1
|
Pan Y, Wang W, Shui Y, Murphy JF, Huang YYS. Fabrication, sustainability, and key performance indicators of bioelectronics via fiber building blocks. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101930. [PMID: 39220756 PMCID: PMC11364162 DOI: 10.1016/j.xcrp.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioelectronics provide efficient information exchange between living systems and man-made devices, acting as a vital bridge in merging the domains of biology and technology. Using functional fibers as building blocks, bioelectronics could be hierarchically assembled with vast design possibilities across different scales, enhancing their application-specific biointegration, ergonomics, and sustainability. In this work, the authors review recent developments in bioelectronic fiber elements by reflecting on their fabrication approaches and key performance indicators, including the life cycle sustainability, environmental electromechanical performance, and functional adaptabilities. By delving into the challenges associated with physical deployment and exploring innovative design strategies for adaptability, we propose avenues for future development of bioelectronics via fiber building blocks, boosting the potential of "Fiber of Things" for market-ready bioelectronic products with minimized environmental impact.
Collapse
Affiliation(s)
- Yifei Pan
- Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, UK
- The Nanoscience Centre, University of Cambridge, CB3 0FF Cambridge, UK
| | - Wenyu Wang
- Smart Manufacturing Thrust, Hong Kong University of Science and Technology, Guangzhou, China
| | - Yuan Shui
- Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, UK
- The Nanoscience Centre, University of Cambridge, CB3 0FF Cambridge, UK
| | - Jack F. Murphy
- Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, UK
- The Nanoscience Centre, University of Cambridge, CB3 0FF Cambridge, UK
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, UK
- The Nanoscience Centre, University of Cambridge, CB3 0FF Cambridge, UK
| |
Collapse
|
2
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
3
|
Novakovic Z, Khalife M, Costache V, Camacho MJ, Cardoso S, Martins V, Gadjanski I, Radovic M, Vidic J. Rapid Detection and Identification of Vancomycin-Sensitive Bacteria Using an Electrochemical Apta-Sensor. ACS OMEGA 2024; 9:2841-2849. [PMID: 38250355 PMCID: PMC10795129 DOI: 10.1021/acsomega.3c08219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
In order to combat the complex and diverse infections caused by bacteria, it is essential to develop efficient diagnostic tools. Current techniques for bacterial detection rely on laborious multistep procedures, with high costs and extended time of analysis. To overcome these limitations, we propose here a novel portable electrochemical biosensor for the rapid detection and identification of Gram-positive bacteria that leverages the recognition capabilities of vancomycin and aptamers. A vancomycin-modified screen-printed carbon electrode was used to selectively capture Gram-positive bacteria susceptible to this antibiotic. Electrochemical impedance spectroscopy and scanning electron microscopy demonstrated that capture was achieved in 10 min, with a limit of detection of only 2 CFU/mL. We then tested the device's potential for aptamer-based bacterial identification using Staphylococcus aureus and Bacillus cereus as the test strains. Specifically, electrodes with captured bacteria were exposed to species-specific aptamers, and the resulting changes in current intensity were analyzed using differential pulse voltammetry. When used directly in untreated milk or serum, the system was able to successfully identify a small amount of S. aureus and B. cereus (100 CFU/mL) in less than 45 min. This novel biosensor has the potential to serve as an invaluable tool that could be used, even by inexperienced staff, in a broad range of settings including clinical diagnostics, food safety analysis, environmental monitoring, and security applications.
Collapse
Affiliation(s)
- Zorica Novakovic
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350 Jouy-en-Josas, France
| | - Maria Joao Camacho
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Veronica Martins
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Ivana Gadjanski
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Marko Radovic
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
| |
Collapse
|
4
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|
5
|
Lisboa TP, Couto da Silva G, Oliveira RS, Veríssimo de Oliveira WB, Cunha de Souza C, Costa Matos MA, Matos RC. Electrochemical monitoring of levofloxacin using a silver nanoparticle-modified disposable device based on a lab-made conductive ink. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2262-2269. [PMID: 37129413 DOI: 10.1039/d3ay00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The emergence of bacteria genetically resistant to first- and second-generation fluoroquinolones has resulted in increased consumption of levofloxacin (LEV) in human and veterinary medicine. In this regard, the development of low cost and good sensitivity electrochemical devices has been highly required. Thus, in this work, we propose the development of a disposable electrochemical device (DED) using a lab-made conductive ink based on graphite powder and nail polish immobilized on a rigid polyvinyl chloride support (transparent sheet). Additionally, a simple and quick protocol for the electrodeposition of silver nanoparticles was used in order to improve the electroanalytical performance of the sensor (2.75-fold). A differential pulse voltammetry (DPV) method was optimized and the sensor was applied for LEV monitoring in pharmaceutical formulation samples, synthetic urine and simulated body fluid. The method showed a wide linear working range ranging from 0.5 to 50 μmol L-1 and a detection limit of 68.3 nmol L-1. Furthermore, the precision was adequate (RSD < 4.7%), while the accuracy was evaluated through spiked samples with percent recovery ranging from 93 to 103%. The sensor was also shown to be selective for LEV against other electroactive antibiotic species, thus demonstrating suitable characteristics for electroanalytical applications.
Collapse
Affiliation(s)
- Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | - Gabriela Couto da Silva
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | - Raylla Santos Oliveira
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | | | - Cassiano Cunha de Souza
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| |
Collapse
|
6
|
Sadiq N, Shafique M, Akbar M, Shakoor M, Mujahid A, Hussain T, Mustafa G. An Ion‐imprinted Polymer‐Receptor‐Based Electrochemical Sensor for the Sensitive and Selective Detection of Cadmium. ChemistrySelect 2023. [DOI: 10.1002/slct.202204824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Nauman Sadiq
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | | | - Muafia Akbar
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | - Memoona Shakoor
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | - Adnan Mujahid
- School of Chemistry University of the Punjab Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Tajamal Hussain
- School of Chemistry University of the Punjab Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Ghulam Mustafa
- Department of Chemistry University of Okara Okara 56300 Pakistan
| |
Collapse
|
7
|
Liu C, Wen M, Mai S, Ma Y, Duan Q, Bao X, Zou W, Liu H. Harnessing nitrogen-doped graphene quantum dots for enhancing the fluorescence and conductivity of the starch-based film. Carbohydr Polym 2023; 303:120475. [PMID: 36657854 DOI: 10.1016/j.carbpol.2022.120475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The flexible film is widely applied in the modern electronic industry, whilst it is still challenging to use biopolymer substrates (e.g., starch) to prepare flexible film well-performed in conductivity and fluorescence. In the study, a novel conductive, fluorescent, and flexible biopolymer film was prepared via a cost-effective method by fabricating the nitrogen-doped oxide-reduced graphene quantum dots (N-rGO-QDs) into the thermoplastic starch (TPS) substrate. TPS/N-rGO-QDs film with 10 wt% N-rGO-QDs showed the desirable lowest resistivity (0.082 Ω·m), acceptable light transmittance (60-80 %), and durable fluorescence intensity (9000 CPS). The results reveal a novel starch-based multifunctional film with satisfactory electrical and fluorescent performances, which is hypothesized potential to be applied in some frontier domains, like human wearable devices.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mengying Wen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shihua Mai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xianyang Bao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Wei Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Jiashili Group Limited, Jiangmen 529300, China.
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China.
| |
Collapse
|
8
|
Wanjari VP, Reddy AS, Duttagupta SP, Singh SP. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42643-42657. [PMID: 35622288 DOI: 10.1007/s11356-022-21035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are miniaturized devices that provide the advantage of in situ and point-of-care monitoring of analytes of interest. Electrochemical biosensors use the mechanism of oxidation-reduction reactions and measurement of corresponding electron transfer as changes in current, voltage, or other parameters using different electrochemical techniques. The use of electrochemically active materials is critical for the effective functioning of electrochemical biosensors. Laser-induced graphene (LIG) has garnered increasing interest in biosensor development and improvement due to its high electrical conductivity, specific surface area, and simple and scalable fabrication process. The effort of this perspective is to understand the existing classes of analytes and the mechanisms of their detection using LIG-based biosensors. The manuscript has highlighted the potential use of LIG, its modifications, and its use with various receptors for sensing various environmental pollutants. Although the conventional graphene-based sensors effectively detect trace levels for many analytes in different applications, the chemical and energy-intensive fabrication and time-consuming processes make it imperative to explore a low-cost and scalable option such as LIG for biosensors production. The focus of these potential biosensors has been kept on detection analytes of environmental significance such as heavy metals ions, organic and inorganic compounds, fertilizers, pesticides, pathogens, and antibiotics. The use of LIG directly as an electrode, its modifications with nanomaterials and polymers, and its combination with bioreceptors such as aptamers and polymers has been summarized. The strengths, weaknesses, opportunities, and threats analysis has also been done to understand the viability of incorporating LIG-based electrochemical biosensors for environmental applications.
Collapse
Affiliation(s)
- Vikram P Wanjari
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
| | - A Sudharshan Reddy
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India.
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India.
- Interdisciplinary Program in Climate Studies, IIT Bombay, Mumbai, India.
| |
Collapse
|
9
|
Liu X, Sun J, Tong Y, Zhang M, Wang X, Guo S, Han X, Zhao X, Tang Q, Liu Y. Calligraphy and Kirigami/Origami-Inspired All-Paper Touch-Temperature Sensor with Stimulus Discriminability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1726-1735. [PMID: 36580610 DOI: 10.1021/acsami.2c19330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The use of cost-effective renewable raw materials to develop electronic devices has been strongly demanded for sustainable and biodegradable green electronics. Here, by taking inspiration from the traditional calligraphy and kirigami/origami arts, we show a novel cuttable and foldable all-paper touch-temperature sensors fabricated by simply brushing the carbon black ink onto the cellulose paper followed by a layer-layer lamination strategy. The use of environmentally friendly common commodities in daily life including carbon black ink and cellulose paper as the main component materials of sensors effectively lowers the cost and has positive impacts on the environment and health. The sensors can be freely cut or folded into the targeted shapes and can even reversibly morph between 2D and 3D configurations without affecting device function. Additionally, the sensors show a discrimination capability toward pressure and temperature. Our fabrication strategy provides a promising approach for creating the low-cost eco-friendly sensors with a versatile pattern design and a morphing shape without sacrificing the global structural integrity and device functionality.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xue Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shanlei Guo
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xu Han
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
10
|
Bollella P. Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 2022; 1234:340517. [DOI: 10.1016/j.aca.2022.340517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|
11
|
Lisboa TP, de Cássia Moreira B, Cunha de Souza C, Veríssimo de Oliveira WB, Costa Matos MA, Matos RC. A pencil graphite-based disposable device for electrochemical monitoring of sulfanilamide in honey and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3867-3874. [PMID: 36129347 DOI: 10.1039/d2ay01137a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present paper reports a simple, fast, and inexpensive process of manufacturing a disposable pencil graphite electrode (PGE) from widely available materials, which showed a reproducibility of at least 7.5%. The electrode was compared to the commercial glassy carbon electrode (GCE) and showed superior electroanalytical performance for sulfanilamide (SFA) with approximately 3.9-fold higher current density. Additionally, a displacement of the oxidation peak from approximately 80 mV to more cathodic regions was observed. Therefore, a method based on square wave voltammetry (SWV) was developed for the determination of the antimicrobial SFA in honey and tap water samples using the proposed sensor. The optimized method presented good detectability (LOD = 2.37 μmol L-1), with excellent precision and accuracy (relative standard deviation < 4.2%) and percent recovery from spiked samples ranging from 92 to 97%. In addition, the sensor did not suffer significant interference from sample matrix components and other commonly evaluated antimicrobials, which demonstrates the potential of these electrodes for implementation in routine analysis and quality control.
Collapse
Affiliation(s)
- Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora-MG, Brazil.
| | - Bianca de Cássia Moreira
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora-MG, Brazil.
| | - Cassiano Cunha de Souza
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora-MG, Brazil.
| | | | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora-MG, Brazil.
| |
Collapse
|
12
|
Meng L, Chirtes S, Liu X, Eriksson M, Mak WC. A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Biosens Bioelectron 2022; 218:114742. [DOI: 10.1016/j.bios.2022.114742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
|
13
|
Buffon E, Stradiotto NR. Using a disposable platform based on reduced graphene oxide, iron nanoparticles and molecularly imprinted polymer for voltammetric determination of vanillic acid in fruit peels. Food Chem 2022; 397:133786. [PMID: 35908470 DOI: 10.1016/j.foodchem.2022.133786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/21/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
This work reports the development and application of a disposable electrochemical platform for vanillic acid (VA) detection using screen-printed electrode modified with reduced graphene oxide, iron nanoparticles and molecularly imprinted poly(pyrrole) film. The electrochemical platform was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Using optimized conditions, the proposed disposable platform presented linear concentration ranges of 1.0 × 10-9 to 1.5 × 10-7 mol/L. The limits of detection and quantification obtained for the device were 3.1 × 10-10 and 1.0 × 10-9 mol/L, respectively. The electrochemical platform was found to be selective for VA recognition and presented voltammetric responses with good repeatability and stability. The analytical methodology developed was applied for VA determination in banana and orange peels. The results obtained showed that the proposed electrochemical platform has a good accuracy when applied for the determination of VA.
Collapse
Affiliation(s)
- Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil.
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
14
|
Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications. Nat Commun 2022; 13:3727. [PMID: 35764646 PMCID: PMC9240022 DOI: 10.1038/s41467-022-31338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
Electronic waste is a global issue brought about by the short lifespan of electronics. Viable methods to relieve the inundated disposal system by repurposing the enormous amount of electronic waste remain elusive. Inspired by the need for sustainable solutions, this study resulted in a multifaceted approach to upcycling compact discs. The once-ubiquitous plates can be transformed into stretchable and flexible biosensors. Our experiments and advanced prototypes show that effective, innovative biosensors can be developed at a low-cost. An affordable craft-based mechanical cutter allows pre-determined patterns to be scored on the recycled metal, an essential first step for producing stretchable, wearable electronics. The active metal harvested from the compact discs was inert, cytocompatible, and capable of vital biopotential measurements. Additional studies examined the material’s resistive emittance, temperature sensing, real-time metabolite monitoring performance, and moisture-triggered transience. This sustainable approach for upcycling electronic waste provides an advantageous research-based waste stream that does not require cutting-edge microfabrication facilities, expensive materials, and high-caliber engineering skills. Electronic waste is a global issue brought about by the short lifespan of electronics. Here, the authors report a process to upcycle compact discs into flexible and stretchable bio-electronics.
Collapse
|
15
|
Winiarski JP, Tavares BF, de Fátima Ulbrich K, de Campos CEM, Souza AA, Souza SMGU, Jost CL. Development of a multianalyte electrochemical sensor for depression biomarkers based on a waste of the steel industry for a sustainable and one-step electrode modification. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Liu Y, Li H, Feng Q, Su H, Li D, Shang Y, Chen H, Li B, Dong H. A Three-Dimensional-Printed Recyclable, Flexible, and Wearable Device for Visualized UV, Temperature, and Sweat pH Sensing. ACS OMEGA 2022; 7:9834-9845. [PMID: 35350374 PMCID: PMC8945124 DOI: 10.1021/acsomega.2c00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 05/08/2023]
Abstract
Wearable devices are now recognized as a powerful tool to collect physiological and environmental information in a smart, noninvasive, and real-time manner. Despite the rapid progress of wearable devices especially wearable electronic devices, there are still several challenges that limit their further development, for example, a complicated electrical signal acquisition and processing process to eliminate the interference from the surrounding signals, bulky power supply, inevitable e-waste, and environmental pollution. Herein, we report a 3D-printed recyclable, flexible, and wearable device for visualized UV, temperature, and sweat pH sensing. Compared with wearable electronic devices, our visualized wearable device senses environmental (UV light, ambient temperature), biophysical (skin temperature), and biochemical (sweat pH) signals via stimuli-responsive color change, which does not require complicated electronic circuit design/assembly, time-consuming data processing and additional power source. In addition, this visualized wearable device is fabricated via a 3D support bath printing technology by printing UV-, temperature-, and sweat pH-sensing inks containing photochromic, thermochromic, and pH-chromic materials, respectively, into/onto sustainable starch solution, resulting in a multi-functional, recyclable, and flexible sensing device with high reproducibility. Our results reveal that UV light intensities under sunlight (0-2500 μW/cm2), ambient, and skin temperatures (0-38 °C) as well as sweat pH (4.0-7.0) can be successfully monitored.
Collapse
Affiliation(s)
- Yang Liu
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Haofei Li
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, South China University of
Technology, Guangzhou 510006, China
| | - Qi Feng
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong
Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongxian Su
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Dingguo Li
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Yulian Shang
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, South China University of
Technology, Guangzhou 510006, China
| | - Hongjie Chen
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Bingrui Li
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, South China University of
Technology, Guangzhou 510006, China
| | - Hua Dong
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
- Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, South China University of
Technology, Guangzhou 510006, China
- Guangdong
Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
17
|
Dey N, Samuel GV, Raj DS, Gajalakshmi B. Nanomaterials as potential high performing electrode materials for microbial fuel cells. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Moço AC, Neto JA, de Moraes DD, Guedes PH, Brussasco JG, Flauzino JM, Luz LF, Soares MM, Madurro JM, Brito-Madurro AG. Carbon ink-based electrodes modified with nanocomposite as a platform for electrochemical detection of HIV RNA. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
20
|
A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
de Lima LF, Ferreira AL, Maciel CC, Ferreira M, de Araujo WR. Disposable and low-cost electrochemical sensor based on the colorless nail polish and graphite composite material for tartrazine detection. Talanta 2021; 227:122200. [PMID: 33714472 DOI: 10.1016/j.talanta.2021.122200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
A new method to manufacture electrochemical devices based on the graphite and colorless nail polish (N-grap) film was developed for tartrazine (Tz) detection. Scanning Electron Microscopy (SEM) demonstrates that the composite material presents a high porous carbon structure. Cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) were employed to electrochemically characterize the electrode material, which corroborates the porous structure of the N-graph due to the enhanced electroactive area (5.4-fold increase) and presented a heterogeneous electron transfer rate constant (k0) of 5.82 × 10-3 cm s-1 for potassium ferricyanide. The electrochemical determination of the Tz was carried out using square-wave voltammetry (SWV), under the optimized experimental conditions, which showed high sensitivity (0.793 A L mol-1) and a lower limit of detection (LOD) of 2.10 × 10-8 mol L-1 with a linear concentration ranging from 2.0 to 50.0 μmol L-1. The developed sensor was applied for the analysis of Tz in sports drink samples and the result obtained by N-grap device was statistically compared with a spectrophotometric method demonstrating good accordance and the accuracy of the proposed method. Based on these results, we believe that this new fabrication method to produce disposable and low-cost electrochemical devices can be an alternative method for in-field analysis of dye in commercial sport drink samples and other relevant applications.
Collapse
Affiliation(s)
- Lucas F de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - André L Ferreira
- Center of Science and Technology for Sustainability (CCTS), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Cristiane C Maciel
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180, Sorocaba, Brazil
| | - Marystela Ferreira
- Center of Science and Technology for Sustainability (CCTS), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| | - William R de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
22
|
Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, Janegitz BC. Development of conductive inks for electrochemical sensors and biosensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Lee S, Cho EJ, Kwak HB. Personalized Healthcare for Dementia. Healthcare (Basel) 2021; 9:healthcare9020128. [PMID: 33525656 PMCID: PMC7910906 DOI: 10.3390/healthcare9020128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Dementia is one of the most common health problems affecting older adults, and the population with dementia is growing. Dementia refers to a comprehensive syndrome rather than a specific disease and is characterized by the loss of cognitive abilities. Many factors are related to dementia, such as aging, genetic profile, systemic vascular disease, unhealthy diet, and physical inactivity. As the causes and types of dementia are diverse, personalized healthcare is required. In this review, we first summarize various diagnostic approaches associated with dementia. Particularly, clinical diagnosis methods, biomarkers, neuroimaging, and digital biomarkers based on advances in data science and wearable devices are comprehensively reviewed. We then discuss three effective approaches to treating dementia, including engineering design, exercise, and diet. In the engineering design section, recent advances in monitoring and drug delivery systems for dementia are introduced. Additionally, we describe the effects of exercise on the treatment of dementia, especially focusing on the effects of aerobic and resistance training on cognitive function, and the effects of diets such as the Mediterranean diet and ketogenic diet on dementia.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
- Department of Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Eun-Jeong Cho
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
- Correspondence: ; Tel.: +82-32-860-8183
| |
Collapse
|
24
|
Recycling Chocolate Aluminum Wrapping Foil as to Create Electrochemical Metal Strip Electrodes. MOLECULES (BASEL, SWITZERLAND) 2020; 26:molecules26010021. [PMID: 33374496 PMCID: PMC7793067 DOI: 10.3390/molecules26010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications.
Collapse
|
25
|
Stortini AM, Baldo MA, Moro G, Polo F, Moretto LM. Bio- and Biomimetic Receptors for Electrochemical Sensing of Heavy Metal Ions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6800. [PMID: 33260737 PMCID: PMC7731017 DOI: 10.3390/s20236800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Heavy metals ions (HMI), if not properly handled, used and disposed, are a hazard for the ecosystem and pose serious risks for human health. They are counted among the most common environmental pollutants, mainly originating from anthropogenic sources, such as agricultural, industrial and/or domestic effluents, atmospheric emissions, etc. To face this issue, it is necessary not only to determine the origin, distribution and the concentration of HMI but also to rapidly (possibly in real-time) monitor their concentration levels in situ. Therefore, portable, low-cost and high performing analytical tools are urgently needed. Even though in the last decades many analytical tools and methodologies have been designed to this aim, there are still several open challenges. Compared with the traditional analytical techniques, such as atomic absorption/emission spectroscopy, inductively coupled plasma mass spectrometry and/or high-performance liquid chromatography coupled with electrochemical or UV-VIS detectors, bio- and biomimetic electrochemical sensors provide high sensitivity, selectivity and rapid responses within portable and user-friendly devices. In this review, the advances in HMI sensing in the last five years (2016-2020) are addressed. Key examples of bio and biomimetic electrochemical, impedimetric and electrochemiluminescence-based sensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, Zn2+ and Tl+ are described and discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ligia Maria Moretto
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (A.M.S.); (M.A.B.); (G.M.); (F.P.)
| |
Collapse
|
26
|
Torre R, Costa-Rama E, Nouws HPA, Delerue-Matos C. Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. BIOSENSORS 2020; 10:E139. [PMID: 33008005 PMCID: PMC7600659 DOI: 10.3390/bios10100139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Food spoilage is caused by the development of microorganisms, biogenic amines, and other harmful substances, which, when consumed, can lead to different health problems. Foodborne diseases can be avoided by assessing the safety and freshness of food along the production and supply chains. The routine methods for food analysis usually involve long analysis times and complex instrumentation and are performed in centralized laboratories. In this context, sensors based on screen-printed electrodes (SPEs) have gained increasing importance because of their advantageous characteristics, such as ease of use and portability, which allow fast analysis in point-of-need scenarios. This review provides a comprehensive overview of SPE-based sensors for the evaluation of food safety and freshness, focusing on the determination of bacteria and biogenic amines. After discussing the characteristics of SPEs as transducers, the main bacteria, and biogenic amines responsible for important and common foodborne diseases are described. Then, SPE-based sensors for the analysis of these bacteria and biogenic amines in food samples are discussed, comparing several parameters, such as limit of detection, analysis time, and sample type.
Collapse
Affiliation(s)
- Ricarda Torre
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| |
Collapse
|
27
|
Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a paper-based electrochemical immunosensor made with sustainable materials to detect aflatoxin B1 (AFB1), a highly toxic, carcinogenic mycotoxin found in food. The immunosensor was prepared with a waterproof paper substrate and low-cost graphite-based conductive ink through a simple cut-printing method. The working electrode was functionalized with a drop-cast film of multiwalled carbon nanotubes (MWCNT)/chitosan on which a layer of anti-AFB1 monoclonal antibodies was immobilized covalently. The architecture of the immunosensor was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and electrochemical impedance spectroscopy (EIS), including the effective immobilization of the active layer of anti-AFB1. With EIS as the principle of detection, the immunosensor could detect AFB1 in the range from 1 to 30 ng·mL−1, and detection limit of 0.62 ng·mL−1. This sensitivity is sufficient to detect AFB1 in food according to regulatory agencies. The immunosensor exhibited good repeatability, reproducibility, stability, and selectivity in experiments with a possible interferent. Furthermore, detection of AFB1 in maize flour samples yielded recovery of 97–99%, in a demonstration of the possible use of the paper-based immunosensor to detect AFB1 using extraction solutions from food samples.
Collapse
|
28
|
Martínez-Periñán E, Gutiérrez-Sánchez C, García-Mendiola T, Lorenzo E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. BIOSENSORS-BASEL 2020; 10:bios10090118. [PMID: 32916838 PMCID: PMC7559215 DOI: 10.3390/bios10090118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-4488
| |
Collapse
|
29
|
Meira FHA, Resende SF, Monteiro DS, Pereira MC, Mattoso LHC, Faria RC, Afonso AS. A Non‐enzymatic Ag/δ‐FeOOH Sensor for Hydrogen Peroxide Determination using Disposable Carbon‐based Electrochemical Cells. ELECTROANAL 2020. [DOI: 10.1002/elan.202060171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Flávio H. A. Meira
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Sayton F. Resende
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Douglas S. Monteiro
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Márcio C. Pereira
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Luiz H. C. Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentação, São Carlos 13560-970 São Paulo Brazil
| | - Ronaldo C. Faria
- Chemistry Department Federal University of São Carlos, CP 676, São Carlos 13565-905 São Paulo Brazil
| | - André S. Afonso
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| |
Collapse
|
30
|
Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Stone Paper as a New Substrate to Fabricate Flexible Screen-Printed Electrodes for the Electrochemical Detection of Dopamine. SENSORS 2020; 20:s20123609. [PMID: 32604924 PMCID: PMC7349771 DOI: 10.3390/s20123609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Flexible screen-printed electrodes (HP) were fabricated on stone paper substrate and amperometrically modified with gold nanoparticles (HP-AuNPs). The modified electrode displayed improved electronic transport properties, reflected in a low charge-transfer resistance (1220 Ω) and high apparent heterogeneous electron transfer rate constant (1.94 × 10−3 cm/s). The voltammetric detection of dopamine (DA) was tested with HP and HP-AuNPs electrodes in standard laboratory solutions (pH 6 phosphate-buffered saline (PBS)) containing various concentrations of analyte (10−7–10−3 M). As expected, the modified electrode exhibits superior performances in terms of linear range (10−7–10−3 M) and limit of detection (3 × 10−8 M), in comparison with bare HP. The determination of DA was tested with HP-AuNPs in spiked artificial urine and in pharmaceutical drug solution (ZENTIVA) that contained dopamine hydrochloride (5 mg/mL). The results obtained indicated a very good DA determination in artificial urine without significant matrix effects. In the case of the pharmaceutical drug solution, the DA determination was affected by the interfering species present in the vial, such as sodium metabisulfite, maleic acid, sodium chloride, and propylene glycol.
Collapse
|
32
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
33
|
Cancelliere R, Carbone K, Pagano M, Cacciotti I, Micheli L. Biochar from Brewers' Spent Grain: A Green and Low-Cost Smart Material to Modify Screen-Printed Electrodes. BIOSENSORS-BASEL 2019; 9:bios9040139. [PMID: 31816955 PMCID: PMC6956167 DOI: 10.3390/bios9040139] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022]
Abstract
In the present study, biochar from brewers’ spent grain was used, for the first time, to develop screen-printed electrodes. After having investigated the dispersion behaviour of biochar in different organic solvents, a biochar-based screen-printed electrode was prepared with the drop-casting technique. In order to understand the electrochemical potentiality and performances of the biochar/sensor tool, different electroactive species, i.e., ferricyanide, benzoquinone, epinephrine, ascorbic, and uric acids, were used. The results were compared with those of the same electrodes that were modified with commercial graphene, confirming that the proposed electrode showed improved electrochemical behaviour in terms of resolution, peak-to-peak separation, current intensity, and resistance to charge transfer. Furthermore, a tyrosinase biosensor was developed by direct immobilisation of this enzyme on the biochar/screen printed electrode, as an example of the potential of biochar for disposable biosensor development. The efficiently occurred immobilisation of the biochar on the screen printed electrode’s (SPE’s) surface was demonstrated by the observation of the working electrode with a scanning electron microscope. The detection was performed by measuring the current due to the reduction of the corresponding quinone at low potential, equal to −0.310 V for epinephrine. The experimental conditions for the tyrosinase immobilization and the analytical parameters, such as applied potential and pH of buffer, were studied and optimized. Under these conditions, the electrochemical biosensors were characterized. A linear working range of epinephrine was obtained from 0.05 up to 0.5 mM. The detection limit was 2 × 10−4 mM for the biosensor.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Katya Carbone
- CREA, Research Centre for Olive, Citrus and Tree Fruit, Via di Fioranello 52, 00134 Rome, Italy;
| | - Mauro Pagano
- CREA Research Centre for Engineering and Agro-Food Processing, Via Della Pascolare 16, Monterotondo, 00015 Rome, Italy;
| | - Ilaria Cacciotti
- Engineering Department, University of Rome “Niccolò Cusano”, Via Don Carlo Gnocchi 3, 00166 Rome, Italy;
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
- Correspondence:
| |
Collapse
|