1
|
Zou R, Shi J, Lu Q, Sun C, Ye H, Yan X, Tian F, Li H. Cobalt MOF-hybridized nanozyme catalysts breaking pH limitations for boosted chlorpyrifos sensing performance. Food Chem 2025; 475:143399. [PMID: 39961208 DOI: 10.1016/j.foodchem.2025.143399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Given the potential dangers of organophosphorus pesticides to food safety and human health, the development of a reliable and precise detection platform for pesticides is essential. In this study, we present a novel 'armor-plating' laccase-mimetic catalyst (DNA-Cu@MOFs)-based colorimetric platform, which enables stable and selective pesticide detection. The DNA-Cu@MOFs enhance catalytic stability and overcome pH limitations, enabling effective catalysis under neutral and alkaline physiological conditions, making them well-suited for practical applications in biosensor development. By combining the catalytic properties of DNA-Cu@MOFs with a high-affinity biorecognition element (acetylcholinesterase), the platform achieves a linear detection range of 3.0-90 ng mL-1 for chlorpyrifos, with a detection limit of 0.75 ng mL-1. Notably, this platform demonstrates significant stability in chlorpyrifos detection even in the presence of environmental interferents. This robust colorimetric platform offers new possibilities for pesticide detection and provides a solid foundation for the development of comprehensive and accurate pesticide monitoring systems.
Collapse
Affiliation(s)
- Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junxiao Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xu Yan
- Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fangjie Tian
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Gimeno-Alcañiz JV, Abad-Fuentes A, Navarro-Fuertes I, Duncan H, López-Puertollano D, Abad-Somovilla A, Mercader JV. A sensitive immunoassay for the rapid analysis of fluopicolide. Talanta 2025; 287:127562. [PMID: 39824053 DOI: 10.1016/j.talanta.2025.127562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
The analysis of chemical xenobiotics in human, food, and environmental samples has become a global priority. Consequently, both public and private laboratories require rapid, cost-effective analytical methods for quality and safety control. Fluopicolide, a fungicide used to combat plant diseases, poses potential toxicological risks to humans and animals. In this study, the first monoclonal antibodies targeting this fungicide were generated, and a fast, highly sensitive immunoanalytical method was developed. With this aim, two haptens with opposite linker tethering sites were rationally designed and synthesized in high yields for immunogen and antigen preparation. Both haptens closely mimic fluopicolide, and their conjugates elicited similar immunogenicity in rabbits. Furthermore, a collection of high-affinity monoclonal antibodies was obtained from mice immunized with either of the two immunizing conjugates. A third hapten, featuring a heterologous linker tethering site and an additional chlorinated phenyl position, was also synthesized. All antibodies were thoroughly characterized using two competitive enzyme-linked immunosorbent assay formats, utilizing both homologous and heterologous conjugates. Remarkably, outstanding sensitivity to fluopicolide was achieved (IC50 = 0.02 ng/mL) when the hapten conjugate with double heterology was used as the competing antigen. This immunoassay was optimized and successfully applied to the analysis of fortified tomato and grape samples across a concentration range of 1-2000 ng/mL, yielding excellent recoveries (77.7 %-119.6 %) and coefficients of variation below 20 %. These findings demonstrate the effectiveness of the developed immunoassay for the analysis of fluopicolide residues in food samples.
Collapse
Affiliation(s)
- José V Gimeno-Alcañiz
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Av. Agustí Escardino 7, Paterna, 46980, Valencia, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Av. Agustí Escardino 7, Paterna, 46980, Valencia, Spain
| | - Ismael Navarro-Fuertes
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Hadyn Duncan
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Daniel López-Puertollano
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Josep V Mercader
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Av. Agustí Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
3
|
Chen L, Kan J, Zalán Z, Xu D, Cai T, Chen K. Application of nanomaterials in the detection of pesticide residues in spices. Food Chem 2025; 473:143101. [PMID: 39889633 DOI: 10.1016/j.foodchem.2025.143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
With the development of global trade and the improvement of consumer safety awareness, the problem of pesticide residues in spices has received considerable attention. At the same time, with the advancement of nanotechnology, nanomaterials have shown great potential in pesticide residue detection. Given the wide variety of spices and their complex matrices, there has been a lack of a comprehensive review on the application of nanomaterials in pesticide residue detection in spices until now. In this study, the advancements in research on newly developed nanomaterials were examined for the detection of pesticide residues in spices over the last 10 years, focusing on the applications of carbon nanotubes, graphene and its derivatives, metal nanoparticles, metal-organic frameworks, molecularly imprinted polymers, and quantum dots. Additionally, this study also explores the advantages and challenges of different nanomaterials' applications and predicts their development trends, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Lijun Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zsolt Zalán
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest H-1118, Hungary
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Sarac B, Yücer S, Ciftci F. MXenes in microbiology and virology: from pathogen detection to antimicrobial applications. NANOSCALE 2025; 17:9619-9651. [PMID: 40135595 DOI: 10.1039/d5nr00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
MXenes, a rapidly emerging class of two-dimensional materials, have demonstrated exceptional versatility and functionality across various domains, including microbiology and virology. Recent advancements in MXene synthesis techniques, encompassing both top-down and bottom-up approaches, have expanded their potential applications in pathogen detection, antimicrobial treatments, and biomedical platforms. This review highlights the unique physicochemical properties of MXenes, including their large surface area, tunable surface chemistry, and high biocompatibility, which contribute to their antimicrobial efficacy against bacteria, fungi, and viruses, such as SARS-CoV-2. The antibacterial mechanisms of MXenes, including membrane disruption, reactive oxygen species (ROS) generation, and photothermal inactivation, are discussed alongside hybridization strategies that enhance their bioactivity. Additionally, the challenges and future prospects of MXenes in developing advanced antimicrobial coatings, diagnostic tools, and therapeutic systems are outlined. By addressing current limitations and exploring innovative solutions, this study underscores the transformative potential of MXenes in microbiology, virology, and biomedical applications.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Seydanur Yücer
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Fatih Ciftci
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| |
Collapse
|
5
|
Liang Y, Chen X, Fang RY, Feng TH, Chen Y, Xu ZL, Shen YD, Yang J, Wang H. Hotspot Mutagenesis Strategy Yielding a Highly Sensitive Nanobody against Parathion for Immunoassay Development. Anal Chem 2025. [PMID: 40240285 DOI: 10.1021/acs.analchem.5c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanobodies (Nbs) hold great potential as affinity reagents for the immunoassays of small-molecule contaminants. However, there is an urgent need for better approaches to discover higher-affinity Nbs and expand their application in food analysis. Herein, with the antiparathion nanobody (VHH9) as a model, a novel hotspot mutagenesis technique for Nb affinity maturation is reported, which targets specific motifs within Nb DNA sequences and bypasses the need for traditional 3D protein modeling to navigate candidate mutated residues. Specifically, seven residues Ser28, Tyr29, Ser32, Lys102, Phe103, Arg105, and Ala106 encoded by two AGY and two RGYW codons were selected and randomized to construct a saturation mutation library. Enhanced mutants G4, H6, and G2 were successfully isolated and then characterized by indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), with half-maximal inhibition concentrations (IC50) of 4.7, 3.5, and 2.9 ng/mL, respectively, 2.1-, 2.9-, and 3.5-fold lower than that of the original Nbs. Subsequently, a biotin-streptavidin-amplified ELISA (BA-ELISA) was developed for the detection of parathion based on biotinylated H6. The developed BA-ELISA showed an IC50 value as low as 1.5 ng/mL, which was 2.3-fold improvement in sensitivity compared to H6-based ic-ELISA. The average recoveries in vegetable and fruit samples ranged from 87.0% to 113.0%. In summary, this work demonstrated that hotspot mutagenesis is effective for maximizing the efficiency to obtain Nbs with improved sensitivity, and the developed BA-ELISA is a robust tool for the routine screening of parathion.
Collapse
Affiliation(s)
- YiFan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ru-Yu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tian-Hui Feng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - YanHong Chen
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - JinYi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Mendes F, Machado BO, Castro BB, Sousa MJ, Chaves SR. Harnessing the power of biosensors for environmental monitoring of pesticides in water. Appl Microbiol Biotechnol 2025; 109:92. [PMID: 40216649 PMCID: PMC11991957 DOI: 10.1007/s00253-025-13461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
The current strong reliance on synthetic chemicals, namely pesticides, is far from environmentally sustainable. These xenobiotics contribute significantly to global change and to the current biodiversity crisis, but have been overlooked when compared to other agents (e.g., climate change). Aquatic ecosystems are particularly vulnerable to pesticides, making monitoring programs essential to preserve ecosystem health, safeguard biodiversity, ensure water quality, and mitigate potential human health risks associated with contaminated water sources. Biosensors show great potential as time/cost-effective and disposable systems for the high-throughput detection (and quantification) of these pollutants. In this mini-review, we provide an overview of biosensors specifically developed for environmental water monitoring, covering different pesticide classes (and active ingredients), and types of biosensors (according to the bio-recognition element) and transducers, as well as the nature of sample matrices analyzed. We highlight the variety of biosensors that have been developed and successfully applied to detection of pesticides in aqueous samples, including enzymatic biosensors, immunosensors, aptasensors, and whole cell-based biosensors. While most biosensors have been designed to detect insecticides, expanding their compound target range could significantly streamline monitoring of environmental contaminants. Despite limitations related to stability, reproducibility, and interference from environmental factors, biosensors represent a promising and sustainable technology for pesticide monitoring in the aquatic environments, offering sensitivity and specificity, as well as portability and real-time results. We propose that biosensors would be most effective as an initial screening step in a tiered assessment, complementing conventional methods. KEY POINTS: • Pesticides harm aquatic ecosystems and biodiversity, requiring better monitoring • Biosensors offer cost-effective solutions to detect pesticides in water samples • Biosensors complement conventional methods as a sustainable tool for initial screens.
Collapse
Affiliation(s)
- Filipa Mendes
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Beatriz O Machado
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Bruno B Castro
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
7
|
Yüce M, Öncer N, Çınar CD, Günaydın BN, Akçora Zİ, Kurt H. Comprehensive Raman Fingerprinting and Machine Learning-Based Classification of 14 Pesticides Using a 785 nm Custom Raman Instrument. BIOSENSORS 2025; 15:168. [PMID: 40136965 PMCID: PMC11940532 DOI: 10.3390/bios15030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Raman spectroscopy enables fast, label-free, qualitative, and quantitative observation of the physical and chemical properties of various substances. Here, we present a 785 nm custom-built Raman spectroscopy instrument designed for sensing applications in the 400-1700 cm-1 spectral range. We demonstrate the performance of the instrument by fingerprinting 14 pesticide reference samples with over twenty technical repeats per sample. We present molecular Raman fingerprints of the pesticides comprehensively and distinguish similarities and differences among them using multivariate analysis and machine learning techniques. The same pesticides were additionally investigated using a commercial 532 nm Raman instrument to see the potential variations in peak shifts and intensities. We developed a unique Raman fingerprint library for 14 reference pesticides, which is comprehensively documented in this study for the first time. The comparison shows the importance of selecting an appropriate excitation wavelength based on the target analyte. While 532 nm may be advantageous for certain compounds due to resonance enhancement, 785 nm is generally more effective for reducing fluorescence and achieving clearer Raman spectra. By employing machine learning techniques like the Random Forest Classifier, the study automates the classification of 14 different pesticides, streamlining data interpretation for non-experts. Applying such combined techniques to a wider range of agricultural chemicals, clinical biomarkers, or pollutants could provide an impetus to develop monitoring technologies in food safety, diagnostics, and cross-industry quality control applications.
Collapse
Affiliation(s)
- Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; (N.Ö.); (B.N.G.)
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
| | - Nazlı Öncer
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; (N.Ö.); (B.N.G.)
| | - Ceren Duru Çınar
- Department of Computer Science & Engineering, Sabanci University, Istanbul 34956, Türkiye;
| | - Beyza Nur Günaydın
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; (N.Ö.); (B.N.G.)
- Department of Materials Science and Nanoengineering, Sabanci University, Istanbul 34956, Türkiye
| | - Zeynep İdil Akçora
- Department of Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul 34956, Türkiye;
| | - Hasan Kurt
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Chen J, Ke X, Zhou Z, Ye W, Liu H, Zhang W, Liu X. An Ag-nanoplate decorated cavity-nanorod array SERS substrate for trace detection of PCB-77. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2161-2170. [PMID: 39957686 DOI: 10.1039/d5ay00025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We report the fabrication of a substrate with cavity-nanorods and decorated with Ag-nanoplates (C-NR@Ag). The cavities on the substrate are formed by metal assistant chemical etching, and the Ag-nanoplates in the cavities by galvanic cell deposition enhance the SERS performance effectively. Analytes in solution are adsorbed on Ag-nanoplates and located in hot spots, which enhance the SERS performance effectively. The enhancement factor of the Ag-nanoplates decorated on nanorod cavities is calculated to be 3.6 × 106, which is about 3 fold higher than that on the nanorods. The C-NR@Ag substrate is able to detect polychlorinated biphenyls (PCBs) with the lower limit of detection at 1.0 × 10-12 M. Additionally, due to the semi-volatile nature of PCB-77, the lower limit of detection of the C-NR@Ag substrate for PCB-77 was 1.0 × 10-11 M by the non-contact collection method. These results present a novel approach towards enhancing SERS performance and facilitating the rapid detection of PCB-77.
Collapse
Affiliation(s)
- Jinran Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing Jiaotong University, Chongqing, 400074, P. R. China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Xiurui Ke
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wenqi Ye
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China.
| |
Collapse
|
9
|
Liu X, Lu Z, Huang S, Chen N, Xiao X, Zhu X, Zhang R. A practical fluorometric and colorimetric dual-mode sensing platform based on two-dimensional porous organic nanosheets for rapid determination of trifluralin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1188-1195. [PMID: 39820884 DOI: 10.1039/d4ay02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.65 ± 0.3 nm), demonstrated a remarkable fluorescence quenching response upon exposure to trifluralin. Spectroscopic analysis combined with DFT calculations revealed that the quenching mechanism is driven by electron and energy transfer. TPA-PONs-based fluorescence sensor exhibited a linear response to trifluralin concentrations ranging from 0.01 to 10.0 μmol L-1 with a limit of detection as low as 3.50 nmol L-1. Additionally, the sensor was applied to detect trifluralin residues in vegetables, achieving recoveries of 89.08-102.84%. To facilitate on-site detection, a novel TPA-PONs-based colorimetric film sensor has been developed, enabling visual analysis of trifluralin using a smartphone. This dual-mode sensing platform holds significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Xue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Zhenyu Lu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Shijun Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Na Chen
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xue Xiao
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Xiaohui Zhu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Runkun Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China
| |
Collapse
|
10
|
Rodríguez-Cervantes M, León-Herrera LR, Ventura-Salcedo SA, Monroy-Dosta MDC, Rodríguez-deLeón E, Bah MM, Campos-Guillén J, Amaro-Reyes A, Zavala-Gómez CE, Figueroa-Brito R, Mariscal-Ureta KE, Pool H, Ramos-Mayorga I, Ramos-López MA. Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio. TOXICS 2025; 13:94. [PMID: 39997908 PMCID: PMC11861996 DOI: 10.3390/toxics13020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) and Tenebrio molitor (Coleoptera: Tenebrionidae) are two prominent pests of maize and its stored grains, respectively. Botanical pesticides have been proposed as an alternative for their management. This study evaluated the insecticidal activity of Salvia connivens (Lamiaceae) methanolic extract and rosmarinic acid against S. frugiperda and T. molitor by adding them to an artificial diet, as well as their ecotoxicological effects on Poecilia reticulata (Cyprinodontiformes: Poeciliidae) and Danio rerio (Cypriniformes: Danionidae) through acute toxicity tests. The methanolic extract showed higher mortality activity against S. frugiperda (LC50 = 874.28 ppm) than against T. molitor (LC50 = 1856.94 ppm) and was non-toxic to fish. Rosmarinic acid, the most abundant compound in the extract (80.45 mg g-1), showed higher activity against S. frugiperda (LC50 = 176.81 ppm). This compound did not cause a toxic effect on adult P. reticulata at the tested concentrations. However, in P. reticulata fingerlings and D. rerio adults, it was non-toxic, except in D. rerio embryos, where it was slightly toxic. These findings suggest that S. connivens methanolic extract has potential as a botanical product for the management of S. frugiperda and T. molitor with low ecotoxicological impact, while rosmarinic acid may be a useful compound for the management of S. frugiperda.
Collapse
Affiliation(s)
| | - Luis Ricardo León-Herrera
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Pinal de Amoles, Querétaro CP 76300, Mexico
| | | | - María del Carmen Monroy-Dosta
- Departamento del Hombre y su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México CP 04960, Mexico
| | | | | | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | - Aldo Amaro-Reyes
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | | | - Rodolfo Figueroa-Brito
- Centro de Desarrollo de Productos Bióticos (CEPROBI-IPN), Instituto Politécnico Nacional, Yautepec CP 62731, Mexico
| | | | - Héctor Pool
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | - Itzel Ramos-Mayorga
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | | |
Collapse
|
11
|
Du X, Ho L, Li S, Doherty J, Lee J, Clark JM, He L. Efficacy of Household and Commercial Washing Agents in Removing the Pesticide Thiabendazole Residues from Fruits. Foods 2025; 14:318. [PMID: 39856984 PMCID: PMC11764615 DOI: 10.3390/foods14020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Pesticide residues on fruits pose a global food safety concern, emphasizing the need for effective and practical removal strategies to ensure safe consumption. This study investigates the efficacy of household ingredients (corn starch, all-purpose flour, rice flour and baking soda) and four commercial fresh produce wash products in eliminating a model pesticide thiabendazole with and without a model non-ionic surfactant Alligare 90® from postharvest fruits. Surface-enhanced Raman spectroscopy (SERS) was employed for the rapid, in situ quantification of residue removal on apple surfaces. Soaking in 2% corn starch followed by soaking in 5% baking was the most effective homemade strategy, removing 94.13% and 91.78% of thiabendazole with and without the surfactant. Among commercial washing agents, soaking in 2% Product 4 demonstrated the highest efficiency, removing 95.3% and 95.99% of thiabendazole with and without surfactant. These results suggested that the non-ionic surfactant did not affect removal efficiency. Both protocols were effective across various fruits (apples, grapes, lemons, strawberries), validated by liquid chromatography-mass spectrometry (LC-MS/MS) analyses. However, safety concerns regarding the composition of Product 4 highlighted the benefits of homemade strategies. Overall, this work offers practical guidelines for reducing pesticide residues on fruits and enhancing food.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (X.D.); (J.D.)
| | - Lauren Ho
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (X.D.); (J.D.)
| | - Sisheng Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (X.D.); (J.D.)
| | - Jeffery Doherty
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (X.D.); (J.D.)
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA (J.M.C.)
| | - Junghak Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA (J.M.C.)
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA (J.M.C.)
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (X.D.); (J.D.)
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Li B, Wang J, Zhang C, Li G, Wang Y. Identification of phoxim and omethoate using α-hemolysin nanopore and aptamers. Food Chem 2025; 463:141142. [PMID: 39305573 DOI: 10.1016/j.foodchem.2024.141142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024]
Abstract
Contamination with pesticides has inflicted substantial harm on human health; therefore, developing rapid, ultra-sensitive, and non-labelling simultaneous detection methods for multiple pesticides is necessary. In this study, we demonstrated that α-hemolysin (α-HL) nanopore sensor can detect and discriminate organophosphorus pesticides of phoxim and omethoate in a single nanopore without requiring labels of the probes or purification of the pesticides in real samples. Aptamers specifically recognise and bind pesticides to obtain pesticide-aptamer complexes that produce characteristic current signals while passing through the nanopore. Phoxim and omethoate were accurately distinguished by a portable instrument within minutes, and their detection sensitivity was up to the femtomole level, whether detected alone or simultaneously. The detection limits of phoxim and omethoate were 8.13 × 10-16 M and 4.16 × 10-15 M. The recoveries of phoxim and omethoate from pear, tomato, and cucumber samples were 82.0-107.0 % and 81.9-118.3 % respectively, with coefficient of variable below 8.0 %.
Collapse
Affiliation(s)
- Bin Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, China
| | - Junxiao Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, China
| | - Chengling Zhang
- Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
| | - Guangyue Li
- Shandong Dingyi Ecological Agriculture Co. LTD, Linyi 276005, China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, China; Shandong Dingyi Ecological Agriculture Co. LTD, Linyi 276005, China.
| |
Collapse
|
13
|
Liu X, Huang D, Lai C, Wang F. Visual detection of kanamycin with functionalized Au nanoparticles. Mikrochim Acta 2025; 192:78. [PMID: 39808282 DOI: 10.1007/s00604-025-06954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer. The results display that kanamycin concentrations (0.005 to 18 µM) are linearly related to A620/A520 (the absorbance ratio of 620 nm and 520 nm) with a LOD of 1.8 nM and a LOQ of 5.9 nM (S/N = 3). This strategy also reveals a high degree of selectivity among a series of common interfering species. Moreover, the strategy can be employed to detect trace amounts of kanamycin in real-life samples, and it shows satisfying results compared with high performance liquid chromatography. In general, this developed strategy is facile and inexpensive without the need for complex processing procedures and expensive instruments. In addition, this work may further exploit detection strategies for other organic contaminants, as well as make a strong contribution to the development of the colorimetric method.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Fei Wang
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.
| |
Collapse
|
14
|
Pei Y, Chen L, Zhao Y, Lei Q, Yang Y, Hu J, Liu X. Advances of immunosensors based on noble metal composite materials for detecting procalcitonin. Mikrochim Acta 2025; 192:72. [PMID: 39806105 DOI: 10.1007/s00604-025-06953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits. Noble metals, because of their excellent electronic conductivity, biocompatibility, and superior physicochemical properties, are extensively combined with other materials to play a pivotal role in the construction of PCT immunosensors. This review summarizes the research progress on PCT antigen immunosensors based on noble metal composite materials, encompassing the classification and principles of immunosensors. Starting from noble metals, which are widely used as electrode materials in sensors, the review categorizes and discusses the carbon materials, metal oxides, metal sulfides, and other composites with noble metals. The review also elaborates on the influence of sensitive materials on the performance of immunosensors. Finally, the review discusses and anticipates the challenges and future opportunities for the research on PCT antigen immunosensors using noble metal-composite nanomaterials, providing new insights and directions for their application in the treatment and clinical management of sepsis and other diseases.
Collapse
Affiliation(s)
- Yuxin Pei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yihang Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qian Lei
- College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jie Hu
- College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
15
|
Wang N, Hu W, Jiang H, Jiang D, Wang L. A portable micro-nanochannel bio-3D printed liver microtissue biosensor for DON detection. Biosens Bioelectron 2025; 267:116810. [PMID: 39357492 DOI: 10.1016/j.bios.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
We investigated a portable micro-nanochannel biosensor 3D-printed liver microtissues for rapid and sensitive deoxynivalenol (DON) detection. The screen-printed carbon electrode (SPCE) was modified with nanoporous anodic aluminum oxide (AAO), gold nanoparticles (AuNPs), and cytochrome C oxidase (COx) to enhance sensor performance. Gelatin methacrylate hydrogel, combined with hepatocellular carcinoma cells, formed the bioink for 3D printing. Liver microtissues were prepared through standardized and high-throughput techniques via bio-3D printing technology. These microtissues were immobilized onto modified electrodes to fabricate liver microtissue sensors. The peak current of this biosensor was positively correlated with DON concentration, as determined by cyclic voltammetry (CV), within a linear detection range of 2∼40 μg/mL. The standard curve equation is denoted by ICV(μA) = = 18.76956 + 0.03107CDON(μg/mL), with a correlation coefficient R2 was 0.99471(n=3). A minimum detection limit of 1.229 μg/mL was calculated from the formula, indicating the successful construction of a portable micro-nanochannel bio-3D printed liver microtissue biosensor. It provides innovative ideas for developing rapid and convenient instrumentation to detect mycotoxin hazards after grain production. It also holds significant potential for application in the prediction and assessment of post-production quality changes in grain.
Collapse
Affiliation(s)
- Nanwei Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Wei Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China; Harbin University of Commerce, Harbin, 150028, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, 211198, China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China.
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
16
|
Yu X, Zhang L, He X, Bai W, Tan H, Li Q, Shen Y, Luo Y, Yao Y, Li S, Bai H, Hu J, Zhuang W, Chen L, Sun X, Hu W. Gold Nanoparticles Decorated CoAl LDH Monolayer: A Peroxidase-Like Nanozyme for Sensitive Colorimetric Detection of Acetylcholinesterase and Inhibitors. Inorg Chem 2024; 63:24065-24070. [PMID: 39651768 DOI: 10.1021/acs.inorgchem.4c04416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Monitoring acetylcholinesterase (AChE) activity and its inhibitor is crucial yet challenging for the early diagnosis and treatment of neurological diseases. In this study, we present Au nanoparticle decorated CoAl layered double hydroxide monolayer (Au@CoAl-LDH-m) as a peroxidase-like (POD) nanozyme for the sensitive colorimetric detection of AChE and its inhibitor, thiamine pyrophosphate (TPP). Remarkably, the Au@CoAl-LDH-m nanozyme can catalyze the oxidation of chromogenic substrates through its POD-like activity, which is effectively inhibited by thiocholine (TCh, a catalytic product of AChE), thereby enabling detection of AChE and TPP through a visible colorimetric readout. The approach provides a highly sensitive and specificity assay with a broader linear response range (1-100 mU mL-1 for AChE and 1-1000 ng mL-1 for TPP) and a low detection limit (0.092 mU mL-1 for AChE and 0.201 ng mL-1 for TPP), respectively. These results highlight the significant potential of Au@CoAl-LDH-m for advancing colorimetric sensors in detecting small molecules across various biological applications.
Collapse
Affiliation(s)
- Xingzhi Yu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Limei Zhang
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xun He
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weiyi Bai
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Huiling Tan
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Qing Li
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Yan Shen
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Yongsong Luo
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongchao Yao
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Shufen Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Jie Hu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Wenchuang Hu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| |
Collapse
|
17
|
Hu W, Yang S, Wang X, Li X, Lei L, Lin H, Yuan Q, Mao D, Luo Y. Development of a Dual-Epitope Nanobody-Based Immunosensor with MXenes@CNTs@AuNPs for Ultrasensitive Detection of Rotavirus. Anal Chem 2024; 96:19678-19686. [PMID: 39556521 DOI: 10.1021/acs.analchem.4c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Immunoassays have become essential tools for detecting infectious viruses. However, traditional monoclonal antibody-dependent immunoassays are costly, fragile, and unstable, especially in complex media. To overcome these challenges, we have developed cost-effective, robust, and high-affinity nanobodies as alternatives to monoclonal antibodies for rapid detection applications. We engineered dual-epitope nanobody (NB) pairs and incorporated them into a sandwich immunosensor design to detect transmitted rotaviruses in rectal swabs and wastewater samples. To further enhance sensitivity, we synthesized an advanced two-dimensional material, MXenes@CNTs@AuNPs, which offers an extensive specific surface area that supports the enrichment and immobilization of NBs. This integration with catalase-modified magnetic probes facilitates signal generation. Subsequently, our sensor achieved a detection limit of 0.0207 pg/mL for the rotavirus VP6 antigen, significantly outperforming commercial antigen kits with a sensitivity enhancement of 3.77 × 105-fold. The exceptional sensor performance extended to specificity, repeatability, stability, and accuracy across various sample types, establishing it as a promising tool for rotavirus detection. This research outlines a viable strategy for creating a robust and ultrasensitive analytical nanoprobe, thereby addressing the critical need for efficient and reliable viral detection methods in various environments.
Collapse
Affiliation(s)
- Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xiaolong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300350, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
Serebrennikova KV, Komova NS, Zherdev AV, Dzantiev BB. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. BIOSENSORS 2024; 14:573. [PMID: 39727838 DOI: 10.3390/bios14120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive. Currently, more attention is being paid to the development of surface-enhanced Raman scattering (SERS) sensors as a non-destructive and highly sensitive tool for detecting various chemicals in agricultural applications. This review focuses on the current developments of biocompatible SERS substrates based on natural materials with unique micro/nanostructures, flexible SERS substrates based on biopolymers, as well as functionalized SERS substrates, which are close to the current needs and requirements of agricultural product quality control and environmental safety assessment. The impact of herbicides on the process of photosynthesis is considered and the prospects for the application of Raman spectroscopy and SERS for the detection of herbicides are discussed.
Collapse
Affiliation(s)
- Kseniya V Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
19
|
Rahmah DM, Januardi, Nurlilasari P, Mardawati E, Kastaman R, Agus Kurniawan KI, Sofyana NT, Noguchi R. Integrating life cycle assessment and multi criteria decision making analysis towards sustainable cocoa production system in Indonesia: An environmental, economic, and social impact perspective. Heliyon 2024; 10:e38630. [PMID: 39421373 PMCID: PMC11483301 DOI: 10.1016/j.heliyon.2024.e38630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Sustainable Cocoa production practices should be investigated comprehensively to address sustainability requirements and mitigate Cocoa production issues in Indonesia. This study aims to identify the sustainable Cocoa production system considering the environmental, economic, and social impacts. Life cycle framework and multicriteria decision-making (MCDM) were integrated to obtain the study's objectives by comparing Cocoa monocropping system (CM) and Cocoa intercropping systems (IC). The result indicated that in the environmental sustainability aspect, the monocropping system (CM) showed higher performance as indicated by the lower environmental impact in all indicators; for example, CM emitted a lower Global Warming Potential (GWP) that has a lower margin of 34.5-55.9 % compared to the intercropping system (IC-I and IC-II). In the economic aspect, both on the short-term and long-term analysis, the Cocoa intercropping system (IC-II) generated higher value-added and economic feasibility, with a higher profit margin of 150-205 % compared to CM and IC-1. Along with the increase of economic benefits in IC II, this system also significantly provides social benefits, as presented by the higher social index margin of 4.9-23.7 % compared to other systems. Furthermore, by applying decision-making analysis, the result determines the highest index on the Cocoa intercropping system II (IC-II). These findings highlight that applying the intercropping system II is recommended to overcome the cocoa issue at the farmer and decision-maker levels. Additionally, the proposed method that combined LCA-MCDM can be applied to another agricultural commodity to achieve sustainable agriculture production.
Collapse
Affiliation(s)
- Devi Maulida Rahmah
- Department of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Januardi
- Department of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Puspita Nurlilasari
- Department of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Efri Mardawati
- Department of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Roni Kastaman
- Department of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Koko Iwan Agus Kurniawan
- Department of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Neng Tanty Sofyana
- Marine Science Department, Faculty of Fishery and Marine Science, Universitas Padjadjaran, 45363, Indonesia
| | - Ryozo Noguchi
- Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
20
|
Zhao Y, Yang SJ, Huang YF, Jiang FW, Si HL, Chen MS, Wang JX, Liu S, Jiang YJ, Li JL. Inhibition of the p62-Nrf2-GPX4 Pathway Confers Sensitivity to Butachlor-Induced Splenic Macrophage Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16998-17007. [PMID: 39016055 DOI: 10.1021/acs.jafc.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Butachlor is widely used in agriculture around the world and therefore poses environmental and public health hazards due to persistent and poor biodegradability. Ferroptosis is a type of iron-mediated cell death controlled by glutathione (GSH) and GPX4 inhibition. P62 is an essential autophagy adaptor that regulates Keap1 to activate nuclear factor erythroid 2-related factor 2 (Nrf2), which effectively suppresses lipid peroxidation, thereby relieving ferroptosis. Here, we found that butachlor caused changes in splenic macrophage structure, especially impaired mitochondrial morphology with disordered structure, which is suggestive of the occurrence of ferroptosis. This was further confirmed by the detection of iron metabolism, the GSH system, and lipid peroxidation. Mechanistically, butachlor suppressed the protein level of p62 and promoted Keap1-mediated degradation of Nrf2, which results in decreased GPX4 expression and accelerated splenic macrophage ferroptosis. These findings suggest that targeting the p62-Nrf2-GPX4 signaling axis may be a promising strategy for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Li Si
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Jun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
21
|
Lu Q, Liu L, Li J, Song S, Kuang H, Xu C, Guo L. Rapid and sensitive quantitation of amitraz in orange, tomato, and eggplant samples using immunochromatographic assay. Food Chem 2024; 446:138899. [PMID: 38452506 DOI: 10.1016/j.foodchem.2024.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Amitraz (AMT) is a broad-spectrum formamidine insecticide and acaricide. In this study, we produced an anti-AMT monoclonal antibody (mAb) with high performance. The half-maximal inhibitory concentration of the anti-AMT mAb was 4.418 ng/mL, the cross reactivity with other insecticides was negligible, and an affinity constant was 2.06 × 109 mmol/L. Additionally, we developed an immunochromatographic assay for the rapid detection of AMT residues in oranges, tomatoes, and eggplants. The cut-off values were 2000 μg/kg in oranges and tomato samples and 1000 μg/kg in eggplant samples and the calculated limits of detection were 14.521 μg/kg, 6.281 μg/kg, and 3.518 μg/kg in oranges, tomatoes, and eggplants, respectively, meeting the detection requirements for AMT in fruits and vegetables. The recovery rates ranged between 95.8 % and 105.2 %, consistent with the recovery rates obtained via LC-MS/MS. Our developed immunochromatographic assay can effectively, accurately, and rapidly determine AMT residues in oranges, tomatoes, and eggplants.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
23
|
Octobre G, Delprat N, Doumèche B, Leca-Bouvier B. Herbicide detection: A review of enzyme- and cell-based biosensors. ENVIRONMENTAL RESEARCH 2024; 249:118330. [PMID: 38341074 DOI: 10.1016/j.envres.2024.118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Herbicides are the most widely used class of pesticides in the world. Their intensive use raises the question of their harmfulness to the environment and human health. These pollutants need to be detected at low concentrations, especially in water samples. Commonly accepted analytical techniques (HPLC-MS, GC-MS, ELISA tests) are available, but these highly sensitive and time-consuming techniques suffer from high cost and from the need for bulky equipment, user training and sample pre-treatment. Biosensors can be used as complementary early-warning systems that are less sensitive and less selective. On the other hand, they are rapid, inexpensive, easy-to-handle and allow direct detection of the sample, on-site, without any further step other than dilution. This review focuses on enzyme- and cell- (or subcellular elements) based biosensors. Different enzymes (such as tyrosinase or peroxidase) whose activity is inhibited by herbicides are presented. Photosynthetic cells such as algae or cyanobacteria are also reported, as well as subcellular elements (thylakoids, chloroplasts). Atrazine, diuron, 2,4-D and glyphosate appear as the most frequently detected herbicides, using amperometry or optical transduction (mainly based on chlorophyll fluorescence). The recent new WSSA/HRAC classification of herbicides is also included in the review.
Collapse
Affiliation(s)
- Guillaume Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| | - Nicolas Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Bastien Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Béatrice Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| |
Collapse
|
24
|
Zhao X, Lu Y, Li B, Kong M, Sun Y, Li H, Liu X, Lu G. Self-ratiometric fluorescent platform based on upconversion nanoparticles for on-site detection of chlorpyrifos. Food Chem 2024; 439:138100. [PMID: 38041885 DOI: 10.1016/j.foodchem.2023.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Monitoring organophosphorus pesticides is significant for food safety assessment. Herein, we developed upconversion nanoparticles (UCNPs)-based self-ratiometric fluorescent platform for the detection of chlorpyrifos. The UCNPs have the ability to confine the detection and reference functions in one nanoparticle. Specifically, the blue upconversion (UC) emission (448 nm) in the shell layer of UCNPs is quenched by the product of the acetylcholinesterase-mediated reaction, while the red UC emission (652 nm) from the core remains constant as a self-calibrated reference signal. Employing the inhibition property of chlorpyrifos, self-proportional fluorescence is employed to detect chlorpyrifos. As proof-of-concept, test strips are fabricated by loading the UCNPs onto filter paper. Combined with the smartphone and image-processing algorithm, chlorpyrifos quantitative testing is achieved with a detection limit of 14.4843 ng mL-1. This portable platform displays anti-interference capability and high stability in the complicated matrix, making it an effective candidate for on-site application.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yang Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Li
- Colorectal & Anal Surgery Department, General Surgery Center, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin Province 130021, People's Republic of China
| | - Minghui Kong
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China; Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China.
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
25
|
Li X, Hu J, Zhang D, Zhang X, Wang Z, Wang Y, Chen Q, Liang P. Realization of qualitative to semi-quantitative trace detection via SERS-ICA based on internal standard method. Talanta 2024; 271:125650. [PMID: 38277967 DOI: 10.1016/j.talanta.2024.125650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) can quickly identify molecular fingerprints and has been widely used in the field of rapid detection. However, the non-uniformity inherent in SERS substrate signals, coupled with the finite nature of the detection object, significantly hampers the advancement of SERS. Nowadays, the existing mature immunochromatographic assay (ICA) method is usually combined with SERS technology to address the defects of SERS detection. Nevertheless, the porous structure of the strip will also affect the signal uniformity during detection. Obviously, a method using SERS-ICA is needed to effectively solve signal fluctuations, improve detection accuracy, and has certain versatility. This paper introduces an internal standard method combining deep learning to predict and process Raman data. Based on the signal fluctuation of single-antigen SERS-ICA test strip, the double-antigen SERS-ICA test strip was constructed. The full spectrum Raman data of double-antigen SERS-ICA test strip was normalized by the sum of two characteristic peaks of internal standard molecules, and then processed by deep learning algorithm. The Relative Standard Deviation (RSD) of Raman data of bisphenol A was compared before and after internal standard normalization of double-antigen SERS-ICA test strip. The RSD processed by this method was increased by 3.8 times. After normalization, the prediction accuracy of Root Mean Square Error (RMSE) is improved by 2.66 times, and the prediction accuracy of R-square (R2) is increased from 0.961 to 0.994. The results showed that RMSE and R2 were used to comprehensively predict the collected data of double-antigen SERS-ICA test strip, which could effectively improve the prediction accuracy. The internal standard algorithm can effectively solve the challenges of uneven hot spots and poor signal reproducibility on the test strip to a certain extent, so as to improve the semi-quantitative accuracy.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Jiaqi Hu
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China; EEE Department, Southern University of Science and Technology, Shenzhen, 518055, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiubin Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Zhetao Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Yufeng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, 310018, Hangzhou, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| |
Collapse
|
26
|
Lei M, Ding X, Liu J, Tang Y, Chen H, Zhou Y, Zhu C, Yan H. Trace Amount of Bi-Doped Core-Shell Pd@Pt Mesoporous Nanospheres with Specifically Enhanced Peroxidase-Like Activity Enable Sensitive and Accurate Detection of Acetylcholinesterase and Organophosphorus Nerve Agents. Anal Chem 2024; 96:6072-6078. [PMID: 38577757 DOI: 10.1021/acs.analchem.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.
Collapse
Affiliation(s)
- Mengdie Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xilin Ding
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jin Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hongye Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
27
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
28
|
Peng B, Xie Y, Lai Q, Liu W, Ye X, Yin L, Zhang W, Xiong S, Wang H, Chen H. Pesticide residue detection technology for herbal medicine: current status, challenges, and prospects. ANAL SCI 2024; 40:581-597. [PMID: 38367162 DOI: 10.1007/s44211-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Qingfu Lai
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Xuelan Ye
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Li Yin
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wanxin Zhang
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Suqin Xiong
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Heng Wang
- Guangdong Haid Group Co., Ltd, Guangzhou, 510000, China.
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Du X, Gao Z, He L. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2630-2640. [PMID: 37985216 DOI: 10.1002/jsfa.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Understanding the role of adjuvants in pesticide persistence is crucial to develop effective pesticide formulations and manage pesticide residues in fresh produce. This study investigated the impact of a commercial non-ionic surfactant product containing alkylphenol ethoxylates (APEOs) on the persistence of thiabendazole on apple and spinach surfaces against the 30 kg m-3 baking soda (sodium bicarbonate, NaHCO3 ) soaking, which was used to remove the active ingredient (AI) in the cuticular wax layer of fresh produce through alkaline hydrolysis. Surface-enhanced Raman scattering (SERS) mapping method was used to quantify the residue levels on fresh produce surfaces at different experimental scenarios. Four standard curves were established to quantify surface thiabendazole in the absence and presence of APEOs, on apple and spinach leaf surfaces, respectively. RESULTS Overall, the result showed that APEOs enhanced the persistence of thiabendazole over time. After 3 days of exposure, APEOs increased thiabendazole surface residue against NaHCO3 hydrolysis on apple and spinach surfaces by 5.39% and 10.47%, respectively. CONCLUSION The study suggests that APEOs led to more pesticide residues on fresh produce and greater difficulty in washing them off from the surfaces using baking soda, posing food safety concerns. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
30
|
Wang L, Zhang Y, Zeng DP, Zhu Y, Ling Z, Wang Y, Yang J, Wang H, Xu ZL, Tian Y, Sun Y, Shen YD. Development of an Open Droplet Microchannel-Based Magnetosensor for Immunofluorometric Assay of Trimethoprim in Chicken and Pork Samples with a Wide Linear Range. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6772-6780. [PMID: 38478886 DOI: 10.1021/acs.jafc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Trimethoprim (TMP), functioning as a synergistic antibacterial agent, is utilized in diagnosing and treating diseases affecting livestock and poultry. Human consumption of the medication indirectly may lead to its drug accumulation in the body and increase drug resistance due to its prolonged metabolic duration in livestock and poultry, presenting significant health hazards. Most reported immunoassay techniques, such as ELISA and immunochromatographic assay (ICA), find it challenging to achieve the dual advantages of high sensitivity, simplicity of operation, and a wide detection range. Consequently, an open droplet microchannel-based magnetosensor for immunofluorometric assay (OMM-IFA) of trimethoprim was created, featuring a gel imager to provide a signal output derived from the highly specific antibody (Ab) targeting trimethoprim. The method exhibited high sensitivity in chicken and pork samples, with LODs of 0.300 and 0.017 ng/mL, respectively, and a wide linear range, covering trimethoprim's total maximum residue limits (MRLs). Additionally, the spiked recoveries in chicken and pork specimens varied between 81.6% and 107.9%, maintaining an acceptable variation coefficient below 15%, aligning well with the findings from the ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique. The developed method achieved a much wider linear range of about 5 orders of magnitude of 10-2-103 levels with grayscale signals as the output signal, which exhibited high sensitivity, excellent applicability and simple operability based on magnetic automation.
Collapse
Affiliation(s)
- Lei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dao-Ping Zeng
- Wens Institute, Wens Foodstuff Groups Co., Ltd., Yunfu 527499, China
| | - Yuxian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhou Ling
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
Wanniarachchi PC, Upul Kumarasinghe KG, Jayathilake C. Recent advancements in chemosensors for the detection of food spoilage. Food Chem 2024; 436:137733. [PMID: 37862988 DOI: 10.1016/j.foodchem.2023.137733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The need for reliable sensors has become a major requirement to confirm the quality and safety of food commodities. Chemosensors are promising sensing tools to identify contaminants and food spoilage to ensure food safety. Chemosensing materials are evolving and becoming potential mechanisms to enable onsite and real-time monitoring of food safety. This review summarizes the information about the basic four types of chemosensors (colorimetric, optical, electrochemical, and piezoelectric) employed in the food sector, the latest advancements in the development of chemo-sensing mechanisms, and their food applications, with special emphasis on the future outlook of them. In this review, we discuss the novel chemosensors developed from the year 2018 to 2022 to detect spoilage in some common types of food like fish, meat, milk, cheese and soy sauce. This work will provide a fundamental step toward further development and innovations of chemosensors targeting different arenas in the food industry.
Collapse
Affiliation(s)
| | - K G Upul Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Chathuni Jayathilake
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Xue J, Mao K, Cao H, Feng R, Chen Z, Du W, Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem 2024; 434:137456. [PMID: 37716150 DOI: 10.1016/j.foodchem.2023.137456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Organophosphorus pesticides (OPs) play an important role in agricultural production and the accurate detection of OP residues is essential to ensure food safety. Portable sensors are expected to be a potential device due to their high detection efficiency, easy-to-use processes and low cost. Due to the widespread popularity and powerful capabilities of smartphones, smartphone-based sensing systems have rapidly developed into ideal tools for portable detection, however, a systematic review on the detection of OPs is still lacking. Therefore, a comprehensive overview of sensors equipped with smartphones for OP detection in recent year is provided; this overview includes their sensing signals (colorimetric, fluorescent, chemiluminescent and electrochemical signals), detection mechanism, analysis applications, advantages/disadvantages and perspectives. Moreover, the progress of sensors equipped with smartphones for the detection of OPs in food is thoroughly summarized. This review contributes to food safety and the development of efficient and reliable methods for smartphone-based OPs detection.
Collapse
Affiliation(s)
- Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
33
|
Li P, Abd El-Aty AM, Jiang H, Shen J, Wang Z, Wen K, Li J, Wang S, Wang J, Hammock BD, Jin M. Immunoassays and Emerging Analytical Techniques of Fipronil and its Metabolites for Food Safety: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2059-2076. [PMID: 38252458 PMCID: PMC11790034 DOI: 10.1021/acs.jafc.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
34
|
Patel N, Modi K, Bhatt K, Parikh J, Desai A, Jain B, Parmar N, Patel CN, Liska A, Ludvik J, Pillai S, Mohan B. Propyl-phthalimide Cyclotricatechylene-Based Chemosensor for Sulfosulfuron Detection: Hybrid Computational and Experimental Approach. ACS OMEGA 2023; 8:41523-41536. [PMID: 37969992 PMCID: PMC10633956 DOI: 10.1021/acsomega.3c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
The detection of trace amounts of sulfosulfuron, a pesticide of increasing importance, has become a pressing issue, prompting the development of effective chemosensors. In this study, we functionalized cyclotricatechylene (CTC) with propyl-phthalimide due to the presence of electronegative oxygen and nitrogen binding sites. Our optimized ligand displayed the highest docking score with sulfosulfuron, and experimental studies confirmed a significant fluorescence enhancement upon its interaction with sulfosulfuron. To gain a deeper understanding of the binding mechanism, we introduced density functional theory (DFT) studies. We carried out binding constant, Job's plot, and limit of detection (LOD) calculations to establish the effectiveness of our chemosensor as a selective detector for sulfosulfuron. These findings demonstrate the potential of our chemosensor for future applications in the field of pesticide detection.
Collapse
Affiliation(s)
- Nihal Patel
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Krunal Modi
- Department
of Humanity and Sciences, Indrashil University,
Kadi, Mehsana, Gujarat 382740, India
| | - Keyur Bhatt
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Jaymin Parikh
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Ajay Desai
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Bhavesh Jain
- Department
of Computer Science and Engineering, Indrashil
University, Kadi, Mehsana, Gujarat 382740, India
| | - Nirali Parmar
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Chirag N. Patel
- Department
of Botany, Bioinformatics and Climate Change Impacts Management, School
of Science, Gujarat University, Ahmedabad, Gujarat 380009, India
- Biotechnology
Research Center, Technology Innovation Institute, Abu Dhabi 9639, United Arab Emirates
| | - Alan Liska
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute
of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejskova 2155/3,182 23 Praha 8, Czech Republic
| | - Jiri Ludvik
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute
of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejskova 2155/3,182 23 Praha 8, Czech Republic
| | - Shibu Pillai
- Department
of Chemistry, Institute of Technology, Nirma
University, Ahmedabad, Gujarat 380009, India
| | - Brij Mohan
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
35
|
Saqib M, Solomonenko AN, Barek J, Dorozhko EV, Korotkova EI, Aljasar SA. Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. Anal Chim Acta 2023; 1272:341449. [PMID: 37355324 DOI: 10.1016/j.aca.2023.341449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Graphene (GR) composites have great potential for the determination of carbamates pesticides (CPs) by electrochemical methods. Since the beginning of the 20th century, GR has shown remarkable promise as electrode material for various sensors. The contamination of food products with harmful CPs is a major problem as they do not always damage human health immediately, but can be harmful after prolonged exposure. A range of advantages can be gained from their electrochemical determination, such as high sensitivity, reasonably selectivity, rapid detection, low limit of detection, and easy electrode fabrication. Furthermore, these electrochemical techniques are robust, reproducible, user-friendly, and conform to both "green" and "white" analytical chemistry. This review is focused on results published in the last ten years in the field of electrochemical determination of CPs in food products using GR and its derivatives.
Collapse
Affiliation(s)
- Muhammad Saqib
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia; Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic
| | - Anna N Solomonenko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Jiří Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic.
| | - Elena V Dorozhko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Elena I Korotkova
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Shojaa A Aljasar
- Physics and Engineering Department, National Research Tomsk State University, Lenin Ave. 36, 634045, Tomsk, Russia
| |
Collapse
|
36
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
37
|
Ramajayam K, Ganesan S, Ramesh P, Beena M, Kokulnathan T, Palaniappan A. Molecularly Imprinted Polymer-Based Biomimetic Systems for Sensing Environmental Contaminants, Biomarkers, and Bioimaging Applications. Biomimetics (Basel) 2023; 8:245. [PMID: 37366840 DOI: 10.3390/biomimetics8020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Molecularly imprinted polymers (MIPs), a biomimetic artificial receptor system inspired by the human body's antibody-antigen reactions, have gained significant attraction in the area of sensor development applications, especially in the areas of medical, pharmaceutical, food quality control, and the environment. MIPs are found to enhance the sensitivity and specificity of typical optical and electrochemical sensors severalfold with their precise binding to the analytes of choice. In this review, different polymerization chemistries, strategies used in the synthesis of MIPs, and various factors influencing the imprinting parameters to achieve high-performing MIPs are explained in depth. This review also highlights the recent developments in the field, such as MIP-based nanocomposites through nanoscale imprinting, MIP-based thin layers through surface imprinting, and other latest advancements in the sensor field. Furthermore, the role of MIPs in enhancing the sensitivity and specificity of sensors, especially optical and electrochemical sensors, is elaborated. In the later part of the review, applications of MIP-based optical and electrochemical sensors for the detection of biomarkers, enzymes, bacteria, viruses, and various emerging micropollutants like pharmaceutical drugs, pesticides, and heavy metal ions are discussed in detail. Finally, MIP's role in bioimaging applications is elucidated with a critical assessment of the future research directions for MIP-based biomimetic systems.
Collapse
Affiliation(s)
- Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Purnimajayasree Ramesh
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Maya Beena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
38
|
Samal S, Mohanty RP, Mohanty PS, Giri MK, Pati S, Das B. Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: A comprehensive review. Heliyon 2023; 9:e15848. [PMID: 37206035 PMCID: PMC10189192 DOI: 10.1016/j.heliyon.2023.e15848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Biosensors, in particular nanobiosensors, have brought a paradigm shift in the detection approaches involved in healthcare, agricultural, and industrial sectors. In accordance with the global expansion in the world population, there has been an increase in the application of specific insecticides for maintaining public health and enhancing agriculture, such as organophosphates, organochlorines, pyrethroids, and carbamates. This has led to the contamination of ground water, besides increasing the chances of biomagnification as most of these insecticides are non-biodegradable. Hence, conventional and more advanced approaches are being devised for the routine monitoring of such insecticides in the environment. This review walks through the implications of biosensors and nanobiosensors, which could offer a wide range of benefits for the detection of the insecticides, quantifying their toxicity status, and versatility in application. Unique eco-friendly nanobiosensors such as microcantilevers, carbon nanotubes, 3D printing organic materials and nylon nano-compounds are some advanced tools that are being employed for the detection of specific insecticides under different conditions. Furthermore, in order to implement a smart agriculture system, nanobiosensors could be integrated into mobile apps and GPS systems for controlling farming in remote areas, which would greatly assist the farmer remotely for crop improvement and maintenance. This review discusses about such tools along with more advanced and eco-friendly approaches that are on the verge of development and could offer a promising alternative for analyte detection in different domains.
Collapse
Affiliation(s)
- Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Rashmi Priya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Priti Sundar Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, 751024, India
- Corresponding author.
| | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- Corresponding author.
| |
Collapse
|
39
|
Kizhepat S, Rasal AS, Chang JY, Wu HF. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091520. [PMID: 37177065 PMCID: PMC10180329 DOI: 10.3390/nano13091520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification. By integrating the distinctive features of several varieties of nanostructures and employing them as scaffolds for bimolecular assemblies, biosensing platforms with improved reliability, selectivity, and sensitivity for the identification of a plethora of analytes can be developed. In this review, we compile a number of approaches to using 2D nanomaterials for biomolecule detection. Subsequently, we summarize the advantages and disadvantages of using 2D nanomaterials in biosensing. Finally, both the opportunities and the challenges that exist within this potentially fruitful subject are discussed. This review will assist readers in understanding the synthesis of 2D nanomaterials, their alteration by enzymes and composite materials, and the implementation of 2D material-based biosensors for efficient bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Shamsa Kizhepat
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
40
|
Xu X, Ma M, Sun T, Zhao X, Zhang L. Luminescent Guests Encapsulated in Metal-Organic Frameworks for Portable Fluorescence Sensor and Visual Detection Applications: A Review. BIOSENSORS 2023; 13:bios13040435. [PMID: 37185510 PMCID: PMC10136468 DOI: 10.3390/bios13040435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic frameworks (MOFs) have excellent applicability in several fields and have significant structural advantages, due to their open pore structure, high porosity, large specific surface area, and easily modifiable and functionalized porous surface. In addition, a variety of luminescent guest (LG) species can be encapsulated in the pores of MOFs, giving MOFs a broader luminescent capability. The applications of a variety of LG@MOF sensors, constructed by doping MOFs with LGs such as lanthanide ions, carbon quantum dots, luminescent complexes, organic dyes, and metal nanoclusters, for fluorescence detection of various target analyses such as ions, biomarkers, pesticides, and preservatives are systematically introduced in this review. The development of these sensors for portable visual fluorescence sensing applications is then covered. Finally, the challenges that these sectors currently face, as well as the potential for future growth, are briefly discussed.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xin Zhao
- Ecology and Environmental Monitoring Center of Jilin Province, Changchun 130011, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|
41
|
Jiang W, Li Z, Yang Q, Hou X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit Rev Anal Chem 2023; 54:2636-2657. [PMID: 36971430 DOI: 10.1080/10408347.2023.2189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although all countries have been controlling the excessive use of pesticides, incidents of pesticide residues still existed. Electrochemical biosensors are extensively applied detection techniques to monitor pesticides with the help of different types of biorecognition components mainly including, antibodies, aptamers, enzymes (i.e., acetylcholinesterase, organophosphorus hydrolase, etc.), and synthetic molecularly imprinted polymers. Besides, the electrode materials mainly affected the sensitivity of electrochemical biosensors. Metallic nanomaterials with various structures and excellent electrical conductivity were desirable choice to construct electrochemical platforms to achieve the detection with high sensitivity and good specificity toward the target. This work reviewed the developed metallic materials including monometallic nanoparticles, bimetallic nanomaterials, metal atoms, metal oxides, metal molybdates, metal-organic frameworks, MXene, etc. Integration of recognition elements endowed the electrode materials with higher specificity toward the target pesticide. Besides, future challenges of metallic nanomaterials-based electrochemical biosensors for the detection of pesticides are also discussed and described.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
42
|
Chen M, Qileng A, Liang H, Lei H, Liu W, Liu Y. Advances in immunoassay-based strategies for mycotoxin detection in food: From single-mode immunosensors to dual-mode immunosensors. Compr Rev Food Sci Food Saf 2023; 22:1285-1311. [PMID: 36717757 DOI: 10.1111/1541-4337.13111] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
Mycotoxin contamination in foods and other goods has become a broad issue owing to serious toxicity, tremendous threat to public safety, and terrible loss of resources. Herein, it is necessary to develop simple, sensitive, inexpensive, and rapid platforms for the detection of mycotoxins. Currently, the limitation of instrumental and chemical methods cannot be massively applied in practice. Immunoassays are considered one of the best candidates for toxin detection due to their simplicity, rapidness, and cost-effectiveness. Especially, the field of dual-mode immunosensors and corresponding assays is rapidly developing as an advanced and intersected technology. So, this review summarized the types and detection principles of single-mode immunosensors including optical and electrical immunosensors in recent years, then focused on developing dual-mode immunosensors including integrated immunosensors and combined immunosensors to detect mycotoxins, as well as the combination of dual-mode immunosensors with a portable device for point-of-care test. The remaining challenges were discussed with the aim of stimulating future development of dual-mode immunosensors to accelerate the transformation of scientific laboratory technologies into easy-to-operate and rapid detection platforms.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Biosensor with enhanced photoelectrochemical activity based on heterogeneous Co3O4@C/TiO2 composite with efficient photogenerated carrier separation for chlorpyrifos detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
44
|
Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta 2023; 254:124133. [PMID: 36459871 DOI: 10.1016/j.talanta.2022.124133] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
45
|
Dong L, Liu B, Maenosono S, Yang J. Multifunctional Au@Ag@SiO 2 Core-Shell-Shell Nanoparticles for Metal-Enhanced Fluorescence, Surface-Enhanced Raman Scattering, and Photocatalysis Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1593-1599. [PMID: 36668988 DOI: 10.1021/acs.langmuir.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Au@Ag@SiO2 core-shell-shell nanoparticles (NPs) were prepared by a facile one-pot synthetic technique. The Au@Ag core size and SiO2 shell thicknesses are readily controlled by adjusting the precursor concentration. The multilayered NPs with dielectric SiO2 outer shells and bimetallic Au@Ag cores exhibited both the chemical stability of Au with the high scattering efficiency of Ag. Furthermore, the SiO2 shell is beneficial to the metal-enhanced fluorescence for biomedical applications. Metal-enhanced fluorescence, surface-enhanced Raman scattering, and photocatalytic activities of silica-coated Au@Ag, Ag, Au, and Au/Ag core-shell NPs were compared and discussed. The size and structure of Au@Ag@SiO2 core-shell-shell NPs were optimized to maximize their optical and catalytic activities.
Collapse
Affiliation(s)
- Li Dong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Jianhui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
46
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
47
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
48
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M. Immunosensors-The Future of Pathogen Real-Time Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249757. [PMID: 36560126 PMCID: PMC9785510 DOI: 10.3390/s22249757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 05/26/2023]
Abstract
Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the "gold standard" for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armored and Automotive Technology, Okuniewska 1, 05-070 Sulejowek, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
50
|
Zhai W, Cao M, Xiao Z, Li D, Wang M. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate. Foods 2022; 11:3597. [PMID: 36429190 PMCID: PMC9689543 DOI: 10.3390/foods11223597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Malathion, phoxim, and thiram are organophosphates and organosulfur pesticides widely used in agricultural products. The residues of these pesticides present a direct threat to human health. Rapid and on-site detection is critical for minimizing such risks. In this work, a simple approach was introduced using a flexible surface-enhanced Raman spectroscopy (SERS) substrate. The prepared Ag nanoparticles-polydimethylsiloxane (AgNPs-PDMS) substrate showed high SERS activity, good precision (relative standard deviation = 5.33%), and stability (30 days) after optimization. For target pesticides, the linear relationship between characteristic SERS bands and concentrations were achieved in the range of 10~1000, 100~5000, and 50~5000 μg L-1 with LODs down to 3.62, 41.46, and 15.69 μg L-1 for thiram, malathion, and phoxim, respectively. Moreover, SERS spectra of mixed samples indicated that three pesticides can be identified simultaneously, with recovery rates between 96.5 ± 3.3% and 118.9 ± 2.4%, thus providing an ideal platform for detecting more than one target. Pesticide residues on orange surfaces can be simply determined through swabbing with the flexible substrate before acquiring the SERS signal. This study demonstrated that the prepared substrate can be used for the rapid detection of pesticides on real samples. Overall, this method greatly simplified the pre-treatment procedure, thus serving as a promising analytical tool for rapid and nondestructive screening of malathion, phoxim, and thiram on various agricultural products.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiyong Xiao
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|