1
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
2
|
Liu Z, Zhou Y, Lu J, Gong T, Ibáñez E, Cifuentes A, Lu W. Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis. Biomark Res 2024; 12:153. [PMID: 39639411 PMCID: PMC11622463 DOI: 10.1186/s40364-024-00697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Early detection of cancer significantly improves patient outcomes, with biomarkers offering a promising avenue for earlier and more precise diagnoses. Microfluidic biosensors have emerged as a powerful tool for detecting these biomarkers in body fluids, providing enhanced sensitivity, specificity, and rapid analysis. This review focuses on recent advances in microfluidic biosensors from 2018 to 2024, detailing their operational principles, fabrication techniques, and integration with nanotechnology for cancer biomarker detection. Additionally, we have reviewed recent innovations in several aspects of microfluidic biosensors, such as novel detection technologies, nanomaterials and novel microfluidic chip structures, which significantly enhance detection capabilities. We highlight key biomarkers pertinent to early cancer detection and explore how these innovations in biosensor technology contribute to the evolving landscape of personalized medicine. We further explore how these technologies could be incorporated into clinical cancer diagnostic workflows to improve early detection and treatment outcomes. These innovations could help enable more precise and personalized cancer diagnostics. In addition, this review addresses several important issues such as enhancing the scalability and sensitivity of these biosensors in clinical settings and points out future possibilities of combining artificial intelligence diagnostics with microfluidic biosensors to optimize their practical applications. This overview aims to guide future research and clinical applications by addressing current challenges and identifying opportunities for further development in the field of biomarker research.
Collapse
Affiliation(s)
- Zhiting Liu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yingyu Zhou
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| | - Jia Lu
- School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
| | - Ting Gong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
3
|
Williamson HK, Mendes PM. An integrated perspective on measuring cytokines to inform CAR-T bioprocessing. Biotechnol Adv 2024; 75:108405. [PMID: 38997052 DOI: 10.1016/j.biotechadv.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Chimeric antigen receptor (CAR)-T cells are emerging as a generation-defining therapeutic however their manufacture remains a major barrier to meeting increased market demand. Monitoring critical quality attributes (CQAs) and critical process parameters (CPPs) during manufacture would vastly enrich acquired information related to the process and product, providing feedback to enable real-time decision making. Here we identify specific CAR-T cytokines as value-adding analytes and discuss their roles as plausible CPPs and CQAs. High sensitivity sensing technologies which can be easily integrated into manufacture workflows are essential to implement real-time monitoring of these cytokines. We therefore present biosensors as enabling technologies and evaluate recent advancements in cytokine detection in cell cultures, offering promising translatability to CAR-T biomanufacture. Finally, we outline emerging sensing technologies with future promise, and provide an overall outlook on existing gaps to implementation and the optimal sensing platform to enable cytokine monitoring in CAR-T biomanufacture.
Collapse
Affiliation(s)
- Hannah K Williamson
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
5
|
Chen MB, Javanmardi Y, Shahreza S, Serwinski B, Aref A, Djordjevic B, Moeendarbary E. Mechanobiology in oncology: basic concepts and clinical prospects. Front Cell Dev Biol 2023; 11:1239749. [PMID: 38020912 PMCID: PMC10644154 DOI: 10.3389/fcell.2023.1239749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The interplay between genetic transformations, biochemical communications, and physical interactions is crucial in cancer progression. Metastasis, a leading cause of cancer-related deaths, involves a series of steps, including invasion, intravasation, circulation survival, and extravasation. Mechanical alterations, such as changes in stiffness and morphology, play a significant role in all stages of cancer initiation and dissemination. Accordingly, a better understanding of cancer mechanobiology can help in the development of novel therapeutic strategies. Targeting the physical properties of tumours and their microenvironment presents opportunities for intervention. Advancements in imaging techniques and lab-on-a-chip systems enable personalized investigations of tumor biomechanics and drug screening. Investigation of the interplay between genetic, biochemical, and mechanical factors, which is of crucial importance in cancer progression, offers insights for personalized medicine and innovative treatment strategies.
Collapse
Affiliation(s)
- Michelle B. Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Northeastern University London, London, United Kingdom
| | - Amir Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
6
|
Peng XY(L, Peng L, Guo Y. Manipulating nanoliter fluid circuits on an all-glass chip by the magnetic field. iScience 2023; 26:107659. [PMID: 37680486 PMCID: PMC10481363 DOI: 10.1016/j.isci.2023.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Actively controlled nanoliter fluid circuits are an urgently needed technology in electronics, biomedicine, chemical synthesis, and biosensing. The difficulty lies in how to drive the microfluid in an isolated and airtight manner in glass wafer. We used a magnetic oscillator pump to realize the switching of the circulation direction and controlling the flow rate of the 10nL fluid. Results of two-dimensional numerical simulations shows that the flow field can reach a steady state and a stable flow can be obtained. The contribution of each vibration cycle to the flow rate is proportional to the frequency, decays exponentially with the viscosity, is proportional to the 4.2 power of the amplitude, and is proportional to the radius. Compared with the existing fluid technology, this technology realizes the steering and flow control of a fully enclosed magnetic control fluid circuit as small as 10nL in hard materials for the first time.
Collapse
Affiliation(s)
| | - Linghan Peng
- Biology Department, Xiamen University, Xiamen 361102, Fujian, China
| | - Yaxin Guo
- Biology Department, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
7
|
Liu X, Zhu Y, Li C, Fang Y, Chen J, Xu F, Lu Y, Shum PP, Liu Y, Wang G. Single-cell HER2 quantification via instant signal amplification in microdroplets. Anal Chim Acta 2023; 1251:340976. [PMID: 36925278 DOI: 10.1016/j.aca.2023.340976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Accurate and ultrasensitive evaluation of human epidermal growth factor receptor 2 (HER2) protein is key to early diagnosis and subtype differentiation of breast cancer. Single-cell analyses to reduce ineffective targeted therapies due to breast cancer heterogeneity and improve patient survival remain challenging. Herein, we reported a novel droplet microfluidic combined with an instant cation exchange signal amplification strategy for quantitative analysis of HER2 protein expression on single cells. In the 160 μm droplets produced by a tapered capillary bundle, abundant Immuno-CdS labeled on HER2-positive cells were replaced by Ag + to obtain Cd2+ that stimulated Rhod-5N fluorescence. This uniformly distributed and instantaneous fluorescence amplification strategy in droplets improves sensitivity and reduces signal fluctuation. Using HER2 modified PS microsphere to simulate single cells, we obtained a linear fitting of HER2-modified concentration and fluorescence intensity in microdroplets with the limit detection of 11.372 pg mL-1. Moreover, the relative standard deviation (RSD) was 4.2-fold lower than the traditional immunofluorescence technique (2.89% vs 12.21%). The HER2 protein on SK-BR-3 cells encapsulated in droplets was subsequently quantified, ranging from 9862.954 pg mL-1 and 205.26 pg mL-1, equivalent to 9.795 × 106 and 2.038 × 105 protein molecules. This detection system provides a universal platform for single-cell sensitive quantitative analysis and contributes to the evaluation of HER2-positive tumors.
Collapse
Affiliation(s)
- Xiaoxian Liu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Yifan Zhu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Caoxin Li
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Yanyun Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210093, China
| | - Jinna Chen
- Department of Electrical and Electronics Engineer, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei Xu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Perry Ping Shum
- Department of Electrical and Electronics Engineer, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210093, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China.
| |
Collapse
|
8
|
Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnology 2023; 21:85. [PMID: 36906553 PMCID: PMC10008080 DOI: 10.1186/s12951-023-01846-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The advancement of microfluidics has enabled numerous discoveries and technologies in life sciences. However, due to the lack of industry standards and configurability, the design and fabrication of microfluidic devices require highly skilled technicians. The diversity of microfluidic devices discourages biologists and chemists from applying this technique in their laboratories. Modular microfluidics, which integrates the standardized microfluidic modules into a whole, complex platform, brings the capability of configurability to conventional microfluidics. The exciting features, including portability, on-site deployability, and high customization motivate us to review the state-of-the-art modular microfluidics and discuss future perspectives. In this review, we first introduce the working mechanisms of the basic microfluidic modules and evaluate their feasibility as modular microfluidic components. Next, we explain the connection approaches among these microfluidic modules, and summarize the advantages of modular microfluidics over integrated microfluidics in biological applications. Finally, we discuss the challenge and future perspectives of modular microfluidics.
Collapse
Affiliation(s)
- Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics. Biosens Bioelectron 2023; 223:114966. [PMID: 36580816 DOI: 10.1016/j.bios.2022.114966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.
Collapse
|
10
|
Choi JH. Proteolytic Biosensors with Functional Nanomaterials: Current Approaches and Future Challenges. BIOSENSORS 2023; 13:171. [PMID: 36831937 PMCID: PMC9953628 DOI: 10.3390/bios13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Proteolytic enzymes are one of the important biomarkers that enable the early diagnosis of several diseases, such as cancers. A specific proteolytic enzyme selectively degrades a certain sequence of a polypeptide. Therefore, a particular proteolytic enzyme can be selectively quantified by changing detectable signals causing degradation of the peptide chain. In addition, by combining polypeptides with various functional nanomaterials, proteolytic enzymes can be measured more sensitively and rapidly. In this paper, proteolytic enzymes that can be measured using a polypeptide degradation method are reviewed and recently studied functional nanomaterials-based proteolytic biosensors are discussed. We anticipate that the proteolytic nanobiosensors addressed in this review will provide valuable information on physiological changes from a cellular level for individual and early diagnosis.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
11
|
Seth A, Mittal E, Luan J, Kolla S, Mazer MB, Joshi H, Gupta R, Rathi P, Wang Z, Morrissey JJ, Ernst JD, Portal-Celhay C, Morley SC, Philips JA, Singamaneni S. High-resolution imaging of protein secretion at the single-cell level using plasmon-enhanced FluoroDOT assay. CELL REPORTS METHODS 2022; 2:100267. [PMID: 36046626 PMCID: PMC9421537 DOI: 10.1016/j.crmeth.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/28/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.
Collapse
Affiliation(s)
- Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Auragent Bioscience, LLC, St. Louis, MO 63108, USA
| | - Ekansh Mittal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samhitha Kolla
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Monty B. Mazer
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Cynthia Portal-Celhay
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon Celeste Morley
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. BIOSENSORS 2022; 12:485. [PMID: 35884289 PMCID: PMC9313202 DOI: 10.3390/bios12070485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement transformation. However, due to the high cost, and time-consuming and complex operation of traditional technologies, some new technologies are being introduced into IVD, to solve the existing problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision field of IVD. The pandemic has made governments and health institutions realize the urgency of accelerating the development of POCT. Microfluidic paper-based analytical devices (μPADs), a low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in advancing the development of IVD. μPADs are composed of paper as the core material, certain unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment. The published reviews on the same topic lack a comprehensive and systematic introduction to μPAD classification and research progress in IVD segmentation. In this paper, we first briefly introduce the origin of μPADs and their role in promoting IVD, in the introduction section. Then, processing and detection methods for μPADs are summarized, and the innovative achievements of μPADs in IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of μPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress and overcome the difficulties in subsequent μPAD research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.Z.); (F.D.); (Y.Y.); (G.Z.); (C.Z.); (R.W.)
| |
Collapse
|
13
|
Zhong Q, Huang X, Zhang R, Zhang K, Liu B. Optical Sensing Strategies for Probing Single-Cell Secretion. ACS Sens 2022; 7:1779-1790. [PMID: 35709496 DOI: 10.1021/acssensors.2c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring cell secretion events is crucial to understand the fundamental cell biology that underlies cell-cell communication, migration, proliferation, and differentiation. Although strategies targeting cell populations have provided significant information about live cell secretion, they yield ensemble profiles that obscure intrinsic cell-to-cell variations. Innovation in single-cell analysis has made breakthroughs allowing accurate sensing of a wide variety of secretions and their release dynamics with high spatiotemporal resolution. This perspective focuses on the power of single-cell protocols to revolutionize cell-secretion analysis by allowing real-time and real-space measurements on single live cell resolution. We begin by discussing recent progress on single-cell bioanalytical techniques, specifically optical sensing strategies such as fluorescence-, surface plasmon resonance-, and surface-enhanced Raman scattering-based strategies, capable of in situ real-time monitoring of single-cell released ions, metabolites, proteins, and vesicles. Single-cell sensing platforms which allow for high-throughput high-resolution analysis with enough accuracy are highlighted. Furthermore, we discuss remaining challenges that should be addressed to get a more comprehensive understanding of secretion biology. Finally, future opportunities and potential breakthroughs in secretome analysis that will arise as a result of further development of single-cell sensing approaches are discussed.
Collapse
Affiliation(s)
- Qingmei Zhong
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Rongrong Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Recent advances for cancer detection and treatment by microfluidic technology, review and update. Biol Proced Online 2022; 24:5. [PMID: 35484481 PMCID: PMC9052508 DOI: 10.1186/s12575-022-00166-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Numerous cancer-associated deaths are owing to a lack of effective diagnostic and therapeutic approaches. Microfluidic systems for analyzing a low volume of samples offer a precise, quick, and user-friendly technique for cancer diagnosis and treatment. Microfluidic devices can detect many cancer-diagnostic factors from biological fluids and also generate appropriate nanoparticles for drug delivery. Thus, microfluidics may be valuable in the cancer field due to its high sensitivity, high throughput, and low cost. In the present article, we aim to review recent achievements in the application of microfluidic systems for the diagnosis and treatment of various cancers. Although microfluidic platforms are not yet used in the clinic, they are expected to become the main technology for cancer diagnosis and treatment. Microfluidic systems are proving to be more sensitive and accurate for the detection of cancer biomarkers and therapeutic strategies than common assays. Microfluidic lab-on-a-chip platforms have shown remarkable potential in the designing of novel procedures for cancer detection, therapy, and disease follow-up as well as the development of new drug delivery systems for cancer treatment.
Collapse
|
15
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
16
|
Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z. What the Microscale Systems "See" In Biological Assemblies: Cells and Viruses? Anal Chem 2021; 94:59-74. [PMID: 34812604 DOI: 10.1021/acs.analchem.1c04244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xing Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Guo
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
17
|
An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array. Mikrochim Acta 2021; 188:242. [PMID: 34226955 DOI: 10.1007/s00604-021-04897-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022]
Abstract
In-depth study of cellular heterogeneity of rare cells (e.g. circulating tumour cells (CTCs) and circulating foetal cells (CFCs)) is greatly needed in disease management but has never been completely explored due to the current technological limitations. We have developed a retrieval method for single-cell detection using a static droplet array (SDA) device through liquid segmentation with almost no sample loss. We explored the potential of using SDA for low sample input and retrieving the cells of interest using everyday laboratory equipment for downstream molecular analysis. This single-cell isolation and retrieval method is low-cost, rapid and provides a solution to the remaining challenge for single rare cell detection. The entire process takes less than 15 min, is easy to fabricate and allows for on-chip analysis of cells in nanolitre droplets and retrieval of desired droplets. To validate the applicability of our device and method, we mimicked detection of single CTCs by isolating and retrieving single cells and perform real-time PCR on their mRNA contents.
Collapse
|
18
|
Wu X, Wu H, Wang H, Luo L, Wang J, Wu B, He Q, Cao G, Lei Y, Chen X, Dai J. A new strategy to develop pseudorabies virus-based bivalent vaccine with high immunogenicity of porcine circovirus type 2. Vet Microbiol 2021; 255:109022. [PMID: 33711567 DOI: 10.1016/j.vetmic.2021.109022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Herpesvirus based multivalent vaccines have been extensively studied, whereas few of them have been successfully used in clinic and animal husbandry industry due to the low expression of foreign immunogens in herpesvirus. In this study, we developed a new strategy to construct herpesvirus based bivalent vaccine with high-level expression of foreign immunogen, by which the ORF2 gene encoding the major antigen protein Cap of porcine circovirus type 2 (PCV2), was highly expressed in pseudorabies virus (PRV). To obtain the high expression of PCV2 immunogen, tandem repeats of PCV2 ORF2 gene were firstly linked by protein quantitation ratioing (PQR) linker to reach equal expression of each ORF2 gene. Then, the multiple copies of ORF2 gene were respectively inserted into the gE and gG sites of PRV using CRISPR/Cas9 system, in which the expression of ORF2 gene was driven by endogenous strong promoters of PRV. Through this way, the highest yield of Cap protein was achieved in two copies of quadruple ORF2 gene insertion. Finally, in mice and pigs immunized with the bivalent vaccine candidate, we detected high titer of specific antibodies for PRV and neutralized antibodies for PCV2, and observed protective effect of the bivalent vaccine candidate against PRV challenge in immunized pigs, suggesting a potential clinical application of the bivalent vaccine candidate we constructed. Together, our strategy could be extensively applied to the generation of other multivalent vaccines, and will pave the way to construct herpesvirus based multivalent vaccines to effectively reduce the cost of vaccine.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongxia Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beili Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Lei
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| | - Xi Chen
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
19
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
20
|
Farshchi F, Hasanzadeh M. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer. Biomed Pharmacother 2020; 134:111153. [PMID: 33360045 DOI: 10.1016/j.biopha.2020.111153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
Cancer metastasis is one of the foremost causes of cancer incidence and fatality in the whole of the world. Circulating tumor cells (CTC) have been confirmed to be among the most significant stimuli of metastasis in recent years and presently are the subject of extensive research aiming to be accurately identified by using biological and physical properties. Among the various studies conducted for isolation, identification, and characterization of CTCs, microfluidic systems have aroused great attention owing to their unique advantages such as low-cost, simplicity, reduction in reagent consumption, miniaturization, fast and precise control. The purpose of this review is to provide an overview of current state of the microfluidic biosensors for the screening of CTCs. Additionally, given the recent progress in this field, future outlook for the development of the microfluidics biosensing is briefly discussed.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Recent Development of Microfluidic Technology for Cell Trapping in Single Cell Analysis: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microfluidic technology has emerged from the MEMS (Micro-Electro-Mechanical System)-technology as an important research field. During the last decade, various microfluidic technologies have been developed to open up a new era for biological studies. To understand the function of single cells, it is very important to monitor the dynamic behavior of a single cell in a living environment. Cell trapping in single cell analysis is urgently demanded There have been some review papers focusing on drug screen and cell analysis. However, cell trapping in single cell analysis has rarely been covered in the previous reviews. The present paper focuses on recent developments of cell trapping and highlights the mechanisms, governing equations and key parameters affecting the cell trapping efficiency by contact-based and contactless approach. The applications of the cell trapping method are discussed according to their basic research areas, such as biology and tissue engineering. Finally, the paper highlights the most promising cell trapping method for this research area.
Collapse
|