1
|
Guo X, Cai J, Meng Q, Liu Y, Cai L, Yang S, Zhao W, Zou M, Su J, Dai H, Yan Z. Renewable regeneration optic fiber glucose sensor based on succinylaminobenzenoboronic acid modified excessively tilted fiber grating. Anal Chim Acta 2024; 1324:343089. [PMID: 39218573 DOI: 10.1016/j.aca.2024.343089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Optical fiber sensors have been used to detect glucose owing to advantages such as low cost, small size, and ease of operation etc. phenylboronic acid is one of the commonly used receptors for glucose detection, however phenylboronic acid based regenerative optical fiber sensors are commonly cumulative regeneration, renewable regeneration sensor has been missing from the literature. RESULTS In this work, instead of using phenylboronic acid, we synthesized succinylaminobenzenoboronic acid molecule (BPOA) by introducing a short chain containing carboxyl group at the other end of phenylboronic acid then covalently bonded BPOA on the surface of excessively tilted fiber grating (Ex-TFG). This provides a very stable platform for renewable regeneration and the regenerative buffer was also optimized. The proposed renewable regeneration method exhibited higher linearity and sensitivity (R2 = 0.9992, 8 pm/mM) in relative to the conventional cumulative regeneration method (R2 = 0.9718, 4.9 pm/mM). The binding affinity between BPOA and glucose was found to be almost constant over 140 bind/release cycles with a variation of less than 0.3 % relative standard deviation. SIGNIFICANCE The regenerative and label-free sensing capacity of the proposed device provides a theoretical foundation for label-free saccharide detection and the development of wearable glucose monitoring devices based on fiber optic sensors.
Collapse
Affiliation(s)
- Xiaoxia Guo
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Jiapeng Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qingao Meng
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yue Liu
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Le Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Shaoxian Yang
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Weiliang Zhao
- The School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Meng Zou
- The School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiangtao Su
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Heshuang Dai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.
| | - Zhijun Yan
- The School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|
2
|
Bratash O, Buhot A, Leroy L, Engel E. Optical fiber biosensors toward in vivo detection. Biosens Bioelectron 2024; 251:116088. [PMID: 38335876 DOI: 10.1016/j.bios.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
This review takes stock of the various optical fiber-based biosensors that could be used for in vivo applications. We discuss the characteristics that biosensors must have to be suitable for such applications and the corresponding transduction modes. In particular, we focus on optical fiber biosensors based on fluorescence, evanescent wave, plasmonics, interferometry, and Raman phenomenon. The operational principles, implemented solutions, and performances are described and debated. The different sensing configurations, such as the side- and tip-based fiber biosensors, are illustrated, and their adaptation for in vivo measurements is discussed. The required implementation of multiplexed biosensing on optical fibers is shown. In particular, the use of multi-fiber assemblies, one of the most optimal configurations for multiplexed detection, is discussed. Different possibilities for multiple localized functionalizations on optical fibers are presented. A final section is devoted to the practical in vivo use of fiber-based biosensors, covering regulatory, sterilization, and packaging aspects. Finally, the trends and required improvements in this promising and emerging field are analyzed and discussed.
Collapse
Affiliation(s)
- Oleksii Bratash
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Loïc Leroy
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Elodie Engel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
3
|
Bekmurzayeva A, Nurlankyzy M, Abdossova A, Myrkhiyeva Z, Tosi D. All-fiber label-free optical fiber biosensors: from modern technologies to current applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1453-1473. [PMID: 38495725 PMCID: PMC10942689 DOI: 10.1364/boe.515563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Biosensors are established as promising analytical tools for detecting various analytes important in biomedicine and environmental monitoring. Using fiber optic technology as a sensing element in biosensors offers low cost, high sensitivity, chemical inertness, and immunity to electromagnetic interference. Optical fiber sensors can be used in in vivo applications and multiplexed to detect several targets simultaneously. Certain configurations of optical fiber technology allow the detection of analytes in a label-free manner. This review aims to discuss recent advances in label-free optical fiber biosensors from a technological and application standpoint. First, modern technologies used to build label-free optical fiber-based sensors will be discussed. Then, current applications where these technologies are applied are elucidated. Namely, examples of detecting soluble cancer biomarkers, hormones, viruses, bacteria, and cells are presented.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Marzhan Nurlankyzy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Albina Abdossova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
4
|
Juste-Dolz A, Fernández E, Micó G, Bru LA, Muñoz P, Avella-Oliver M, Pastor D, Maquieira Á. Surface Bragg gratings of proteins patterned on integrated waveguides for (bio)chemical analysis. Mikrochim Acta 2023; 191:63. [PMID: 38157073 DOI: 10.1007/s00604-023-06124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The incorporation of biomacromolecules onto silicon waveguiding microstructures constitutes a growing trend that pushes towards compact and miniaturized biosensing systems. This paper presents the integration of one-dimensional periodic nanostructures of proteins on the surface of micrometric silicon waveguides for transducing binding events between biomacromolecules. The study demonstrates this new bioanalytical principle by experimental results and theoretical calculations, and proves that rib waveguides (1--1.6-µm width) together with protein gratings (495--515-nm period) display suitable spectral responses for this optical biosensing system. Protein assemblies of bovine serum albumin are fabricated on the surface of silicon nitride waveguides, characterized by electron microscopy, and their response is measured by optical frequency domain reflectometry along the fabrication process and the subsequent stages of the biorecognition assays. Detection and quantification limits of 0.3 and 3.7 µg·mL-1, respectively, of specific antibodies are inferred from experimental dose-response curves. Among other interesting features, the results of this study point towards new miniaturized and integrated sensors for label-free bioanalysis.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Gloria Micó
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Luis A Bru
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Pascual Muñoz
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Daniel Pastor
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
5
|
Fu C, Sui R, Peng Z, Meng Y, Zhong H, Li M, Yin X, Wang Y. Distributed Refractive Index Sensing Based on Etched Ge-Doped SMF in Optical Frequency Domain Reflectometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094361. [PMID: 37177562 PMCID: PMC10181537 DOI: 10.3390/s23094361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
A distributed optical fiber refractive index sensor based on etched Ge-doped SMF in optical frequency domain reflection (OFDR) was proposed and demonstrated. The etched Ge-doped SMF was obtained by only using wet-etching, i.e., hydrofluoric acid solution. The distributed refractive index sensing is achieved by measuring the spectral shift of the local RBS spectra using OFDR. The sensing length of 10 cm and the spatial resolution of 5.25 mm are achieved in the experiment. The refractive index sensing range is as wide as 1.33-1.44 refractive index units (RIU), where the average sensitivity was about 757 GHz/RIU. Moreover, the maximum sensitivity of 2396.9 GHZ/RIU is obtained between 1.43 and 1.44 RIU.
Collapse
Affiliation(s)
- Cailing Fu
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ronglong Sui
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenwei Peng
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanjie Meng
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huajian Zhong
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingquan Li
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Yin
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| |
Collapse
|
6
|
Cai J, Liu Y, Shu X. Long-Period Fiber Grating Sensors for Chemical and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:542. [PMID: 36617140 PMCID: PMC9823881 DOI: 10.3390/s23010542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Optical fiber biosensors (OFBS) are being increasingly proposed due to their intrinsic advantages over conventional sensors, including their compactness, potential remote control and immunity to electromagnetic interference. This review systematically introduces the advances of OFBS based on long-period fiber gratings (LPFGs) for chemical and biomedical applications from the perspective of design and functionalization. The sensitivity of such a sensor can be enhanced by designing the device working at or near the dispersion turning point, or working around the mode transition, or their combination. In addition, several common functionalization methods are summarized in detail, such as the covalent immobilization of 3-aminopropyltriethoxysilane (APTES) silanization and graphene oxide (GO) functionalization, and the noncovalent immobilization of the layer-by-layer assembly method. Moreover, reflective LPFG-based sensors with different configurations have also been introduced. This work aims to provide a comprehensive understanding of LPFG-based biosensors and to suggest some future directions for exploration.
Collapse
Affiliation(s)
| | | | - Xuewen Shu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Li B, Zhang R, Bi R, Olivo M. Applications of Optical Fiber in Label-Free Biosensors and Bioimaging: A Review. BIOSENSORS 2022; 13:64. [PMID: 36671899 PMCID: PMC9855469 DOI: 10.3390/bios13010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Biosensing and bioimaging are essential in understanding biological and pathological processes in a living system, for example, in detecting and understanding certain diseases. Optical fiber has made remarkable contributions to the biosensing and bioimaging areas due to its unique advantages of compact size, immunity to electromagnetic interference, biocompatibility, fast response, etc. This review paper will present an overview of seven common types of optical fiber biosensors and optical fiber-based ultrasound detection in photoacoustic imaging (PAI) and the applications of these technologies in biosensing and bioimaging areas. Of course, there are many types of optical fiber biosensors. Still, this paper will review the most common ones: optical fiber grating, surface plasmon resonance, Sagnac interferometer, Mach-Zehnder interferometer, Michelson interferometer, Fabry-Perot Interferometer, lossy mode resonance, and surface-enhanced Raman scattering. Furthermore, different optical fiber techniques for detecting ultrasound in PAI are summarized. Finally, the main challenges and future development direction are briefly discussed.
Collapse
Affiliation(s)
| | | | - Renzhe Bi
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Malini Olivo
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| |
Collapse
|
8
|
Pioz MJ, Espinosa RL, Laguna MF, Santamaria B, Murillo AMM, Hueros ÁL, Quintero S, Tramarin L, Valle LG, Herreros P, Bellido A, Casquel R, Holgado M. A review of Optical Point-of-Care devices to Estimate the Technology Transfer of These Cutting-Edge Technologies. BIOSENSORS 2022; 12:bios12121091. [PMID: 36551058 PMCID: PMC9776401 DOI: 10.3390/bios12121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 06/07/2023]
Abstract
Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.
Collapse
Affiliation(s)
- María Jesús Pioz
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- University of Nebrija, C/del Hostal, Campus Berzosa, 28248 Madrid, Spain
| | - Rocío L. Espinosa
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - María Fe Laguna
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Beatriz Santamaria
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Metch, Chem & Industrial Design Engineering Department, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Ana María M. Murillo
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Álvaro Lavín Hueros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sergio Quintero
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luis G Valle
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Pedro Herreros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Alberto Bellido
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Multiplex Molecular Diagnostics S.L. C/ Munner 10, 08022 Barcelona, Spain
| | - Rafael Casquel
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Holgado
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
9
|
Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology. Biomimetics (Basel) 2022; 7:biomimetics7040175. [PMID: 36412703 PMCID: PMC9680295 DOI: 10.3390/biomimetics7040175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microfluidic technology is one of the new technologies that has been able to take advantage of the specific properties of micro and nanoliters, and by reducing the costs and duration of tests, it has been widely used in research and treatment in biology and medicine. Different materials are often processed into miniaturized chips containing channels and chambers within the microscale range. This review (containing 117 references) demonstrates the significance and application of nanofluidic biosensing of various pathogenic bacteria. The microfluidic application devices integrated with bioreceptors and advanced nanomaterials, including hyperbranched nano-polymers, carbon-based nanomaterials, hydrogels, and noble metal, was also investigated. In the present review, microfluid methods for the sensitive and selective recognition of photogenic bacteria in various biological matrices are surveyed. Further, the advantages and limitations of recognition methods on the performance and efficiency of microfluidic-based biosensing of photogenic bacteria are critically investigated. Finally, the future perspectives, research opportunities, potential, and prospects on the diagnosis of disease related to pathogenic bacteria based on microfluidic analysis of photogenic bacteria are provided.
Collapse
|
10
|
Recent Progresses in Development of Biosensors for Thrombin Detection. BIOSENSORS 2022; 12:bios12090767. [PMID: 36140153 PMCID: PMC9496736 DOI: 10.3390/bios12090767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2022]
Abstract
Thrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding. The rapid and sensitive detection of thrombin is important in biological analysis and clinical diagnosis. Hence, various biosensors for thrombin measurement have been developed. Biosensors are devices that produce a quantifiable signal from biological interactions in proportion to the concentration of a target analyte. An aptasensor is a biosensor in which a DNA or RNA aptamer has been used as a biological recognition element and can identify target molecules with a high degree of sensitivity and affinity. Designed biosensors could provide effective methods for the highly selective and specific detection of thrombin. This review has attempted to provide an update of the various biosensors proposed in the literature, which have been designed for thrombin detection. According to their various transducers, the constructions and compositions, the performance, benefits, and restrictions of each are summarized and compared.
Collapse
|
11
|
Sypabekova M, Amantayeva A, Vangelista L, González-Vila Á, Caucheteur C, Tosi D. Ultralow Limit Detection of Soluble HER2 Biomarker in Serum with a Fiber-Optic Ball-Tip Resonator Assisted by a Tilted FBG. ACS MEASUREMENT SCIENCE AU 2022; 2:309-316. [PMID: 36785571 PMCID: PMC9885947 DOI: 10.1021/acsmeasuresciau.2c00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An optical-fiber biosensor has been developed for the detection of the breast cancer biomarker soluble human epidermal growth factor receptor-2 (sHER2). The sensor was fabricated by combining a tilted fiber Bragg grating (TFBG) with a ball resonator, allowing us to achieve an excellent sensitivity compared to other optical-fiber-based sensors. The sensor exhibits a resonance comb excited by the TFBG and the spectral profile of the ball resonator. The detection of sHER2 at extremely low concentrations was carried out by tracking the amplitude change of selected resonances. The therapeutic anti-HER2 monoclonal antibody Trastuzumab has been used to functionalize the biosensor with silane surface chemistry. The sensor features a sensitivity of 4034 dB/RIU with a limit of detection (LoD) in buffer and in a 1/10 diluted serum of 151.5 ag/mL and 3.7 pg/mL, respectively. At relatively high protein concentrations (64 ng/mL) binding to sHER (7.36 dB) as compared to control proteins (below 0.7 dB) attested the high specificity of sHER2 detection.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- Baylor
Research and Innovative Collaborative, Baylor
University, 100 Research
Pkwy, Waco, Texas 76704, United States
| | - Aida Amantayeva
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
| | - Álvaro González-Vila
- Electromagnetism
and Telecommunication Department, University
of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism
and Telecommunication Department, University
of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Daniele Tosi
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- National
Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000 Nur-Sultan, Kazakhstan
| |
Collapse
|
12
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
13
|
Feng D, Li Z, Zheng H, Jiang B, Albert J, Zhao J. Strong cladding mode excitation in ultrathin fiber inscribed Bragg grating with ultraviolet photosensitivity. OPTICS EXPRESS 2022; 30:25936-25945. [PMID: 36237113 DOI: 10.1364/oe.464572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Strong UV-written Bragg gratings written in 50 µm-diameter cladding single mode fibers compatible with conventional fiber couple core guided light to dozens of cladding modes distributed across 140 nm in the 1400-1600 nm region, without the need for complex symmetry breaking mechanisms such as tilted, laterally offset, or localized gratings. The extent of the coupling to high order modes and the smaller cladding diameter both contribute to increasing the sensitivity to surrounding refractive index changes by more than one order of magnitude, and to an increased spacing between mode resonances to facilitate unambiguous measurements of larger index changes between 1.3 and 1.44. These improvements are confirmed by theoretical and experimental studies that also cover the temperature and strain differential sensitivities of the cladding mode resonances for complete multiparameter sensing capability.
Collapse
|
14
|
Li H, Huang T, Lu L, Yuan H, Zhang L, Wang H, Yu B. Ultrasensitive Detection of Exosomes Using an Optical Microfiber Decorated with Plasmonic MoSe 2-Supported Gold Nanorod Nanointerfaces. ACS Sens 2022; 7:1926-1935. [DOI: 10.1021/acssensors.2c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongtao Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
- Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Tianqi Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Liang Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Hao Yuan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Lei Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, People’s Republic of China
- Institute of Urology, Anhui Medical University Hefei, 230031, People’s Republic of China
| | - Benli Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People’s Republic of China
- School of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, People’s Republic of China
| |
Collapse
|
15
|
Wei N, Xu P, Yao Y, Li J, Liu E, Luo J. Bragg grating sensor for refractive index based on a D-shaped circular photonic crystal fiber. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:800-805. [PMID: 36215440 DOI: 10.1364/josaa.453467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 05/24/2023]
Abstract
In this paper, a silica-based D-shaped circular photonic crystal fiber Bragg grating sensor for refractive index sensing is proposed theoretically. D-shaped fiber construction can effectively enhance the coupling effect between the guiding mode and external liquid analyte, which then causes a distinct shift in the typical reflection spectrum as the refractive index of the analyte varies. This design exhibits highly improved sensitivity of 487 nm/RIU in a large refractive index range from 1.30 to 1.40 compared with the previous fiber grating sensors. Study of the dependence of sensing performance on the structure parameters suggests that the resonance peak shifts towards longer wavelengths with the increased air-hole diameter of fiber, while it is almost immobile as the hole spacing and the number of air-hole layers change in a certain range. For the influence of the Bragg grating structure, results show that the resonance peak is not sensitive to the grating length, but linearly increases as the grating period expands. The effects of polishing depth and fiber preparation error on the sensor are also discussed in detail. This high-sensitivity sensor based on a D-shaped photonic crystal fiber and Bragg grating has great potential in biochemical detection, environmental monitoring, and medical sensing.
Collapse
|
16
|
A Review of Apta-POF-Sensors: The Successful Coupling between Aptamers and Plastic Optical Fibers for Biosensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aptamers represent the next frontier as biorecognition elements in biosensors thanks to a smaller size and lower molecular weight with respect to antibodies, more structural flexibility with the possibility to be regenerated, reduced batch-to-batch variation, and a potentially lower cost. Their high specificity and small size are particularly interesting for their application in optical biosensors since the perturbation of the evanescent field are low. Apart from the conventional plasmonic optical sensors, platforms based on silica and plastic optical fibers represent an interesting class of devices for point-of-care testing (POCT) in different applications. The first example of the coupling between aptamers and silica optical fibers was reported by Pollet in 2009 for the detection of IgE molecules. Six years later, the first example was published using a plastic optical fiber (POF) for the detection of Vascular Endothelial Growth Factor (VEGF). The excellent flexibility, great numerical aperture, and the large diameter make POFs extremely promising to be coupled to aptamers for the development of a sensitive platform easily integrable in portable, small-size, and simple devices. Starting from silica fiber-based surface plasmon resonance devices, here, a focus on significant biological applications based on aptamers, combined with plasmonic-POF probes, is reported.
Collapse
|
17
|
A New Type of Etched Fiber Grating Hydrophone. PHOTONICS 2022. [DOI: 10.3390/photonics9040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We propose a new type of fiber hydrophone composed of an etched fiber Bragg grating and a special packaging structure for detecting acoustic waves in the low-frequency band under water. The operating mechanism is based on the mechanical vibration of the fiber Bragg grating from the induced vibrating stress of acoustic pressure. The induced pressure of acoustic waves pushes the silicone rubber thin film, causing its vibration and then stretching the fiber Bragg grating, thus resulting in the grating wavelength shift which is overlapped with a tunable laser. The variation in the overlapped light intensity is transferred to an electrical signal by using a photodetector. From the experimental results, we can determine that the smaller the fiber diameter, the higher the sensitivity and frequency response. In order to confirm that this FBG hydrophone has the ability to work in high-frequency acoustic waves, this fiber grating hydrophone and a standard piezoelectric hydrophone are experimentally compared to in the same test conditions in the frequency range from 4 to 10 kHz. According to the experimental results, the fiber grating hydrophone has better responsivity than that of the conventional hydrophone. Due to the unique sensing structure design, this wide-band fiber hydrophone can be useful in long-term continuous monitoring of acoustic waves.
Collapse
|
18
|
Chen X, Xu P, Lin W, Jiang J, Qu H, Hu X, Sun J, Cui Y. Label-free detection of breast cancer cells using a functionalized tilted fiber grating. BIOMEDICAL OPTICS EXPRESS 2022; 13:2117-2129. [PMID: 35519261 PMCID: PMC9045894 DOI: 10.1364/boe.454645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023]
Abstract
The detection of circulating tumor cells (CTCs) still faces a huge challenge partially because of low abundance of CTCs (1-10 cells/mL). In this work, a plasmonic titled fiber Bragg grating biosensor is proposed for detection of breast cancer cells. The biosensor is made by an 18° TFBG with a 50 nm-thick gold nanofilm coating over the surface of the fiber, further immobilized with a specific antibody against GPR30, which is a membrane receptor expressed in many breast cancers, serving as bait. In vitro tests have confirmed that the proposed biosensor can detect breast cancer cells in concentration of 5 cells/mL within 20 minutes and has good linearity in the range of 5-1000 cells/mL, which has met the requirement of CTC detection in real conditions. Furthermore, theoretical analysis based on the experimental results shows that the limit of detection can even reach single-cell level. Our proposed biosensor has a simple structure, is easy to manufacture, is of small size, and has a good performance, making it a good choice for real-time, label-free, and milliliter-volume detection of cancer cells in future.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Pin Xu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Wenwei Lin
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Jiang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, Shantou 515041, China
| | - Hang Qu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Xuehao Hu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jinghua Sun
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Yukun Cui
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, Shantou 515041, China
| |
Collapse
|
19
|
Optimization of Cladding Diameter for Refractive Index Sensing in Tilted Fiber Bragg Gratings. SENSORS 2022; 22:s22062259. [PMID: 35336430 PMCID: PMC8953173 DOI: 10.3390/s22062259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
This work presents an experimental investigation of the effect of chemical etching on the refractive index (RI) sensitivity of tilted fiber Bragg gratings (TFBGs). Hydrofluoric acid (HF) was used stepwise in order to reduce the optical fiber diameter from 125 µm to 13 µm. After each etching step, TFBGs were calibrated using two ranges of RI solutions: the first one with high RI variation (from 1.33679 RIU to 1.37078 RIU) and the second with low RI variation (from 1.34722 RIU to 1.34873 RIU). RI sensitivity was analyzed in terms of wavelength shift and intensity change of the grating resonances. The highest amplitude sensitivities obtained are 1008 dB/RIU for the high RI range and 8160 dB/RIU for the low RI range, corresponding to the unetched TFBG. The highest wavelength sensitivities are 38.8 nm/RIU for a fiber diameter of 100 µm for the high RI range, and 156 nm/RIU for a diameter of 40 µm for the small RI range. In addition, the effect of the etching process on the spectral intensity of the cladding modes, their wavelength separation and sensor linearity (R2) were studied as well. As a result, an optimization of the etching process is provided, so that the best trade-off between sensitivity, intensity level, and fiber thickness can be obtained.
Collapse
|
20
|
Vidal M, Soares MS, Loyez M, Costa FM, Caucheteur C, Marques C, Pereira SO, Leitão C. Relevance of the Spectral Analysis Method of Tilted Fiber Bragg Grating-Based Biosensors: A Case-Study for Heart Failure Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2141. [PMID: 35336312 PMCID: PMC8954114 DOI: 10.3390/s22062141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023]
Abstract
Optical fiber technology has rapidly progressed over the years, providing valuable benefits for biosensing purposes such as sensor miniaturization and the possibility for remote and real-time monitoring. In particular, tilted fiber Bragg gratings (TFBGs) are extremely sensitive to refractive index variations taking place on their surface. The present work comprises a case-study on the impact of different methods of analysis applied to decode spectral variations of bare and plasmonic TFBGs during the detection of N-terminal B-type natriuretic peptide (NT-proBNP), a heart failure biomarker, namely by following the most sensitive mode, peaks of the spectral envelopes, and the envelopes' crossing point and area. Tracking the lower envelope resulted in the lowest limits of detection (LOD) for bare and plasmonic TFBGs, namely, 0.75 ng/mL and 0.19 ng/mL, respectively. This work demonstrates the importance of the analysis method on the outcome results, which is crucial to attain the most reliable and sensitive method with lower LOD sensors. Furthermore, it makes the scientific community aware to take careful attention when comparing the performance of different biosensors in which different analysis methods were used.
Collapse
Affiliation(s)
- Miguel Vidal
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Maria Simone Soares
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Florinda M. Costa
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Sónia O. Pereira
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Cátia Leitão
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| |
Collapse
|
21
|
Zhang Y, Zhou L, Qiao D, Liu M, Yang H, Meng C, Miao T, Xue J, Yao Y. Progress on Optical Fiber Biochemical Sensors Based on Graphene. MICROMACHINES 2022; 13:mi13030348. [PMID: 35334640 PMCID: PMC8951465 DOI: 10.3390/mi13030348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022]
Abstract
Graphene, a novel form of the hexagonal honeycomb two-dimensional carbon-based structural material with a zero-band gap and ultra-high specific surface area, has unique optoelectronic capabilities, promising a suitable basis for its application in the field of optical fiber sensing. Graphene optical fiber sensing has also been a hotspot in cross-research in biology, materials, medicine, and micro-nano devices in recent years, owing to prospective benefits, such as high sensitivity, small size, and strong anti-electromagnetic interference capability and so on. Here, the progress of optical fiber biochemical sensors based on graphene is reviewed. The fabrication of graphene materials and the sensing mechanism of the graphene-based optical fiber sensor are described. The typical research works of graphene-based optical fiber biochemical sensor, such as long-period fiber grating, Bragg fiber grating, no-core fiber and photonic crystal fiber are introduced, respectively. Finally, prospects for graphene-based optical fiber biochemical sensing technology will also be covered, which will provide an important reference for the development of graphene-based optical fiber biochemical sensors.
Collapse
Affiliation(s)
- Yani Zhang
- Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China; (T.M.); (J.X.); (Y.Y.)
- Correspondence: (Y.Z.); (H.Y.)
| | - Lei Zhou
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.); (C.M.)
| | - Dun Qiao
- Faculty of Computing, Engineering and Science, Wireless and Optoelectronics Research and Innovation Centre, University of South Wales, Pontypridd CF37 1DL, UK;
| | - Mengyin Liu
- Photonics Research Center, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Hongyan Yang
- Photonics Research Center, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
- Correspondence: (Y.Z.); (H.Y.)
| | - Cheng Meng
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.); (C.M.)
| | - Ting Miao
- Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China; (T.M.); (J.X.); (Y.Y.)
| | - Jia Xue
- Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China; (T.M.); (J.X.); (Y.Y.)
| | - Yiming Yao
- Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China; (T.M.); (J.X.); (Y.Y.)
| |
Collapse
|
22
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
23
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
24
|
Rahman BMA, Viphavakit C, Chitaree R, Ghosh S, Pathak AK, Verma S, Sakda N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. BIOSENSORS 2022; 12:bios12010042. [PMID: 35049670 PMCID: PMC8773603 DOI: 10.3390/bios12010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 05/22/2023]
Abstract
The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core-shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors.
Collapse
Affiliation(s)
- B. M. Azizur Rahman
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Correspondence:
| | - Charusluk Viphavakit
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Ratchapak Chitaree
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Souvik Ghosh
- Department of Electronic and Electrical Engineering, University College London, Gower St., London WC1E 6AE, UK;
| | - Akhilesh Kumar Pathak
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Sneha Verma
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
| | - Natsima Sakda
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
25
|
Wang R, Kang X, Kong D, Jiang M, Ren Z, Hu B, He Z. Highly sensitive metal ion sensing by graphene oxide functionalized micro-tapered long-period fiber grating. Analyst 2022; 147:3025-3034. [DOI: 10.1039/d1an02263f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An accurate as well as highly sensitive label-free chemical sensing platform for the detection of various metal ions was demonstrated.
Collapse
Affiliation(s)
- Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| | - Xin Kang
- Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, People's Republic of China
| | - Depeng Kong
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| | - Man Jiang
- Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, People's Republic of China
| | - Zhaoyu Ren
- Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, People's Republic of China
| | - Baowen Hu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| | - Zhengquan He
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| |
Collapse
|
26
|
Sypabekova M, Tosi D, Vangelista L. Perspectives on Assembling Coronavirus Spikes on Fiber Optics to Reveal Broadly Recognizing Antibodies and Generate a Universal Coronavirus Detector. Front Bioeng Biotechnol 2021; 9:637715. [PMID: 34900951 PMCID: PMC8661133 DOI: 10.3389/fbioe.2021.637715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In time of COVID-19 biological detection technologies are of crucial relevance. We propose here the use of state of the art optical fiber biosensors to address two aspects of the fight against SARS-CoV-2 and other pandemic human coronaviruses (HCoVs). Fiber optic biosensors functionalized with HCoV spikes could be used to discover broadly neutralizing antibodies (bnAbs) effective against known HCoVs (SARS-CoV, MERS-CoV and SARS-CoV-2) and likely future ones. In turn, identified bnAbs, once immobilized onto fiber optic biosensors, should be capable to detect HCoVs as diagnostic and environmental sensing devices. The therapeutic and preventative value of bnAbs is immense as they can be used for passive immunization and for the educated development of a universal vaccine (active immunization). Hence, HCoV bnAbs represent an extremely important resource for future preparedness against coronavirus-borne pandemics. Furthermore, the assembly of bnAb-based biosensors constitutes an innovative approach to counteract public health threats, as it bears diagnostic competence additional to environmental detection of a range of pandemic strains. This concept can be extended to different pandemic viruses, as well as bio-warfare threats that entail existing, emerging and extinct viruses (e.g., the smallpox-causing Variola virus). We report here the forefront fiber optic biosensor technology that could be implemented to achieve these aims.
Collapse
Affiliation(s)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan.,Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
27
|
Li W, Miao Y, Guo T, Zhang K, Yao J. Nb 2CT x MXene-tilted fiber Bragg grating optofluidic system based on photothermal spectroscopy for pesticide detection. BIOMEDICAL OPTICS EXPRESS 2021; 12:7051-7063. [PMID: 34858699 PMCID: PMC8606125 DOI: 10.1364/boe.442602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 05/30/2023]
Abstract
An optofluidic system based on photothermal spectroscopy is proposed, which combines molecular photothermal effect with Nb2CTx MXene-tilted fiber Bragg grating (TFBG) for the detection of organophosphorus pesticides (OPs) with temperature compensated. Under the irradiation of excitation light, the photothermal effect of OPs produces a detectable change in the refractive index of the sample, and the concentration of chlorpyrifos can be quantified using TFBG. The Nb2CTx MXene coated TFBG allow more molecules to be absorbed on the surface of TFBG, which enhances the interaction between light and matter, and improves the sensitivity of detection. The temperature compensation is performed by referring to the core mode of TFBG, thereby eliminating the influence of ambient temperature on the photothermal detection. The experimental results show that the sensitivity reaches 1.8 pm/ppm with a limit of detection (LOD) of 0.35 ppm, and the obtained temperature compensation coefficient is 4.84 ppm/°C. This photothermal biosensor has the advantages of low LOD, temperature compensation and real-time online monitoring, making it a good candidate in medicine, chemistry and environmental monitoring.
Collapse
Affiliation(s)
- Wenjie Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yinping Miao
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Kialiang Zhang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianquan Yao
- College of Precision Instruments and Opto-Electronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Optical Fiber Ball Resonator Sensor Spectral Interrogation through Undersampled KLT: Application to Refractive Index Sensing and Cancer Biomarker Biosensing. SENSORS 2021; 21:s21206721. [PMID: 34695934 PMCID: PMC8537289 DOI: 10.3390/s21206721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber ball resonators based on single-mode fibers in the infrared range are an emerging technology for refractive index sensing and biosensing. These devices are easy and rapid to fabricate using a CO2 laser splicer and yield a very low finesse reflection spectrum with a quasi-random pattern. In addition, they can be functionalized for biosensing by using a thin-film sputtering method. A common problem of this type of device is that the spectral response is substantially unknown, and poorly correlated with the size and shape of the spherical device. In this work, we propose a detection method based on Karhunen−Loeve transform (KLT), applied to the undersampled spectrum measured by an optical backscatter reflectometer. We show that this method correctly detects the response of the ball resonator in any working condition, without prior knowledge of the sensor under interrogation. First, this method for refractive index sensing of a gold-coated resonator is applied, showing 1594 RIU−1 sensitivity; then, this concept is extended to a biofunctionalized ball resonator, detecting CD44 cancer biomarker concentration with a picomolar-level limit of detection (19.7 pM) and high specificity (30–41%).
Collapse
|
29
|
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, Nugmanova A, Shaimerdenova M, Ayupova T, Tosi D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11:19583. [PMID: 34599251 PMCID: PMC8486867 DOI: 10.1038/s41598-021-99099-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Increased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhuldyz Myrkhiyeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aigerim Nugmanova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
30
|
Study on a Plasmonic Tilted Fiber Grating-Based Biosensor for Calmodulin Detection. BIOSENSORS-BASEL 2021; 11:bios11060195. [PMID: 34198490 PMCID: PMC8231783 DOI: 10.3390/bios11060195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Tilted fiber Bragg grating, which has the advantages of both fiber Bragg grating and long-period fiber grating, has been widely studied for sensing in many fields, especially in the field of biochemistry. Calmodulin, which has a wide distribution in eukaryotes, can regulate several enzymes such as adenylate cyclase and guanylate cyclase and mediates several cellular processes such as cell proliferation and cyclic nucleotide metabolism. The abnormal levels of calmodulin in the body will result in serious effects from metabolism to nerve growth and memory. Therefore, it is important to measure the calmodulin concentration in the body. In this work, we propose and experimentally demonstrate a plasmonic tilted fiber Bragg grating-based biosensor for calmodulin detection. The biosensor was made using an 18° tilted fiber Bragg grating with a 50 nm-thick gold nanofilm coating the surface of the fiber, and transient receptor potential channels were bonded onto the surface of the gold nanofilm to serve as bio-detectors for calmodulin detection. Experimental results showed that the limit of detection using our biosensor was 0.44 nM. Furthermore, we also demonstrated that the interaction between calmodulin and transient receptor potential channels was quite weak without calcium in the solution, which agrees with the biology. Our proposed biosensor has a simple structure, is easy to manufacture, and is of small size, making it a good choice for real-time, label-free, and microliter-volume biomolecule detection.
Collapse
|
31
|
Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing. SENSORS 2021; 21:s21113635. [PMID: 34073669 PMCID: PMC8197150 DOI: 10.3390/s21113635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
In this work, we present a gold-coated shallow-tapered chirped fiber Bragg grating (stCFBG) for dual refractive index (RI) and temperature sensing. The stCFBG has been fabricated on a 15-mm long chirped FBG, by tapering a 7.29-mm region with a waist of 39 μm. The spectral analysis shows two distinct regions: a pre-taper region, in which the stCFBG is RI-independent and can be used to detect thermal changes, and a post-taper region, in which the reflectivity increases significantly when the RI increments. We estimate the RI and thermal sensitivities as 382.83 dB/RIU and 9.893 pm/°C, respectively. The cross-talk values are low (−1.54 × 10−3 dB/°C and 568.1 pm/RIU), which allows an almost ideal separation between RI and thermal characteristics. The stCFBG is a compact probe, suitable for long-term and temperature-compensated biosensing and detection of chemical analytes.
Collapse
|
32
|
Juste-Dolz A, Delgado-Pinar M, Avella-Oliver M, Fernández E, Pastor D, Andrés MV, Maquieira Á. BIO bragg gratings on microfibers for label-free biosensing. Biosens Bioelectron 2021; 176:112916. [PMID: 33401145 DOI: 10.1016/j.bios.2020.112916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023]
Abstract
Discovering nanoscale phenomena to sense biorecognition events introduces new perspectives to exploit nanoscience and nanotechnology for bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing approach that consists of diffractive structures of protein bioreceptors patterned on the surface of optical waveguides, and tailored to transduce the magnitude of biorecognition assays into the intensity of single peaks in the reflection spectrum. This work addresses the design, fabrication, and optimization of this system by both theoretical and experimental studies to explore the fundamental physicochemical parameters involved. Functional biomolecular gratings are fabricated by microcontact printing on the surface of tapered optical microfibers, and their structural features were characterized. The transduction principle is experimentally demonstrated, and its quantitative bioanalytical prospects are assessed in a representative immunoassay, based on patterned protein probes and selective IgG targets, in label-free conditions. This biosensing system involves appealing perspectives to avoid unwanted signal contributions from non-specific binding, herein investigated in human serum samples. The work also proves how the optical response of the system can be easily tuned, and it provides insights into the relevance of this feature to conceive multiplexed BBG systems capable to perform multiple label-free biorecognition assays in a single device.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Martina Delgado-Pinar
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Daniel Pastor
- Photonics Research Labs, Universitat Politècnica de València, 46021, Valencia, Spain
| | - Miguel V Andrés
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
33
|
Liao X, Zhang C, Machuki JO, Wen X, Chen D, Tang Q, Gao F. Proximity hybridization triggered hybridization chain reaction for label-free electrochemical homogeneous aptasensors. Talanta 2021; 226:122058. [PMID: 33676642 DOI: 10.1016/j.talanta.2020.122058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
A label-free homogeneous electrochemical aptasensor was developed for detection of thrombin based on proximity hybridization triggered hybridization chain reaction induced G-quadruplex formation. Thrombin promoted the formation of a complex via the proximity hybridization of the aptamer DNA strands, which unfolded the molecular beacon, the stem part of molecular beacon as a primer to initiate the hybridization chain reaction process. Thus, with the electrochemical indicator hemin selectively intercalated into the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target thrombin. Thus, using this"signal-off" mode, label-free homogeneous electrochemical strategy for sensitive thrombin assay with a detection limit of 44 fM is realized. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Its high sensitivity, acceptable accuracy, and satisfactory versatility of analytes led to various applications in bioanalysis.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Duankai Chen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
34
|
Fiber Optic Refractive Index Sensors Based on a Ball Resonator and Optical Backscatter Interrogation. SENSORS 2020; 20:s20216199. [PMID: 33143287 PMCID: PMC7662276 DOI: 10.3390/s20216199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
In this work, we introduced fabrication and interrogation of simple and highly sensitive fiber-optic refractive index (RI) sensors based on ball resonators built on the tip of single-mode fibers. The probes have been fabricated through a CO2 fiber splicer, with a fast (~600 s) and repeatable method. The ball resonator acted as a weak interferometer with a return loss below −50 dB and was interrogated with an optical backscatter reflectometer measuring the reflection spectrum. The ball resonators behaved as weak interferometers with a shallow fringe and a spectrum that appeared close to a random signal, and RI sensitivity could be measured either through wavelength shift or amplitude change. In this work, we reported four samples having sensitivity ranges 48.9–403.3 nm/RIU and 256.0–566.2 dB/RIU (RIU = refractive index unit). Ball resonators appeared as a sensitive and robust platform for RI sensing in liquid and can be further functionalized for biosensing.
Collapse
|
35
|
Mishra S, Kim ES, Sharma PK, Wang ZJ, Yang SH, Kaushik AK, Wang C, Li Y, Kim NY. Tailored Biofunctionalized Biosensor for the Label-Free Sensing of Prostate-Specific Antigen. ACS APPLIED BIO MATERIALS 2020; 3:7821-7830. [DOI: 10.1021/acsabm.0c01002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
| | - Eun-Seong Kim
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
| | - Parshant Kumar Sharma
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
| | - Zhi-Ji Wang
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
| | - Sung-Hyun Yang
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts, & Mathematics, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Cong Wang
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Li
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Nam-Young Kim
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
36
|
Hessler S, Knopf S, Rommel M, Girschikofsky M, Schmauss B, Hellmann R. Advancing the sensitivity of integrated epoxy-based Bragg grating refractometry by high-index nanolayers. OPTICS LETTERS 2020; 45:5510-5513. [PMID: 33001933 DOI: 10.1364/ol.402768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this Letter, we report on significantly improved surrounding RI sensitivity of epoxy polymer waveguide Bragg grating sensors. Uniform Bragg gratings were generated inside flat rectangular epoxy waveguides near the cutoff regime using standard phase mask excimer laser writing. Thickness controlled nanolayers of high-index titanium dioxide were deposited homogeneously on the waveguide sensor's surface area by repeated reactive sputter processing. Maximum Bragg wavelength shifts as high as 74.22 nm, as well as maximum sensitivities around 523 nm/RI unit corresponding to a minimum RI resolution of 1.9⋅10-6, could be obtained by employing a ∼75nm thick titanium dioxide coating.
Collapse
|
37
|
Sypabekova M, Aitkulov A, Blanc W, Tosi D. Reflector-less nanoparticles doped optical fiber biosensor for the detection of proteins: Case thrombin. Biosens Bioelectron 2020; 165:112365. [PMID: 32729497 DOI: 10.1016/j.bios.2020.112365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
A miniature biosensing platform based on MgO-based nanoparticle doped optical fiber was developed for the biomolecule detection. The technology used a single mode fiber with MgO-based nanoparticles doped core. The detection was based on collecting the Rayleigh backscattering signatures with increased gain upon the etching of the fiber 1-2 mm away from the tip. The shift from the backscattered signal with the maximum value of the cross-correlation was used to report the results. The sensor exhibited a sensitivity range from 0.75 nm/refractive index unit up to 19.63 nm/refractive index unit for a refractive index range from 1.3329 up to 1.37649. The deposition of the thin gold layer increased the overall sensitivity of the biosensor by 3.7 times for the etched part of the fiber with diameter 8-9 μm. The proposed biosensor was tested for the detection of thrombin molecule concentrations ranging from 0.625 μg/ml to 20 μg/ml. Thiol modified DNA specific aptamers were used to functionalize the gold coated surface of the fiber for the detection. The sensor showed detectable sensitivity and specificity as compared to the other control proteins. The proposed biosensing platform could be multiplexed and can be used in vivo for the detection in clinical settings due to its miniature size, biocompatibility of silica glass and reflector less set up.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000, Nur-Sultan, Kazakhstan; Nazarbayev University, School of Medicine, 010000, Nur-Sultan, Kazakhstan.
| | - Arman Aitkulov
- Nazarbayev University, School of Engineering and Digital Sciences, 010000, Nur-Sultan, Kazakhstan
| | - Wilfried Blanc
- Université Côte d'Azur, INPHYNI-CNRS UMR 7010, Parc Valrose, 06108, Nice, France
| | - Daniele Tosi
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000, Nur-Sultan, Kazakhstan; Nazarbayev University, School of Engineering and Digital Sciences, 010000, Nur-Sultan, Kazakhstan
| |
Collapse
|
38
|
Cai S, Pan H, González-Vila Á, Guo T, Gillan DC, Wattiez R, Caucheteur C. Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria. OPTICS EXPRESS 2020; 28:19740-19749. [PMID: 32672244 DOI: 10.1364/oe.397505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Environmental monitoring and potable water control are key applications where optical fiber sensing solutions can outperform other technologies. In this work, we report a highly sensitive plasmonic fiber-optic probe that has been developed to determine the concentration of cadmium ions (Cd2+) in solution. This original sensor was fabricated by immobilizing the Acinetobacter sp. around gold-coated tilted fiber Bragg gratings (TFBGs). To this aim, the immobilization conditions of bacteria on the gold-coated optical fiber surface were first experimentally determined. Then, the coated sensors were tested in vitro. The relative intensity of the sensor response experienced a change of 1.1 dB for a Cd2+ concentration increase from 0.1 to 1000 ppb. According to our test procedure, we estimate the experimental limit of detection to be close to 1 ppb. Cadmium ions strongly bind to the sensing surface, so the sensor exhibits a much higher sensitivity to Cd2+ than to other heavy metal ions such as Pb2+, Zn2+ and CrO42- found in contaminated water, which ensures a good selectivity.
Collapse
|
39
|
Lobry M, Loyez M, Hassan EM, Chah K, DeRosa MC, Goormaghtigh E, Wattiez R, Caucheteur C. Multimodal plasmonic optical fiber grating aptasensor. OPTICS EXPRESS 2020; 28:7539-7551. [PMID: 32225979 DOI: 10.1364/oe.385747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 05/22/2023]
Abstract
Tilted fiber Bragg gratings (TFBGs) are now a well-established technology in the scientific literature, bringing numerous advantages, especially for biodetection. Significant sensitivity improvements are achieved by exciting plasmon waves on their metal-coated surface. Nowadays, a large part of advances in this topic relies on new strategies aimed at providing sensitivity enhancements. In this work, TFBGs are produced in both single-mode and multimode telecommunication-grade optical fibers, and their relative performances are evaluated for refractometry and biosensing purposes. TFBGs are biofunctionalized with aptamers oriented against HER2 (Human Epidermal Growth Factor Receptor-2), a relevant protein biomarker for breast cancer diagnosis. In vitro assays confirm that the sensing performances of TFBGs in multimode fiber are higher or identical to those of their counterparts in single-mode fiber, respectively, when bulk refractometry or surface biosensing is considered. These observations are confirmed by numerical simulations. TFBGs in multimode fiber bring valuable practical assets, featuring a reduced spectral bandwidth for improved multiplexing possibilities enabling the detection of several biomarkers.
Collapse
|
40
|
Ermatov T, Skibina JS, Tuchin VV, Gorin DA. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E921. [PMID: 32092963 PMCID: PMC7078627 DOI: 10.3390/ma13040921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Microstructured optical fiber-based sensors (MOF) have been widely developed finding numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity to the refractive index variation, arising from the strong interaction between a guided mode and an analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis of solutions with small volume and low concentration. Here, we review the modern techniques used for the modification of the fiber's structure, which leads to an enhanced detection sensitivity, as well as the surface functionalization processes used for selective adsorption of target molecules. Novel functionalized MOF-based devices possessing these unique properties, emphasize the potential applications for fiber optics in the field of modern biophotonics, such as remote sensing, thermography, refractometric measurements of biological liquids, detection of cancer proteins, and concentration analysis. In this work, we discuss the approaches used for the functionalization of MOFs, with a focus on potential applications of the produced structures.
Collapse
Affiliation(s)
- Timur Ermatov
- Skolkovo Institute of Science and Technology, 3 Nobelya str., 121205 Moscow, Russia
| | - Julia S. Skibina
- SPE LLC Nanostructured Glass Technology, 101 50 Let Oktjabrja, 410033 Saratov, Russia;
| | - Valery V. Tuchin
- Research Educational Institute of Optics and Biophotonics, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia;
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 36 Lenin’s av., 634050 Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24 Rabochaya str., 410028 Saratov, Russia
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya str., 121205 Moscow, Russia
| |
Collapse
|