP, and restrain CTGF expression. In rat models, SHED engineered to overexpress miR-26a could attenuate brain water content, Evans blue content, apoptosis, pathological injury and expression of CTGF and Bax, while promoted number of Nissl bodies and expression of Bcl-2 in the nervous cells in brain in ICH rats. Furthermore, miR-26a competitively bound to CTGF. CONCLUSION Our findings provided the evidence that SHED could transmit miR-26a to protect ICH rats from cerebral injury by repressing CTGF, which may contribute to ICH therapy.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Fei Yin
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
16
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
17
|
Pusomjit P, Teengam P, Thepsuparungsikul N, Sanongkiet S, Chailapakul O. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Mikrochim Acta 2021; 188:41. [PMID: 33452651 DOI: 10.1007/s00604-020-04692-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
A non-invasive aptamer-based electrochemical biosensor using disposable screen-printed graphene electrodes (SPGEs) was developed for simple, rapid, and sensitive determination of cortisol levels. Selective detection of cortisol based on a label-free electrochemical assay was achieved by specific recognition of the cortisol DNA aptamer (CApt). The CApt was modified with streptavidin magnetic beads (MBs) before simple immobilization onto the electrode surface using a neodymium magnet. The electrochemical behavior of the aptamer-based biosensor was assessed by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) (vs Ag/AgCl). The specific binding between cortisol and CApt resulted in a decrease in charge transfer resistance (Rct) from EIS using [Fe(CN)6]3-/4- with increasing cortisol concentration. Under optimal conditions, a linear range from 0.10 to 100 ng/mL with a low detection limit (3SD/slope) of 2.1 pg/mL was obtained. Furthermore, the proposed biosensing system exhibited a satisfactory recovery in the range 97.4-109.2% with 5.7-6.6% RSD in spiked artificial human sweat. Regarding the applications of this tool, the aptamer-based biosensor has potential to be a versatile and point-of-care (POC) device for simple, sensitive, selective, disposable, and low-cost cortisol detection.
Collapse
Affiliation(s)
- Pannaporn Pusomjit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nichanan Thepsuparungsikul
- Department of Chemistry, Faculty of Science, Silpakorn University, Amphoe Muang, Nakhon Pathom, 73000, Thailand.
| | - Sucharat Sanongkiet
- Department of Chemistry, Faculty of Science, Silpakorn University, Amphoe Muang, Nakhon Pathom, 73000, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
19
|
Zheng X, Gao S, Wu J, Hu X. Recent Advances in Aptamer-Based Biosensors for Detection of Pseudomonas aeruginosa. Front Microbiol 2020; 11:605229. [PMID: 33414776 PMCID: PMC7782355 DOI: 10.3389/fmicb.2020.605229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Increasing concerns about nosocomial infection, food and environmental safety have prompted the development of rapid, accurate, specific and ultrasensitive methods for the early detection of critical pathogens. Pseudomonas aeruginosa is one of the most common pathogens that cause infection. It is ubiquitous in nature, being found in water, soil, and food, and poses a great threat to public health. The conventional detection technologies are either time consuming or readily produce false positive/negative results, which makes them unsuitable for early diagnosis and spot detection of P. aeruginosa. To circumvent these drawbacks, many efforts have been made to develop biosensors using aptamers as bio-recognition elements. Various aptamer-based biosensors for clinical diagnostics, food, and environmental monitoring of P. aeruginosa have been developed in recent years. In this review, we focus on the latest advances in aptamer-based biosensors for detection of P. aeruginosa. Representative biosensors are outlined according to their sensing mechanisms, which include optical, electrochemical and other signal transduction methods. Possible future trends in aptamer biosensors for pathogen detection are also outlined.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunxiang Gao
- Department of Ophthalmology, Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology, Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaobo Hu
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
21
|
Haase L, Weisz K. Locked nucleic acid building blocks as versatile tools for advanced G-quadruplex design. Nucleic Acids Res 2020; 48:10555-10566. [PMID: 32890406 PMCID: PMC7544228 DOI: 10.1093/nar/gkaa720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023] Open
Abstract
A hybrid-type G-quadruplex is modified with LNA (locked nucleic acid) and 2′-F-riboguanosine in various combinations at the two syn positions of its third antiparallel G-tract. LNA substitution in the central tetrad causes a complete rearrangement to either a V-loop or antiparallel structure, depending on further modifications at the 5′-neighboring site. In the two distinct structural contexts, LNA-induced stabilization is most effective compared to modifications with other G surrogates, highlighting a potential use of LNA residues for designing not only parallel but various more complex G4 structures. For instance, the conventional V-loop is a structural element strongly favored by an LNA modification at the V-loop 3′-end in contrast with an alternative V-loop, clearly distinguishable by altered conformational properties and base-backbone interactions as shown in a detailed analysis of V-loop structures.
Collapse
Affiliation(s)
- Linn Haase
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
22
|
Bagheri Hashkavayi A, Cha BS, Lee ES, Kim S, Park KS. Advances in Exosome Analysis Methods with an Emphasis on Electrochemistry. Anal Chem 2020; 92:12733-12740. [PMID: 32902258 DOI: 10.1021/acs.analchem.0c02745] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes, small extracellular vesicles, are released by various cell types. They are found in bodily fluids, including blood, urine, serum, and saliva, and play essential roles in intercellular communication. Exosomes contain various biomarkers, such as nucleic acids and proteins, that reflect the status of their parent cells. Since they influence tumorigenesis and metastasis in cancer patients, exosomes are excellent noninvasive potential indicators for early cancer detection. Aptamers with specific binding properties have distinct advantages over antibodies, making them effective versatile bioreceptors for the detection of exosome biomarkers. Here, we review various aptamer-based exosome detection approaches based on signaling methods, such as fluorescence, colorimetry, and chemiluminescence, focusing on electrochemical strategies that are easier, cost-effective, and more sensitive than others. Further, we discuss the clinical applications of electrochemical exosome analysis strategies as well as future research directions in this field.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Fluorescent aptasensor based on G-quadruplex-assisted structural transformation for the detection of biomarker lipocalin 1. Biosens Bioelectron 2020; 169:112607. [PMID: 32947081 DOI: 10.1016/j.bios.2020.112607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Diabetic retinopathy (DR) is the leading global cause of blindness in the working-age population. Early diagnosis and intervention can effectively reduce the risk for blindness. However, the current diagnostic methods in clinical practice remain constrained by nonquantitative examinations and individual ophthalmologists' experiences. Sensitive, specific and accurate detection of DR-specific biomarkers is an important approach to achieve its early and rapid diagnosis. In this study, a high-affinity aptamer APT12TM that specifically binds to the tear-derived DR biomarker lipocalin 1 was obtained. The aptamer APT12TM can be folded into a stable B-DNA structure, and its strong interaction with LCN 1, including hydrogen bonding and hydrophobic interactions, is an important factor for targeted recognition and high-affinity binding. A G-rich DNA fragment was further assembled at both ends of the aptamer APT12TM, and the B-DNA form was successfully converted into a parallel G-quadruplex. Most importantly, LCN 1 could induce further transformation of the G-quadruplex structure. Therefore, a fluorescent aptasensor based on G-quadruplex-assisted structural transformation was developed through the Thioflavin T mediator. The aptasensor exhibited a broad detection window from 0.25 to 1000 nM LCN 1, with a limit of detection of 0.2 nM. Furthermore, the aptasensor was applied to LCN 1 detection in artificial tear samples and displayed good reproducibility and stability. These results show that the developed aptasensor has significant potential for sensitive, specific and convenient detection of the DR-specific biomarker LCN 1.
Collapse
|
24
|
Liu C, Lu C, Shi G. Selection, identification, and application of DNA aptamers against bovine pregnancy-associated glycoproteins 4. Anal Bioanal Chem 2020; 412:4235-4243. [PMID: 32561948 DOI: 10.1007/s00216-020-02666-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
The bovine pregnancy-associated glycoproteins (bPAGs) have been widely used as robust markers for early diagnosis of pregnancy in the cattle. The current immune recognition methods for detecting bPAGs are limited and, to a certain extent, are associated with high costs and poor stability of the antibody. Aptamers that are more stable and easily synthesized than antibodies might serve as suitable candidates for the development of rapid detection methods. This paper describes selection and characterization of bPAG4 aptamers and theirs applicability to detect bPAG4 in the serum. In this work, the recombinant bovine pregnancy-associated glycoproteins 4 (bPAG4) with a relative molecular mass of about 48 kDa was successfully expressed in human embryonic kidney 293 (HEK 293) cells. Subsequently, the ssDNA aptamers were selected by systematic evolution of ligands by exponential enrichment (SELEX) using magnetic beads (MB) coated with bPAG4 as target. After 9 rounds of selection, three aptamers with high affinity to bPAG4 (Kd = 11.7~40.2 nM) were identified. The selected aptamers were successfully used in enzyme-linked aptamer assay (ELAA) to detect bPAG4 at a detection limit of 0.09 ng/mL. Meanwhile, it has been successfully applied for the detection of bPAG4 in serum samples. This work demonstrated that the selected aptamers could be used as promising affinity probes in the development of inexpensive, simple, and sensitive analysis methods for detecting bPAGs. Graphical abstract.
Collapse
Affiliation(s)
- Changbin Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.,Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing, 408100, China
| | - Guoqing Shi
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China. .,Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
25
|
Lu C, Liu C, Shi G. Colorimetric enzyme-linked aptamer assay utilizing hybridization chain reaction for determination of bovine pregnancy-associated glycoproteins. Mikrochim Acta 2020; 187:316. [PMID: 32383031 DOI: 10.1007/s00604-020-04301-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 11/25/2022]
Abstract
DNA aptamers that bind to bovine pregnancy-associated glycoproteins (bPAGs) were selected by the systematic evolution of ligands by exponential enrichment (SELEX) procedure coupled to surface plasmon resonance (SPR) and high-throughput sequencing (HTS) technology. After seven rounds of selection using carboxylated magnetic beads (MB) coated with bovine pregnancy-associated glycoproteins 9 (bPAG9) and bovine serum albumin (BSA) as target and counter targets, respectively, two aptamers designated as A1 and A24 showed high affinities to bPAG9 (Kd = 1.04 and 2.5 nM). Moreover, the specificity was determined by testing the non-targets bPAG4, bPAG6, bPAG16, BSA, and ovalbumin (OVA). Results showed that two aptamers demonstrated broad group specificity to bPAG family. Subsequently, a colorimetric sandwich enzyme-linked aptamer assay was developed for ultrasensitive detection of bPAG9 based on hybridization chain reaction (HCR) amplification strategy. The method exhibited a broad determination from 0.134 to 134 ng/mL with a detection limit of 0.037 ng/mL. The method has been successfully applied to determine bPAGs in real samples. The results demonstrate that the developed aptamers could be used as promising molecular probes for the development of pregnancy diagnostic tools. Graphical abstract In this study, we first selected aptamers against bovine pregnancy-associated glycoproteins (bPAGs) as molecular recognition elements and then developed a colorimetric enzyme-linked aptamer assay utilizing hybridization chain reaction to detect bPAGs in the serum.The GA can't be deleted, the modified GA can not upload. So themodified GA and figures will be send to CorrAdmin3@spi-global.com.
Collapse
Affiliation(s)
- Chunxia Lu
- College of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, People's Republic of China.
| | - Guoqing Shi
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, People's Republic of China
| |
Collapse
|
26
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Temperature and molecular crowding effects on the sensitivity of T30695 aptamer toward Pb2+ion: a joint molecular dynamics simulation and experimental study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1751842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
27
|
Pei G, Xu L, Huang W, Yin J. RETRACTED: The protective role of microRNA-133b in restricting hippocampal neurons apoptosis and inflammatory injury in rats with depression by suppressing CTGF. Int Immunopharmacol 2020; 78:106076. [PMID: 31830619 DOI: 10.1016/j.intimp.2019.106076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 02/03/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the integrity of the images in Figures 5, 6A and 8A, which appear to contain suspected duplications, as detailed here: https://pubpeer.com/publications/773D824533241B2186D16AA3FFCB3F and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Additional suspected image duplications were detected within Figure 7A. Our analysis suggested these image anomalies represent either direct duplications of the entire image, or contain several repeated features between or within an image. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Gaoyou Pei
- Intervention Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Liguo Xu
- Intervention Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Wenhao Huang
- Intervention Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Jianjun Yin
- Health Examination Department, Qingdao Hiser Medica, Qingdao 266000, Shandong, China.
| |
Collapse
|
28
|
Celikbas E, Balaban S, Evran S, Coskunol H, Timur S. A Bottom-Up Approach for Developing Aptasensors for Abused Drugs: Biosensors in Forensics. BIOSENSORS 2019; 9:E118. [PMID: 31581533 PMCID: PMC6955935 DOI: 10.3390/bios9040118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Aptamer-based point-of-care (POC) diagnostics platforms may be of substantial benefit in forensic analysis as they provide rapid, sensitive, user-friendly, and selective analysis tools for detection. Aptasensors have not yet been adapted commercially. However, the significance of the applications of aptasensors in the literature exceeded their potential. Herein, in this review, a bottom-up approach is followed to describe the aptasensor development and application procedure, starting from the synthesis of the corresponding aptamer sequence for the selected analyte to creating a smart surface for the sensitive detection of the molecule of interest. Optical and electrochemical biosensing platforms, which are designed with aptamers as recognition molecules, detecting abused drugs are critically reviewed, and existing and possible applications of different designs are discussed. Several potential disciplines in which aptamer-based biosensing technology can be of greatest value, including forensic drug analysis and biological evidence, are then highlighted to encourage researchers to focus on developing aptasensors in these specific areas.
Collapse
Affiliation(s)
- Eda Celikbas
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Simge Balaban
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Serap Evran
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Department of Mental Health and Diseases, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Suna Timur
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|