1
|
Xiong H, Li P, Cun F, Chen H, Kong J. Methylene-Blue-Encapsulated Metal-Organic-Framework-Based Electrochemical POCT Platform for Multiple Detection of Heavy Metal Ions in Milk. BIOSENSORS 2023; 13:783. [PMID: 37622869 PMCID: PMC10452309 DOI: 10.3390/bios13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Considering the high risk of heavy metal ions (HMIs) transferring through the food chain and accumulating in milk, a flexible and facile point-of-care testing (POCT) platform is urgently needed for the accurate, sensitive, and highly selective on-site quantification of multiple HMIs in milk. In this work, a cost-effective disk with six screen-printed electrodes (SPEs) was designed for hand-held electrochemical detection. Metal organic frameworks (MOFs) were adopted to amplify and enhance the electrochemical signals of methylene blue (MB). Using differential pulse voltammetry (DPV) methods, low limits of detection for four HMIs (Cd2+, 0.039 ppb; Hg2+, 0.039 ppb; Pb2+, 0.073 ppb; and As3+, 0.022 ppb) were achieved within four minutes. Moreover, the quantitative POCT system was applied to milk samples. The advantages of low cost, ease of on-site implementation, fast response, and accuracy allow for the POCT platform to be used in practical monitoring applications for the quantitation of multiple HMIs in milk samples.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Pan P, Xing Y, Zhang D, Wang J, Liu C, Wu D, Wang X. A review on the identification of transgenic oilseeds and oils. J Food Sci 2023; 88:3189-3203. [PMID: 37458291 DOI: 10.1111/1750-3841.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Transgenic technology can increase the quantity and quality of vegetable oils worldwide. However, people are skeptical about the safety of transgenic oil-bearing crops and the oils they produce. In order to protect consumers' rights and avoid transgenic oils being adulterated or labeled as nontransgenic oils, the transgenic detection technology of oilseeds and oils needs careful consideration. This paper first summarized the current research status of transgenic technologies implemented at oil-bearing crops. Then, an inspection process was proposed to detect a large number of samples to be the subject rapidly, and various inspection strategies for transgenic oilseeds and oils were summarized according to the process sequence. The detection indicators included oil content, fatty acid, triglyceride, tocopherol, and nucleic acid. The detection technologies involved chromatography, spectroscopy, nuclear magnetic resonance, and polymerase chain reaction. It is hoped that this article can provide crucial technical reference and support for staff engaging in the supervision of transgenic food and for researchers developing fast and efficient monitoring methods in the future.
Collapse
Affiliation(s)
- Pengyuan Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
3
|
Cheng H, Wang Y, Wang Y, Ge L, Liu X, Li F. A visualized sensor based on layered double hydroxides with peroxidase-like activity for sensitive acetylcholinesterase assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37470116 DOI: 10.1039/d3ay00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Acetylcholinesterase (AChE) plays a crucial role in biological neurotransmission. The aberrant expression of AChE is associated with various neurodegenerative diseases. Therefore, it is of great significance to develop a simple and highly sensitive AChE analysis platform. Herein, a simple colorimetric sensor was constructed for sensitive detection of AChE based on the peroxidase-like catalytic activity of Ni/Co layered double hydroxides (Ni/Co LDHs). In this sensor, the fabricated Ni/Co LDHs possess high peroxidase-like activity, enabling rapid catalysis of o-phenylenediamine (OPD) to produce yellow oxOPD in the presence of H2O2. This peroxidase-like activity of Ni/Co LDHs was found to be effectively inhibited by the presence of AChE. It is speculated that the combination of AChE on the outer surface of Ni/Co LDHs through non-covalent interaction may cover the active sites and hinder their adsorption to the substrates, leading to the failure of OPD oxidation. As a result, the yellow color from oxOPD is related to the AChE concentration, enabling the direct AChE assay in an equipment-free manner. In addition, the fabricated Ni/Co LDHs could be modified on a paper surface to obtain a paper-based analytical device for visualized colorimetric detection of AChE. The as-proposed sensor shows high sensitivity to AChE with a detection limit down to 6.6 μU mL-1. Therefore, this naked-eye paper-based sensor is capable of on-site and real-time detection of AChE, and has outstanding application prospects in clinical diagnosis and biomedical fields.
Collapse
Affiliation(s)
- Hao Cheng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuying Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| |
Collapse
|
4
|
Li X, Wang L, Yan L, Han X, Zhang Z, Zhang X, Sun W. A Portable Wireless Intelligent Nanosensor for 6,7-Dihydroxycoumarin Analysis with A Black Phosphorene and Nano-Diamond Nanocomposite-Modified Electrode. BIOSENSORS 2023; 13:153. [PMID: 36831920 PMCID: PMC9953709 DOI: 10.3390/bios13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this work, a novel portable and wireless intelligent electrochemical nanosensor was developed for the detection of 6,7-dihydroxycoumarin (6,7-DHC) using a modified screen-printed electrode (SPE). Black phosphorene (BP) nanosheets were prepared via exfoliation of black phosphorus nanoplates. The BP nanosheets were then mixed with nano-diamond (ND) to prepare ND@BP nanocomposites using the self-assembly method, achieving high environmental stability. The nanocomposite was characterized by SEM, TEM, Raman, XPS and XRD. The nanocomposite was used for the modification of SPE to improve its electrochemical performances. The nanosensor displayed a wide linear range of 0.01-450.0 μmol/L with a low detection limit of 0.003 μmol/L for 6,7-DHC analysis. The portable and wireless intelligent electrochemical nanosensor was applied to detect 6,7-DHC in real drug samples by the standard addition method with satisfactory recoveries, which extends the application of BP-based nanocomposite for electroanalysis.
Collapse
Affiliation(s)
- Xiaoqing Li
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lisi Wang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lijun Yan
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiao Han
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zejun Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
5
|
Meng S, Liu D, Li Y, Dong N, Chen T, You T. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for in Situ Ratiometric Photoelectrochemical Immunoassay of Cry1Ab Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13583-13591. [PMID: 36251948 DOI: 10.1021/acs.jafc.2c05910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable modulation of a response mode is extremely attracting to fabricate biosensor with programmable analytical performances. Here, we reported a proof-of-concept ratiometric photoelectrochemical (PEC) immunoassay of Cry1Ab protein based on the signal transduction regulation at the sensing interface. A sandwich-type PEC structure was designed so that gold nanorods sensitized quantum dots to fix primary antibody (Au NRs/QDs-Ab1) and methylene blue sensitized QDs to combine a second antibody (MB/QDs-Ab2), which served as photoelectric substrate and signal amplifier, respectively. Unlike common recognition element, such a sandwich-type PEC structure allowed for the in situ generation of two specific response signals. For analysis, Cry1Ab captured by Au NRs/QDs-Ab1 led to a decreased photocurrent (ICry1Ab), while the subsequently anchored MB/QDs-Ab2 produced another photocurrent (IMB). Noteworthy, by taking advantage of the different energy band gaps of QDs, varying locations of CdTe and CdSe QDs could realize different signal transduction strategies (i.e., Mode 1 and Mode 2). Investigations on data analysis of ICry1Ab and IMB via different routes demonstrated the superior analytical performances of ratiometry (Mode 1). Consequently, the ratiometric PEC immunosensor offered a linear range of 0.01-100 ng mL-1 with a detection limit of 1.4 pg mL-1. This work provides an efficient strategy for in situ collection of multiple photocurrents to design ratiometric PEC sensors.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
One step construction of an electrochemical sensor for melamine detection in milk towards an integrated portable system. Food Chem 2022; 383:132403. [PMID: 35158131 DOI: 10.1016/j.foodchem.2022.132403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022]
Abstract
Excessive intake of melamine (MEL) can be harmful to human health, and it is important to establish a rapid and accurate MEL detection method. As the electrochemical activity of MEL is very low, ferrocenylglutathione (Fc-ECG) was used as an electron transfer mediator to assist with the detection of MEL using screen-printed carbon electrode (SPCE). This modified electrode (MEL/Fc-ECG/SPCE) was prepared by stepwise drop-casting and was fully characterized. Results showed that MEL significantly enhanced signal of Fc-ECG/SPCE sensor due to the three p-π conjugated double bonds that facilitated electron transfer. Under optimal conditions, the sensor exhibits two linearities in the range of 0.20-2.00 μM and 8.00-800 μM, with a sensitivity of 15.03 μA·μM-1·cm-2. The selectivity, stability, and reproducibility were investigated and successfully used to detect MEL in raw milk and confirms safety verification of foods. Moreover, a portable testing platform was designed for MEL detection based on a CH32 chip.
Collapse
|
7
|
Liu J, Xu Y, Liu S, Yu S, Yu Z, Low SS. Application and Progress of Chemometrics in Voltammetric Biosensing. BIOSENSORS 2022; 12:bios12070494. [PMID: 35884297 PMCID: PMC9313226 DOI: 10.3390/bios12070494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
The voltammetric electrochemical sensing method combined with biosensors and multi-sensor systems can quickly, accurately, and reliably analyze the concentration of the main analyte and the overall characteristics of complex samples. Simultaneously, the high-dimensional voltammogram contains the rich electrochemical features of the detected substances. Chemometric methods are important tools for mining valuable information from voltammetric data. Chemometrics can aid voltammetric biosensor calibration and multi-element detection in complex matrix conditions. This review introduces the voltammetric analysis techniques commonly used in the research of voltammetric biosensor and electronic tongues. Then, the research on optimizing voltammetric biosensor results using classical chemometrics is summarized. At the same time, the incorporation of machine learning and deep learning has brought new opportunities to further improve the detection performance of biosensors in complex samples. Finally, smartphones connected with miniaturized voltammetric biosensors and chemometric methods provide a high-quality portable analysis platform that shows great potential in point-of-care testing.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (Y.X.); (S.L.); (S.Y.)
- Correspondence: (J.L.); (S.S.L.)
| | - Yifei Xu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (Y.X.); (S.L.); (S.Y.)
| | - Shikun Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (Y.X.); (S.L.); (S.Y.)
| | - Shixin Yu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (Y.X.); (S.L.); (S.Y.)
| | - Zhirun Yu
- College of Law, The Australian National University, Canberra 2600, Australia;
| | - Sze Shin Low
- Research Centre of Life Science and HealthCare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
- Correspondence: (J.L.); (S.S.L.)
| |
Collapse
|
8
|
Li H, Zou R, Su C, Zhang N, Wang Q, Zhang Y, Zhang T, Sun C, Yan X. Ratiometric fluorescent hydrogel for point-of-care monitoring of organophosphorus pesticide degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128660. [PMID: 35334266 DOI: 10.1016/j.jhazmat.2022.128660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The residues of organophosphorus pesticides have caused the potential risk in environment and human health, arousing worldwidely great concern. Herein, we fabricated a robust gold nanoclusters/MnO2 composites-based hydrogel portable kit for accurate monitoring of paraoxon residues and degradation in Chinese cabbages. With the immobilization of gold nanoclusters/MnO2 composites into a hydrogel, a ratiometric fluorescent signal is generated by catalyzing the oxidation of o-phenylenediamine, which possesses a built-in correction with low background interference. Coupling with acetylcholinesterase catalytic reactions and pesticide inhibition effect, the portable kit can sensitively detect paraoxon residues with a detection limit of 5.0 ng mL-1. For on-site quantification, the fluorescent color variations of portable kit are converted into digital information that exhibits applicative linear range toward pesticide. Notably, the hydrogel portable kit was successfully applied for precisely monitoring the residue and degradation of paraoxon in Chinese cabbage, providing a potential pathway toward practical point-of-care testing in food safety monitoring.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China; Chongqing Research Institute, Jilin University, PR China
| | - Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Changshun Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ningxin Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Qiutong Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yajing Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Tiehua Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
9
|
Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since the first successful transgenic plants obtained in 1983, dozens of plants have been tested. On the one hand, genetically modified plants solve the problems of agricultural production. However, due to exogenous genes of transgenic plants, such as its seeds or pollen drift, diffusion between populations will likely lead to superweeds or affect the original traits. The detection technology of transgenic plants and their products have received considerable attention. Electrochemical sensing technology is a fast, low-cost, and portable analysis technology. This review interprets the application of electrochemical technology in the analysis and detection of transgenic products through bibliometrics. A total of 83 research articles were analyzed, spanning 2001 to 2021. We described the different stages in the development history of the subject and the contributions of countries and institutions to the topic. Although there were more annual publications in some years, there was no explosive growth in any period. The lack of breakthroughs in this technology is a significant factor in the lack of experts from other fields cross-examining the subject. Through keyword co-occurrence analysis, different research directions on this topic were discussed. The use of nanomaterials with excellent electrical conductivity allows for more sensitive detection of GM crops by electrochemical sensors. Furthermore, co-citation analysis was used to interpret the most popular reports on the topic. In the end, we predict the future development of this topic according to the analysis results.
Collapse
|
10
|
Liang H, Qileng A, Shen H, Zhou Y, Liu W, Lei H, Liu Y. Handheld Platform for Sensitive Rosiglitazone Detection: Immunosensor Based on a Time-Based Readout Device. Anal Chem 2022; 94:4294-4302. [PMID: 35107977 DOI: 10.1021/acs.analchem.1c04957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of rosiglitazone (RSG) in food is of great importance since the excessive intake of RSG could cause adverse effects on the human body. Although liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry are the preliminary methods for the detection of hazardous materials in food, they are not suitable for point-of-care or on-site detection. Herein, a time-based readout (TBR) device with an application software (APP) controlled by a smart phone was developed for the sensitive and selective immunoassay of RSG. The homemade TBR device was based on a two-electrode system, where the immune molecule-modified glassy carbon electrode was used as the bioanode, and Prussian blue-modified FTO was used as the cathode. By using Au-modified octahedral Cu2O with high catalytic activity as mimetic peroxidase, an insulating layer was generated on the cathode by catalyzing 4-chloro-1-naphthol (4-CN) into benzo-4-chlorohexadienone (B4Q). The time to reach a fixed potential varied indirectly with the concentrations of RSG and was recognized by the APP, while the electrochromic property on the cathode was also correspondingly changed. Under optimum conditions, both the square root of the time and the chroma value of the electrochromism exhibited linear responses for the detection of RSG ranging from 5 × 10-10 to 5 × 10-7 g/L, while the limits of detection were 8.2 × 10-11 and 1.3 × 10-10 g/L, respectively. With easy operation and portability, this TBR device showed a promising application for point-of-care monitoring of hazardous materials in food or the environment.
Collapse
Affiliation(s)
- Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yaowei Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Farías ME, Correa NM, Sosa L, Niebylski AM, Molina PG. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein CP4-EPSPS in seeds. Talanta 2022; 237:122910. [PMID: 34736647 DOI: 10.1016/j.talanta.2021.122910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Soybean is the most produced crop in Argentina, and 99 % corresponds to genetically modified soybean. One of the main produced varieties is Roundup Ready® soybean (RR), which was modified to express the enzyme CP4 5-enolpyruvylshikimate 3-phosphate synthase (CP4 EPSPS), which confers resistance to glyphosate, the main herbicide worldwide used. The possible impact of genetically modified organisms (GMO) has generated public concerns, thus increasing interest in the development of GMOs detection devices. In this work, an electrochemical immunosensor for CP4 EPSPS detection in soybean seeds was obtained, by using a gold electrode modified with an anti-CP4 EPSPS polyclonal antibody produced in our laboratory. The presented immunosensor resulted in a simple, low-cost, fast, and reproducible device. Also, labeling and/or signal amplification system was not necessary, since the sensor showed high sensibility with a low detection limit (lower at 0,038 % RR soybean, 38 ng mL-1 CP4 EPSPS).
Collapse
Affiliation(s)
- Marcos E Farías
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Lucas Sosa
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto de Biotecnologia Ambiental y Salud (INBIAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Ana M Niebylski
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto de Biotecnologia Ambiental y Salud (INBIAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Patricia G Molina
- Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina.
| |
Collapse
|
12
|
Wang J, Yang Q, Liu H, Chen Y, Jiang W, Wang Y, Zeng H. A nanomaterial-free and thionine labeling-based lateral flow immunoassay for rapid and visual detection of the transgenic CP4-EPSPS protein. Food Chem 2022; 378:132112. [PMID: 35033711 DOI: 10.1016/j.foodchem.2022.132112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Nanomaterial-based lateral flow immunoassays (LFIAs) have been widely used for the on-site detection of genetically modified components. However, the practical applications are often limited by the complex matrix, such as in red samples. In this study, a thionine (Thi) labeling-based LFIA was developed for the first time to detect CP4-EPSPS protein. The optimal labeling concentration of Thi was 0.5 mg/mL, and the antibody could be rapidly coupled to Thi in 10 min. The visual limit of detection (vLOD) levels for transgenic soybean, sugar beet, and cotton containing the CP4-EPSPS protein reached 0.05%, 0.1%, and 0.1%, respectively, and had no interference from other proteins. After storage at 4 °C for three months, the LFIA sensitivity remained unchanged and showed good stability. This method could be used to screen and detect a variety of transgenic crops containing the CP4-EPSPS protein, and the results were consistent with the current standard assay. This study pioneered the development of an immunochromatographic method using Thi as a marker and applied it to the detection of the CP4-EPSPS protein in herbicide-tolerant transgenic crops. This provides a new method for the rapid immunoassay of Thi as a dye and has good prospects for practical application.
Collapse
Affiliation(s)
- Jinbin Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qianwen Yang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yifan Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wei Jiang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yu Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haijuan Zeng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
13
|
Ge H, Wang X, Xu J, Lin H, Zhou H, Hao T, Wu Y, Guo Z. A CRISPR/Cas12a-Mediated Dual-Mode Electrochemical Biosensor for Polymerase Chain Reaction-Free Detection of Genetically Modified Soybean. Anal Chem 2021; 93:14885-14891. [PMID: 34698496 DOI: 10.1021/acs.analchem.1c04022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-mediated dual-mode electrochemical biosensor without polymerase chain reaction (PCR) amplification was designed for sensitive and reliable detection of genetically modified soybean SHZD32-1. A functionalized composite bionanomaterial Fe3O4@AuNPs/DNA-Fc&Ru was synthesized as the signal unit, while a characteristic gene fragment of SHZD32-1 was chosen as the target DNA (tDNA). When Cas12a, crRNA, and tDNA were present simultaneously, a ternary complex Cas12a-crRNA-tDNA was formed, and the nonspecific cleavage ability of the CRISPR/Cas12a system toward single-stranded DNA was activated. Thus, the single-stranded DNA-Fc in the signal unit was cleaved, resulting in the decrease in the fast scan voltammetric (FSV) signal from ferrocene (Fc) and the increase in the electrochemiluminescence (ECL) signal from ruthenium complex (Ru) inhibited by Fc. The linear range was 1-107 fmol/L for ECL and 10-108 fmol/L for FSV, and the limit of detection (LOD) was 0.3 fmol/L for ECL and 3 fmol/L for FSV. Accuracy, precision, stability, selectivity, and reliability were all satisfied. In addition, PCR-free detection could be completed in an hour at room temperature without requiring complicated operation and sample processing, showing great potential in the field detection of genetically modified crops.
Collapse
Affiliation(s)
- Haoran Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P.R. China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
14
|
Zeng H, Yang Q, Liu H, Wu G, Jiang W, Liu X, Wang J, Tang X. A sensitive immunosensor based on graphene-PAMAM composites for rapid detection of the CP4-EPSPS protein in genetically modified crops. Food Chem 2021; 361:129901. [PMID: 34082384 DOI: 10.1016/j.foodchem.2021.129901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 01/12/2023]
Abstract
A simple electrochemical immunosensor based on nitrogen-doped graphene and polyamide-amine (GN-PAM) composites was proposed for the detection of the CP4-EPSPS protein in genetically modified (GM) crops. In this immunosensor, the amplification of the detection signal was realized through antibodies labeled with gold nanoparticles (AuNPs). The electrochemical responses of the immunosensor were linear (R2 = 0.9935 and 0.9912) when the GM soybean RRS and maize NK603 content ranged from 0.025% to 1.0% and 0.05% to 1.5%, respectively. The limits of detection for the GM soybean RRS and maize NK603 were as low as 0.01% and 0.03%, respectively. The immunosensor also exhibited high specificity, and satisfactory stability, reproducibility, and accuracy. Our findings indicated that the constructed immunosensor provides a new approach for the sensitive detection of the CP4-EPSPS protein. Notably, the sensor may be applied to other proteins or pathogenic bacteria by simply changing the antibodies, and may also be used for multi-component analysis.
Collapse
Affiliation(s)
- Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qianwen Yang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Guogan Wu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wei Jiang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| | - Xueming Tang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Chanarsa S, Jakmunee J, Ounnunkad K. A Bifunctional Nanosilver-Reduced Graphene Oxide Nanocomposite for Label-Free Electrochemical Immunosensing. Front Chem 2021; 9:631571. [PMID: 33996742 PMCID: PMC8113703 DOI: 10.3389/fchem.2021.631571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
A bi-functional material based on silver nanoparticles (AgNPs)-reduced graphene oxide (rGO) composite for both electrode modification and signal generation is successfully synthesized for use in the construction of a label-free electrochemical immunosensor. An AgNPs/rGO nanocomposite is prepared by a one-pot wet chemical process. The AgNPs/rGO composite dispersion is simply cast on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical immunosensor. It possesses a sufficient conductivity/electroreactivity and improves the electrode reactivity of SPCE. Moreover, the material can generate an analytical response due to the formation of immunocomplexes for detection of human immunoglobulin G (IgG), a model biomarker. Based on electrochemical stripping of AgNPs, the material reveals signal amplification without external redox molecules/probes. Under optimized conditions, the square wave voltammetric peak current is responded to the logarithm of IgG concentration in two wide linear ranges from 1 to 50 pg.ml-1 and 0.05 to 50 ng.ml-1, and the limit of detection (LOD) is estimated to be 0.86 pg.ml-1. The proposed immunosensor displays satisfactory sensitivity and selectivity. Importantly, detection of IgG in human serum using the immunosensor shows satisfactory accuracy, suggesting that the immunosensor possesses a huge potential for further development in clinical diagnosis.
Collapse
Affiliation(s)
- Supakeit Chanarsa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products From Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products From Northern Resources, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
17
|
Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021; 413:727-762. [PMID: 33094369 PMCID: PMC7581469 DOI: 10.1007/s00216-020-03002-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The research interest in wearable sensors has tremendously increased in recent years. Amid the different biosensors, electrochemical biosensors are unparalleled and ideal for the design and manufacture of such flexible and wearable sensors because of their various benefits, including convenient operation, quick response, portability, and inherent miniaturization. A number of studies on flexible and wearable electrochemical biosensors have been reported in recent years for invasive/non-invasive and real-time monitoring of biologically relevant molecules such as glucose, lactate, dopamine, cortisol, and antigens. To attain this, novel two-dimensional nanomaterials and their hybrids, various substrates, and detection methods have been explored to fabricate flexible conductive platforms that can be used to develop flexible electrochemical biosensors. In particular, there are many advantages associated with the advent of two-dimensional materials, such as light weight, high stretchability, high performance, and excellent biocompatibility, which offer new opportunities to improve the performance of wearable electrochemical sensors. Therefore, it is urgently required to study wearable/flexible electrochemical biosensors based on two-dimensional nanomaterials for health care monitoring and clinical analysis. In this review, we described recently reported flexible electrochemical biosensors based on two-dimensional nanomaterials. We classified them into specific groups, including enzymatic/non-enzymatic biosensors and affinity biosensors (immunosensors), recent developments in flexible electrochemical immunosensors based on polymer and plastic substrates to monitor biologically relevant molecules. This review will discuss perspectives on flexible electrochemical biosensors based on two-dimensional materials for the clinical analysis and wearable biosensing devices, as well as the limitations and prospects of the these electrochemical flexible/wearable biosensors.Graphical abstract.
Collapse
Affiliation(s)
- Minu Mathew
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Antara Vaidyanathan
- Department of Chemistry, Ramnarain Ruia Autonomous College, Matunga, Mumbai, 40085, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India.
- Homi Bhabha National Institute, Mumbai, 40094, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India.
| |
Collapse
|
18
|
Huang D, Qian J, Shi Z, Zhao J, Fang M, Xu Z. CRISPR-Cas12a-Assisted Multicolor Biosensor for Semiquantitative Point-of-Use Testing of the Nopaline Synthase Terminator in Genetically Modified Crops by Unaided Eyes. ACS Synth Biol 2020; 9:3114-3123. [PMID: 33047952 DOI: 10.1021/acssynbio.0c00365] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Existing methods of detecting foreign genes and their expression products from genetically modified organisms (GMOs) suffer from the requirement of professional equipment and skillful operators. The same problem stays for the CRISPR-Cas12a system, although it has been emerging as a powerful tool for nucleic acid detection due to its remarkable sensitivity and specificity. In this report, a portable platform for the visible detection of GMOs based on CRISPR-Cas12a was established, which relies on a color change of gold nanorods (GNRs) caused by the invertase-glucose oxidase cascade reaction and the Fenton reaction for signal readout. A nopaline synthase (NOS) terminator was employed as a model target commonly existing in foreign genes of GMOs. With the help of recombinase-aided amplification, this platform achieved comparable sensitivity of DNA targets (1 aM) with that of a fluorescence reporting assay. As low as 0.1 wt % genetically modified (GM) content in Bt-11 maize was visually observed by unaided eyes, and the semiquantitation of GM ingredients can be obtained within the range of 0.1 to 40 wt % through the absorption measurement of GNRs. Furthermore, five real samples were tested by our method, and the results indicated that the GM ingredient percentages of GMO samples were 2.24 and 24.08 wt %, respectively, while the other three samples were GMO-free. With the advantages of a simple procedure, no need for large or professional instruments, high sensitivity, and selectivity, this platform is expected to provide reasonable technical support for the safe supervision of GMOs.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajie Qian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuwei Shi
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiarun Zhao
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Kalyani T, Nanda A, Jana SK. Detection of a novel glycodelin biomarker using electrochemical immunosensor for endometriosis. Anal Chim Acta 2020; 1146:146-154. [PMID: 33461710 DOI: 10.1016/j.aca.2020.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/04/2023]
Abstract
Endometriosis is one of the important issues in women worldwide, which decreases the quality of women's lives in their reproductive age. The diagnosis of endometriosis is carried out by the invasive procedure, which is expensive and painful. In the last few decades, researchers have given more attention to constructing a suitable biomarker-based biosensor for semi/non-invasive diagnosis of endometriosis. As a result, glycodelin (GLY) was found as a promising biomarker because of its selectivity and sensitivity. To the best of our knowledge, it was the first study that reported the detection of GLY biomarker using an electrochemical immunosensor. Briefly, a label-free electrochemical immunosensing platform was constructed through in-situ surface modification of cysteamine layer and immobilisation of antibody (anti-GLY) with help of glutaraldehyde. The interaction between antigen and antibody was measured using square wave voltammetry (SWV). The SWV signal could decrease proportionally with the increasing GLY concentration ranging from 1 to 1000 ng mL-1 (R2 = 0.9981) and a detection limit (LOD) of 0.43 ng mL-1. Moreover, an immunosensor could exhibit high sensitivity, selectivity, long-term stability, reproducibility and regeneration. Accuracy of the immunosensor was compared with enzyme-linked immunosorbent assay (ELISA), and satisfying results were obtained. The detection of GLY biomarker may be a new possibility for endometriosis diagnosis.
Collapse
Affiliation(s)
- Thangapandi Kalyani
- Department of Biotechnology, National Institute of Technology, Papum Pare, 791112, Arunachal Pradesh, India
| | - Amalesh Nanda
- Department of Biotechnology, National Institute of Technology, Papum Pare, 791112, Arunachal Pradesh, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Papum Pare, 791112, Arunachal Pradesh, India.
| |
Collapse
|
20
|
Cao L, Xiao H, Fang C, Zhao F, Chen Z. Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@PtNPs as probe for CEA detection. Mikrochim Acta 2020; 187:584. [PMID: 32990786 DOI: 10.1007/s00604-020-04559-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
Using gold and magnetic nanoparticles co-decorated reduced graphene oxide-tetraethylenepentamine (rGO-TEPA/Au-MNPs) as the magnetic platform for capturing the primary antibody (Ab1), separation and preconcentration of immunocomplex, a novel homogeneous electrochemical immunosensor was successfully developed. The newly prepared magnetic rGO-TEPA/Au-MNPs, compared with MNPs, exhibited better stability and enhanced electrical conductivity attributed to rGO-TEPA, and showed higher biorecognition efficiency due to AuNPs. In addition, Au@PtNPs were prepared and modified with secondary antibody (Ab2) as an efficient signal probe for signal readout. Using carcinoembryonic antigen (CEA) as a model analyte, the prepared immunosensor demonstrated satisfactory properties like high stability, good repeatability and selectivity, wide linear range (5.0 pg mL-1~200.0 ng mL-1) as well as low detection limit (1.42 pg mL-1). The homogenous electrochemical immunosensor was applied to the detection of CEA in human serum and was found to exhibit good correlation with the reference method. Thus, the proposed rGO-TEPA/Au-MNPs-based homogenous immunoassay platform might open up a new way for biomarker diagnosis. Graphical Abstract.
Collapse
Affiliation(s)
- Liangli Cao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.,School of Information and Communication, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Haolin Xiao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.,School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Cheng Fang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Feijun Zhao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.,School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China. .,School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
21
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
22
|
Tandon S, George SM, McIntyre R, Kandasubramanian B. Polymeric immunosensors for tumor detection. Biomed Phys Eng Express 2020; 6:032001. [PMID: 33438645 DOI: 10.1088/2057-1976/ab8a75] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a broad-spectrum disease which is spread globally, having high mortality rates. This results from genetic, epigenetic and molecular abnormalities caused by various mutations. The main reason behind this critical problem lies in its diagnostics, the late detection of the disease is the root cause of all this. This can be managed well by the timely diagnosis of cancer by means of the tumor biomarkers present in the body fluids such as serum, blood, and urine. These tumor biomarkers are present in normal conditions as well, but their concentrations are altered in the presence of a malignant tumor. Prolonged studies have reported that immunosensors can be used to detect the minimal amount of biomarkers present in the sample and also provides point-of-care detection. The recent investigations demonstrated the use of polymers along with immunosensors for enhancing their selectivity and sensitivity towards the biomarkers and making them even more efficient. This review focuses on the variety of tumor biomarkers, different types of immunosensors and polymeric immunosensors using different polymers like polypyrrole, polyaniline, PHEMA, etc.
Collapse
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | | | | | | |
Collapse
|
23
|
A portable pencil-like immunosensor for point-of-care testing of inflammatory biomarkers. Anal Bioanal Chem 2020; 412:3231-3239. [PMID: 32172327 DOI: 10.1007/s00216-020-02582-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Portable devices for immunoassays are in high demand for point-of-care testing (POCT) of biomarkers. Here, we report a robust portable pencil-like immunosensor (PPS) platform for the determination of three inflammatory biomarkers including interleukin-6 (IL-6), procalcitonin (PCT), and C-reactive protein (CRP) in human serum samples. The PPS platform is composed of a unique pencil-like optical-fiber-based sensor, a reagent strip consisting of a series of pencil-cap-like wells, and a battery-powered photon counting detector for recording chemiluminescence. The PPS probe moves from well to well with a plug-into/out approach and goes through the immunoassay steps. Each fiber probe in the PPS platform can be sequentially used in up to 10 assays by simply propelling the intact probe out of the pencil body. The PPS platform is well-integrated into a portable suitcase-like device (32 cm × 23 cm × 11 cm) and is only 3 kg in weight. The sensor has good repeatability and can maintain 90% response after 14 days of storage at room temperature, showing its ability for assays in the field. The good linear relationship and efficient dynamic range with a limit-of-detection (LOD) of 1.05 pg/mL for IL-6, 10.64 pg/mL for PCT, and 29.40 ng/mL for CRP are obtained. The assay results are compared with clinical methods, and the findings confirm the high accuracy and precision of the proposed method. The proposed PPS platform is versatile and operable with minimal instruments and technical skills and simplifies the process of immune analysis, thus has great prospects for POCT of biomarkers. Graphical abstract.
Collapse
|
24
|
Gao H, Wen L, Hua W, Tian J, Lin Y. Highly sensitive immunosensing platform for one-step detection of genetically modified crops. Sci Rep 2019; 9:16117. [PMID: 31695115 PMCID: PMC6834675 DOI: 10.1038/s41598-019-52651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
The wide cultivation of genetically modified (GM) insect-resistant crops has raised concerns on the risks to the eco-environment resulting from a release of Cry proteins. Therefore, it is vital to develop a method for the quantification of GM crops. Herein, A highly sensitive immunosensing platform has been developed for both colorimetric and chemiluminescent (CL) detection of Cry 1Ab using dual-functionalized gold nanoparticles (AuNPs) as signal amplification nanoprobes for the first time. In this work, anti-Cry 1Ab monoclonal antibody and horseradish peroxidase (HRP) are simultaneously functionalized on the surface of AuNPs with an exceptionally simple synthesis method. Combined with immunomagnetic separation, this immunosensing platform based on colorimetric method could detect Cry 1Ab in one step in a linear range from 1.0 to 40 ng mL−1 within 1.5 h, with a limit of detection of 0.50 ng mL−1. The sensitivity of fabricated nanoprobes was 15.3 times higher than that using commercial HRP-conjugated antibody. Meanwhile, the fabricated nanoprobes coupled with CL detection was successfully applied for Cry 1Ab detection with a minimum detection concentration of 0.050 ng mL−1 within a linear range of 0.10–20 ng mL−1. The proposed approach was validated with genuine GM crops, and the results showed a good correlation coefficient of 0.9906 compared to those of a commercial ELISA kit. Compared with ELISA, the developed immunosensing platform significantly simplified the assay procedure and shortened the analytical time, thus providing a new platform for the detection of genetically modified crops with high sensitivity, rapidity and simplicity.
Collapse
Affiliation(s)
- Hongfei Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Luke Wen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Hua
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jing Tian
- MOE Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongjun Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|