1
|
Li J, Zhang D, Xia J. The controllable synthesis of multi-color carbon quantum dots modified by polythiophene and their application in fluorescence detection of Au 3+ and Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124794. [PMID: 39024785 DOI: 10.1016/j.saa.2024.124794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Herein, hydrothermal method was used to prepare a series of multi-color polythiophene modified carbon quantum dots. Under UV excitation, fluorescence their maximum emission wavelengths appear at 612 nm, 570 nm, and 540 nm respectively. The prepared CD-BTH and CD-BN can have specific detection of Au3+ and Hg2+ through fluorescence quenching effect. The detection limits for Au3+ are 3 nM and 5.4 nM respectively, and for Hg2+ are 23 nM and 90 nM respectively. CD-KN detects Au3+ specifically through fluorescence resonance, with a detection limit of 33 nM. Under the interference of other metal ions, three types of polythiophene modified quantum carbon dots exhibit excellent selectivity for the responsive ions. Meanwhile, this article also elucidates the law that as the electron withdrawing ability of the side chains of polythiophene derivatives increasing, the fluorescence emission peaks of the prepared polythiophene modified carbon dots shifts red and the fluorescence quantum yield is higher.
Collapse
Affiliation(s)
- Jianing Li
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
2
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
3
|
Zhao W, Huang C, Guo X, Zhu Y, Li Y, Duan Y, Gao J. A Fluorescence Biosensor Based on Carbon Quantum Dots Prepared from Pomegranate Peel and T-Hg 2+-T Mismatch for Hg 2+ Detection. J Fluoresc 2024:10.1007/s10895-024-03645-5. [PMID: 38427224 DOI: 10.1007/s10895-024-03645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Mercury ions (Hg2+) can cause damage to human health, and thus, the study of the detection of Hg2+ is extraordinarily important in daily life. This work reported a fluorescence biosensor for the detection of Hg2+. The key point of this strategy was that the fluorescence of carbon quantum dots made from pomegranate peel (P-CQDs) was quenched by hemin, and restored after G-quadruplex binding with hemin. The presence of Hg2+ caused thymine (T)-rich DNA fragments to form T-Hg2+-T mismatches, and this change allowed the release of G-quadruplex. G-quadruplex could change the fluorescence of hemin/P-CQDs. P-CQDs exhibited excellent properties through characterization analysis, such as transmission electron microscope, X-ray photoelectron spectroscopy and Fourier transform infrared. This proposed fluorescence detection strategy established the linear ranges of Hg2+ from 1 nM to 50 nM. In conclusion, this simple biosensor had the advantages of strong sensitivity, high selectivity, and low cost for Hg2+ detection in environmental water samples.
Collapse
Affiliation(s)
- Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Xiyu Guo
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Youyu Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yingfeng Duan
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jie Gao
- Department of Stomatology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, 710061, P. R. China
| |
Collapse
|
4
|
Fang H, Zhou Y, Ma Y, Chen Q, Tong W, Zhan S, Guo Q, Xiong Y, Tang BZ, Huang X. M13 Bacteriophage-Assisted Recognition and Signal Spatiotemporal Separation Enabling Ultrasensitive Light Scattering Immunoassay. ACS NANO 2023; 17:18596-18607. [PMID: 37698300 DOI: 10.1021/acsnano.3c07194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The demand for the ultrasensitive and rapid quantitative analysis of trace target analytes has become increasingly urgent. However, the sensitivity of traditional immunoassay-based detection methods is limited due to the contradiction between molecular recognition and signal amplification caused by the size effect of nanoprobes. To address this dilemma, we describe versatile M13 phage-assisted immunorecognition and signal transduction spatiotemporal separation that enable ultrasensitive light-scattering immunoassay systems for the quantitative detection of low-abundance target analytes. The newly developed immunoassay strategy combines the M13 phage-assisted light scattering signal fluctuations of gold nanoparticles (AuNPs) with gold in situ growth (GISG) technology. Given the synergy of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation, the practical detection capability of this strategy can achieve the ultrasensitive and rapid quantification of ochratoxin A and alpha-fetoprotein in real samples at the subfemtomolar level within 50 min, displaying about 4 orders of magnitude enhancement in sensitivity compared with traditional phage-based ELISA. To further improve the sensitivity of our immunoassay, the biotin-streptavidin amplification scheme is implemented to detect severe acute respiratory syndrome coronavirus 2 spike protein down to the attomolar range. Overall, this study offers a direction for ultrasensitive quantitative detection of target analytes by the synergistic combination of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yanbing Ma
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qi Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Weipeng Tong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Shengnan Zhan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qian Guo
- Jiangxi Province Centre for Disease Control and Prevention, Nanchang 330029, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang 330006, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang 330006, P. R. China
| |
Collapse
|
5
|
Sun Q, Shen L, Zhang BL, Yu J, Wei F, Sun Y, Chen W, Wang S. Advance on Engineering of Bacteriophages by Synthetic Biology. Infect Drug Resist 2023; 16:1941-1953. [PMID: 37025193 PMCID: PMC10072152 DOI: 10.2147/idr.s402962] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Since bacteriophages (phages) were firstly reported at the beginning of the 20th century, the study on them experiences booming-fading-emerging with discovery and overuse of antibiotics. Although they are the hotspots for therapy of antibiotic-resistant strains nowadays, natural phage applications encounter some challenges such as limited host range and bacterial resistance to phages. Synthetic biology, one of the most dramatic directions in the recent 20-years study of microbiology, has generated numerous methods and tools and has contributed a lot to understanding phage evolution, engineering modification, and controlling phage-bacteria interactions. In order to better modify and apply phages by using synthetic biology techniques in the future, in this review, we comprehensively introduce various strategies on engineering or modification of phage genome and rebooting of recombinant phages, summarize the recent researches and potential directions of phage synthetic biology, and outline the current application of engineered phages in practice.
Collapse
Affiliation(s)
- Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Bai-Ling Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jiaoyang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, 210003, People’s Republic of China
- Correspondence: Wei Chen; Shiwei Wang, Email ;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| |
Collapse
|
6
|
Wang X, Hu C, Wang X, Luo Z, Zhen S, Zhan L, Huang C, Li Y. Facile synthesis of dual-ligand terbium-organic gels as ratiometric fluorescence probes for efficient mercury detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129080. [PMID: 35580503 DOI: 10.1016/j.jhazmat.2022.129080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) pollution can negatively impact ecosystems, and there is a need for simple Hg2+ monitoring platforms. Here, a dual-ligand fluorescence probe based on terbium-organic gels (Tb-L0.2P0.8 MOGs) was constructed for efficient Hg2+ detection. Tb-L0.2P0.8 MOGs were developed through a facile room-temperature gelation method, showing two emission peaks derived from luminol and Tb3+ at 424 nm and 544 nm, respectively. The aggregation-induced emission (AIE) effect between luminol and Tb3+ led to luminol with blue fluorescence. However, Hg2+ could dramatically quench the fluorescence signal of luminol at 424 nm because of the intense coordination interaction of Hg2+ with luminol and photo-induced electron transfer (PET). The Phen ligand could sensitize the luminescence of Tb3+ and offer a reference fluorescence, thus resulting in a unique ratiometric fluorescence response toward Hg2+. This novel nanoprobe had excellent linearity with Hg2+ concentrations range of 0.1-30 μM; the detection limit was 3.6 nM. The analysis of real samples showed the potential application of MOGs for measuring Hg2+ in porphyra and tap water. Mixed ligands were introduced for high-efficiency strategies to improve the analytical performance by regulating the emission behavior of MOGs.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Congyi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiaoyan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zilan Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Kadi MW, Faisal M, Mohamed RM, Ismail AA. Optical detection, selective and fast adsorption of Hg(II) ions anchored mesoporous TiO2 nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Liu Y, Zhou P, Wu Y, Su X, Liu H, Zhu G, Zhou Q. Fast and efficient "on-off-on" fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154357. [PMID: 35259368 DOI: 10.1016/j.scitotenv.2022.154357] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
A kind of nitrogen doped carbon dots (N-CDs) was facilely fabricated from polyethyleneimine and anhydrous citric acid, and which was adopted to develop a neoteric "on-off" and "off-on" fluorescent sensor for rapidly and efficiently sensing Hg2+ and I-. The fluorescence of N-CDs was notably quenched (off) in the existence of Hg2+ derived from strong interaction and the electron transfer between N-CDs and Hg2+, while the quenched fluorescence of the N-CDs and Hg2+ system was strikingly regained by addition of I- (on) resulted from the separation of N-CDs and Hg2+ due to the higher binding preference between Hg2+ and I-. Under optimal conditions, the linear detection ranges were 0.01-20 μM for Hg2+ and 0.025-7 μM for I-, respectively. Meanwhile, the detection limits could be down to 3.3 nM for Hg2+ and 8.5 nM for I-, respectively. Satisfied recoveries had also been gained for measuring Hg2+ and I- in practical water samples. The constructed "on-off-on" fluorescent sensor provided a simple, rapid, robust and reliable platform for detecting Hg2+ and I- in environmental applications.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yalin Wu
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 10037, China
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China.
| |
Collapse
|
9
|
Wei Z, Wei X, Zhao C, Zhang H, Zhang Z. Bioreduction of Gold Ions under Greener Conditions by the Thiol-Modified M13 Bacteriophage and with Hydroxylamine as the Autocatalytic Reducing Agent. ACS OMEGA 2022; 7:9951-9957. [PMID: 35350307 PMCID: PMC8945180 DOI: 10.1021/acsomega.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bioreduction of gold ions by the thiol-modified M13 bacteriophage (M13-SH) has been exploited as the potential alternative to conventional methods based on toxic chemicals, due to the gold affinity of the thiol groups, inherent gold reduction, and high specific surface area of the filamentous virus. Such efforts have been hindered by harsh conditions involving strong reducing agents and extreme pH that are harmful to the virus. Herein, a virus-friendly and greener method of bioreduction of AuCl4 - at neutral pH based on M13-SH is demonstrated. M13-SH was prepared by coupling the virus with N-succinimidyl S-acetylthioacetate, followed by deacylation in the presence of hydroxylamine·HCl to expose the thiol groups. The key finding is that without time-consuming purification, the mixture after deacylation consisting of M13-SH, residual hydroxylamine, and so forth can directly turn ionic gold species into gold, leading to macroscopic precipitated products with interconnected linear structures consisting of fused gold nanoparticles. Besides working as the virus-friendly reducing agent with a unique autocatalytic style, hydroxylamine diminishes disulfide bonding-induced intervirus bundling of M13-SH so as to maintain its efficient biosorption of ionic gold precursors. This work demonstrates a general and green strategy of bioreduction of gold via combination of the gold-affinity proteins or organisms and the unique autocatalytic reduction of hydroxylamine.
Collapse
Affiliation(s)
- Zongwu Wei
- College
of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Xueyan Wei
- College
of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chenxi Zhao
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
Institute of Polymer Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, China
| | - Han Zhang
- College
of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhenkun Zhang
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
Institute of Polymer Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Brooks SM, Alper HS. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat Commun 2021; 12:1390. [PMID: 33654085 PMCID: PMC7925609 DOI: 10.1038/s41467-021-21740-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to 'outside-the-lab' scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.
Collapse
Affiliation(s)
- Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Zhang X, Huang Z, Guo Z, Han Y, Zhang L, Yang W. Fabrication of Bovine Serum Albumin@Au Particles for Colorimetric Detection of Glutathione. ACS APPLIED BIO MATERIALS 2020; 3:9109-9116. [PMID: 35019588 DOI: 10.1021/acsabm.0c01321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abnormal concentrations of glutathione (GSH) are important indicators of many human diseases such as cancers, liver damage, AIDS, and Alzheimer's disease. In this work, a kind of bovine serum albumin (BSA)@Au core-shell particles were fabricated using 110 nm BSA aggregates as a template, onto which gold shells composed of Au nanoparticles (NPs) were grown through a seeded growth approach. The morphology of the Au shells deposited on BSA aggregates was tuned from sparse to dense distribution of Au NPs by increasing the concentration of silver ions contained in the growth solutions. Surface plasmon resonance (SPR) peaks of BSA@Au particles were tunable in the range from 550 to 620 nm, corresponding to evolution in color from red to blue due to the enhanced plasmonic coupling among the Au NPs in the shell. The blue BSA@Au particles were qualified for colorimetric detection of GSH since GSH may act as a swelling agent for BSA@Au particles by breaking the intermolecular disulfide bonds in BSA aggregates. With an increased amount of GSH presented, the color of BSA@Au particles evolved from blue to red attributed to gradual swelling of BSA@Au particles and thus increased the distance among the Au NPs in the shell, which was readily recognized by naked eyes or recorded by ultraviolet-visible (UV-vis) spectroscopy. This colorimetric method exhibited good selectivity and anti-interference capability in the analysis of GSH in real samples. In addition, a solid sensing system for the detection of GSH was designed and fabricated by dispersing BSA@Au particles into an agarose hydrogel.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Lijuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Adsorption Mechanisms and Characteristics of Hg2+ Removal by Different Fractions of Biochar. WATER 2020. [DOI: 10.3390/w12082105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The adsorption mechanisms of mercury ion (Hg2+) by different fractions of biochar were studied, providing a theoretical basis and practical value for the use of biochar to remediate mercury contamination in water. Biochar (RC) was prepared using corn straw as the raw material. It was then fractionated, resulting in inorganic carbon (IC), organic carbon (OC), hydroxyl-blocked carbon (BHC), and carboxyl-blocked carbon (BCC). Before and after Hg2+ adsorption, the biochar fractions were characterized by several techniques, such as energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Obtained results indicate that the reaction mechanisms of RC for Hg2+ removal mainly include electrostatic adsorption, ion exchange, reduction, precipitation, and complexation. The equilibrium adsorption capacity of RC for Hg2+ is 75.56 mg/g, and the adsorption contribution rates of IC and OC are approximately 22.4% and 77.6%, respectively. Despite the lower rate, IC shows the largest adsorption capacity, of 92.63 mg/g. This is attributed to all the mechanisms involved in Hg2+ adsorption by IC, with ion exchange being the main reaction mechanism (accounting for 39.8%). The main adsorption mechanism of OC is the complexation of carboxyl and hydroxyl groups with Hg2+, accounting for 71.6% of the total OC contribution. BHC and BCC adsorb mercury mainly via the reduction–adsorption mechanism, accounting for 54.6% and 54.5%, respectively. Among all the adsorption mechanisms, the complexation reaction of carboxyl and hydroxyl groups with Hg2+ is the dominant effect.
Collapse
|