1
|
Cui H, Li P, Su Z, Guan S, Dong H, Dong X. Preparation and Stability Study of an Injectable Hydrogel for Artificial Intraocular Lenses. Polymers (Basel) 2024; 16:2562. [PMID: 39339025 PMCID: PMC11434676 DOI: 10.3390/polym16182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we synthesized a polyacrylamide-sodium acrylate hydrogel (PAH) through the cross-linking polymerization of acrylamide and sodium acrylate. This hydrogel possesses excellent biocompatibility and exhibits several favorable properties. Notably, the hydrogel demonstrates high transparency (94%) and a refractive index (1.41 ± 0.07) that closely matches that of the human lens (1.42). Additionally, it shows strong compressive strength (14.00 kPa), good extensibility (1400%), and an appropriate swelling ratio (50 ± 2.5%). Crucially, the tensile modulus of the hydrogel is 2.07 kPa, which closely aligns with the elastic modulus of the human lens (1.70-2.10 kPa), enabling continuous focal adjustment under the tension exerted by the ciliary muscles.
Collapse
Affiliation(s)
- Haifeng Cui
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Pengfei Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Zekun Su
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Shiqiang Guan
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - He Dong
- Department Ophthalmology, The Third People’s Hospital of Dalian, Dalian 116033, China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| |
Collapse
|
2
|
Lu X, Zhou X, Song B, Zhang H, Cheng M, Zhu X, Wu Y, Shi H, Chu B, He Y, Wang H, Hong J. Framework Nucleic Acids Combined with 3D Hybridization Chain Reaction Amplifiers for Monitoring Multiple Human Tear Cytokines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400622. [PMID: 38489844 DOI: 10.1002/adma.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Existing tear sensors are difficult to perform multiplexed assays due to the minute amounts of biomolecules in tears and the tiny volume of tears. Herein, the authors leverage DNA tetrahedral frameworks (DTFs) modified on the wireless portable electrodes to effectively capture 3D hybridization chain reaction (HCR) amplifiers for automatic and sensitive monitoring of multiple cytokines in human tears. The developed sensors allow the sensitive determination of various dry eye syndrome (DES)-associated cytokines in human tears with the limit of detection down to 0.1 pg mL-1, consuming as little as 3 mL of tear fluid. Double-blind testing of clinical DES samples using the developed sensor and commercial ELISA shows no significant difference between them. Compared with single-biomarker diagnosis, the diagnostic accuracy of this sensor based on multiple biomarkers has improved by ≈16%. The developed system offers the potential for tear sensors to enable personalized and accurate diagnosis of various ocular diseases.
Collapse
Affiliation(s)
- Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Hong Zhang
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Mingrui Cheng
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Xingyu Zhu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Macao Translatoinal Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China
| |
Collapse
|
3
|
Wang J, Zhang H, Hu H, Hu S, Ma L. An enzyme-responsive hydrogel of ferrocene-grafted carboxymethyl chitosan as a soft electrochemical sensor for MMP-9 detection. Int J Biol Macromol 2024; 268:131582. [PMID: 38631589 DOI: 10.1016/j.ijbiomac.2024.131582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Matrix metalloproteinase 9 (MMP-9) plays an important role in wound healing. However, overexpression of MMP-9 leads to the degradation of the newly formed extracellular matrix, which delays wound healing, ultimately leading to chronic wounds. Therefore, timely monitoring of the MMP-9 activity using simple, cost-effective methods is important to prevent the formation of chronic wounds. In this work, ferrocene-modified MMP-9 cleavage peptide (Fc-MG) modified carboxymethyl chitosan hydrogels were prepared as electrochemical biosensors. In the presence of MMP-9, the peptide chain is sheared, and the electrochemically active ferrocene segment is released. Therefore, analyzing the electrochemical activity of hydrogels using differential pulse voltammetry (DPV) can be used to determine MMP-9 activity. The results showed that the DPV peaks were correlated with the MMP-9 concentration in phosphate-buffered saline (PBS, pH 7.4) and Dulbecco's modified Eagle's medium (DMEM). Specifically, the corresponding coefficient of determination (R2) were 0.918 and 0.993. The limit of detections were 73.08 ng/mL and 131.71 ng/mL, respectively. Compared with the enzyme-linked immunosorbent assay, the hydrogel biosensor determined the concentration of MMP-9 in solution with simpler steps. This study demonstrates a novel strategy based on Fc-MG-modified hydrogels to monitor MMP-9 activity in cell secretion samples and shows the potential application in chronic wounds.
Collapse
Affiliation(s)
- Jinze Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haiqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongtao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sentao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
4
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Lee S, Kim E, Moon CE, Park C, Lim JW, Baek M, Shin MK, Ki J, Cho H, Ji YW, Haam S. Amplified fluorogenic immunoassay for early diagnosis and monitoring of Alzheimer's disease from tear fluid. Nat Commun 2023; 14:8153. [PMID: 38071202 PMCID: PMC10710446 DOI: 10.1038/s41467-023-43995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Accurate diagnosis of Alzheimer's disease (AD) in its earliest stage can prevent the disease and delay the symptoms. Therefore, more sensitive, non-invasive, and simple screening tools are required for the early diagnosis and monitoring of AD. Here, we design a self-assembled nanoparticle-mediated amplified fluorogenic immunoassay (SNAFIA) consisting of magnetic and fluorophore-loaded polymeric nanoparticles. Using a discovery cohort of 21 subjects, proteomic analysis identifies adenylyl cyclase-associated protein 1 (CAP1) as a potential tear biomarker. The SNAFIA demonstrates a low detection limit (236 aM), good reliability (R2 = 0.991), and a wide analytical range (0.320-1000 fM) for CAP1 in tear fluid. Crucially, in the verification phase with 39 subjects, SNAFIA discriminates AD patients from healthy controls with 90% sensitivity and 100% specificity in under an hour. Utilizing tear fluid as a liquid biopsy, SNAFIA could potentially aid in long-term care planning, improve clinical trial efficiency, and accelerate therapeutic development for AD.
Collapse
Affiliation(s)
- Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chae-Eun Moon
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minseok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisun Ki
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Yong Woo Ji
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Wu KY, Brister D, Bélanger P, Tran SD. Exploring the Potential of Nanoporous Materials for Advancing Ophthalmic Treatments. Int J Mol Sci 2023; 24:15599. [PMID: 37958583 PMCID: PMC10650608 DOI: 10.3390/ijms242115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of ophthalmology is undergoing significant transformations, driven by technological advancements and innovations in materials science. One of the advancements in this evolution is the application of nanoporous materials, endowed with unique physicochemical properties ideal for a variety of ophthalmological applications. Characterized by their high surface area, tunable porosity, and functional versatility, these materials have the potential to improve drug delivery systems and ocular devices. This review, anchored by a comprehensive literature focusing on studies published within the last five years, examines the applications of nanoporous materials in ocular drug delivery systems (DDS), contact lenses, and intraocular lenses. By consolidating the most current research, this review aims to serve as a resource for clinicians, researchers, and material scientists engaged in the rapidly evolving field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Danielle Brister
- College of Public Health, National Taiwan University (NTU), Taipei 106319, Taiwan
| | - Paul Bélanger
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Koerselman M, Morshuis LCM, Karperien M. The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine. Acta Biomater 2023; 170:1-14. [PMID: 37517622 DOI: 10.1016/j.actbio.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Over the years, much research has been focused on the use of small molecules such as peptides or aptamers or more recently on the use of variable antigen-binding domain of heavy chain only antibodies in the field of tissue engineering and regenerative medicine. The use of these molecules originated as an alternative for the larger conventional antibodies, of which most drawbacks are derived from their size and complex structure. In the field of tissue engineering and regenerative medicine, biological functionalities are often conjugated to biomaterials in order to (re-)create an in vivo like situation, especially when bioinert biomaterials are used. Those biomaterials are functionalized with these functionalities for instance for the purpose of cell attachment or cell targeting for targeted drug delivery but also for local enrichment or blocking of ligands such as growth factors or cytokines on the biomaterial surface. In this review, we further refer to peptides, aptamers, and variable antigen-binding domain of heavy chain only antibodies as biological functionalities. Here, we compare these biological functionalities within the field of tissue engineering and regenerative medicine and give an overview of recent work in which these biological functionalities have been explored. We focus on the previously mentioned purposes of the biological functionalities. We will compare structural differences, possible modifications and (chemical) conjugation strategies. In addition, we will provide an overview of biologicals that are, or have been, involved in clinical trials. Finally, we will highlight the challenges of each of these biologicals. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering there is broad application of functionalized biomaterials for cell attachment, targeted drug delivery and local enrichment or blocking of growth factors. This was previously mostly done via conventional antibodies, but their large size and complex structure impose various challenges with respect of retaining biological functionality. Peptides, aptamers and VHHs may provide an alternative solution for the use of conventional antibodies. This review discusses the use of these molecules for biological functionalization of biomaterials. For each of the molecules, their characteristics, conjugation possibilities and current use in research and clinical trials is described. Furthermore, this review sets out the benefits and challenges of using these types of molecules for different fields of application.
Collapse
Affiliation(s)
- Michelle Koerselman
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Lisanne C M Morshuis
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands.
| |
Collapse
|
8
|
Xie X, Liu D, Wang W, Xiang J, Yang M, Liu G. Microelectrode-Based Electrochemical Impedance Determination of Brain-Derived Neurotrophic Factor in Aqueous Humor for Diagnosis of Glaucoma. Anal Chem 2023; 95:2087-2093. [PMID: 36628978 DOI: 10.1021/acs.analchem.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The abundance of brain-derived neurotrophic factor (BDNF) in aqueous humor (AH) is an ideal biomarker for the diagnosis of glaucoma, a chronic progressive optic neuropathy and the most frequent cause of irreversible blindness. The difficulty of AH-based BDNF detection is from the small amount of extracted AH in a paracentesis (<100 μL) and the ultra-low abundance of BDNF. In this work, we systematically studied the non-specific adsorption of biofluids on the bare gold electrode by electrochemistry and Raman spectroscopy techniques, revealing the unexpected negative correlation of the extent of non-specific adsorption with the size of the electrode. Based on it, a simple microelectrode-based sensor without the introduction of the blocking layer was developed for the detection of BDNF in the AH sample. Using electrochemical impedance spectroscopy (EIS) and extracting the changes of electron-transfer resistance of the electrochemical probe [Fe(CN)6]3-/4- on the sensor surface, the BDNF was quantified. The dynamic range was from 0.5 to 50 pg·mL-1, with a detection limit of 0.3 pg·mL-1 and a sample consumption of 5 μL. The real AH sample analysis confirmed the significant decrease of BDNF abundance in the AH of glaucoma patients. Our microelectrode-based EIS sensor displayed prominent advantages on simplified preparation, sensitive response, and low sample consumption. This AH-based BDNF analysis is expected to be used for the screening and diagnosis of glaucoma, especially for the high-risk population who have ocular diseases and have to undergo surgeries.
Collapse
Affiliation(s)
- Xin Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha410083, P. R. China
| | - Weili Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha410083, P. R. China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| |
Collapse
|
9
|
Şener Raman T, Kuehnert M, Daikos O, Scherzer T, Krömmelbein C, Mayr SG, Abel B, Schulze A. A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation. Front Chem 2023; 10:1094981. [PMID: 36700077 PMCID: PMC9868307 DOI: 10.3389/fchem.2022.1094981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.
Collapse
Affiliation(s)
| | | | - Olesya Daikos
- Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Tom Scherzer
- Institute of Surface Engineering (IOM), Leipzig, Germany
| | | | - Stefan G. Mayr
- Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Institute of Chemical Technology of the University Leipzig, Leipzig, Germany
| | - Agnes Schulze
- Institute of Surface Engineering (IOM), Leipzig, Germany,*Correspondence: Agnes Schulze,
| |
Collapse
|
10
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
12
|
Sheng A, Lin L, Zhu J, Zhuang J, Li J, Chang L, Cheng H. Micro/nanodevices for assessment and treatment in stomatology and ophthalmology. MICROSYSTEMS & NANOENGINEERING 2021; 7:11. [PMID: 33532080 PMCID: PMC7844113 DOI: 10.1038/s41378-021-00238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 05/09/2023]
Abstract
Micro/nanodevices have been widely applied for the real-time monitoring of intracellular activities and the delivery of exogenous substances in the past few years. This review focuses on miniaturized micro/nanodevices for assessment and treatment in stomatology and ophthalmology. We first summarize the recent progress in this field by examining the available materials and fabrication techniques, device design principles, mechanisms, and biosafety aspects of micro/nanodevices. Following a discussion of biochemical sensing technology from the cellular level to the tissue level for disease assessment, we then summarize the use of microneedles and other micro/nanodevices in the treatment of oral and ocular diseases and conditions, including oral cancer, eye wrinkles, keratitis, and infections. Along with the identified key challenges, this review concludes with future directions as a small fraction of vast opportunities, calling for joint efforts between clinicians and engineers with diverse backgrounds to help facilitate the rapid development of this burgeoning field in stomatology and ophthalmology.
Collapse
Affiliation(s)
- An’an Sheng
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Department of Stomatology, Xiang’An Hospital of Xiamen University, 361100 Xiamen, China
- School of Stomatology, North China University of Science and Technology, 063210 Tangshan, China
| | - Long Lin
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Institute of Plastic Machinery and Plastic Engineering, School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 USA
| | - Jian Zhuang
- Institute of Plastic Machinery and Plastic Engineering, School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jian Li
- Department of Stomatology, Xiang’An Hospital of Xiamen University, 361100 Xiamen, China
| | - Lingqian Chang
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, 230032 Hefei, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
13
|
Mohseni M, S A AR, H Shirazi F, Nemati NH. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Int J Biol Macromol 2020; 167:881-893. [PMID: 33186646 DOI: 10.1016/j.ijbiomac.2020.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023]
Abstract
Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite precipitation polymerization method in presence of graphene nanoparticles and sodium dodecyl sulfate. All intermediate and final products including spun PVDF/MCM41 nanofibers, PAG nanoparticles, and gellan-gelatin gel scaffolds containing PVDF/MCM41 nano spun fibers and PAG nanoparticles are characterized using different analysis methods. Chemical and structural analyses of PAG nanoparticles and PVDF/MCM41 nanofibers have been done using FTIR and XRD methods. The morphological structure of different samples is investigated using SEM. Morphological investigation and DLS results confirm fabrication of MCM41 nanoparticle with a completely spherical shape and the average size of 50 nm of which have been dispersed in electrospun PVDF nanofibers very well. Also, the preparation of PAG nanoparticle with high conductivity is verified with morphological and conductivity tests. MTT easy and biocompatibility test results indicate potential applicability of the prepared conductive self -stimuli nano-scaffold for nerve regeneration applications.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Ramazani S A
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Farshad H Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|