1
|
Li XY, Zhou XD, Hu JM. Peptides in the detection of metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6589-6598. [PMID: 39269217 DOI: 10.1039/d4ay01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
By means of their specific interactions with different metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. In view of natural metallopeptides, scientists have proposed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing various sensors. However, the design of new peptide ligands requires a deep understanding of the structures, assembly properties, and dynamic behaviors of such peptides. This review briefly describes detection strategies of metal ions via coordination to the binding sites in peptides. The principles and functions of sensing systems are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications.
Collapse
Affiliation(s)
- Xin-Yi Li
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Dong Zhou
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Ji-Ming Hu
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
2
|
Zhou M, Zheng M, Deng W, Kong N, Hu J, Wang P, Yang X. A highly sensitive and selective fluorescent "on-off-on" peptide-based probe for sequential detection of Hg 2+ and S 2- ions: Applications in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124514. [PMID: 38805991 DOI: 10.1016/j.saa.2024.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.
Collapse
Affiliation(s)
- Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Na Kong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Jinglan Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
3
|
Li S, Pu C, Cao X, Zheng M, Deng W, Wang P, Wu J. A dual-signals fluorometric and colorimetric peptide-based probe for Cu(II) and glyphosate detection and its application for bioimaging and water testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174163. [PMID: 38906309 DOI: 10.1016/j.scitotenv.2024.174163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
A novel dual-signal fluorometric and colorimetric probe FMDH (5-FAM-Met-Asp-His-NH2), incorporating a tripeptide (Met-Asp-His-NH2) linked to 5-carboxyfluorescein (5-FAM), was firstly synthesised. FMDH demonstrated exceptional selectivity and sensitivity, rapid response, wide pH response range and robust anti-interference capabilities for monitoring Cu2+. This was achieved through a distinctive naked-eye colorimetric and fluorescent quenching behaviour. A good linearity within the range of 0-3 μM (R2 = 0.9914) was attained, and the limit of detection (LOD) for Cu2+ was 47.4 nM. Furthermore, the FMDH-Cu2+ ensemble responded to glyphosate with notable selectivity and sensitivity. A good linear correlation (R2 = 0.9926) was observed at the lower concentration range (2.4-7.8 μM) and achieving a detection limit as low as 29.9 nM. The response time of FMDH with Cu2+ and glyphosate were less than 20 s, and the pH range of 7-11 that was suitable for practical application under physiological pH conditions. MTT assays confirmed that FMDH offers good permeability and low toxicity, facilitating successful application in imaging analysis of Cu2+ and glyphosate in living cells and zebrafish. In addition, FMDH was employed in the detection of these analytes in real water samples. Cost-effective, highly sensitive and easily prepared FMDH-impregnated test strips were developed for the efficient visual detection of Cu2+ and glyphosate under 365 nm UV light. Increasing concentrations of Cu2+ and glyphosate resulted in notable colour changes under 365 nm UV light, enabling visual semi-quantitative analysis via a smartphone colour-analysis App.
Collapse
Affiliation(s)
- Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Chunmei Pu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Xinlin Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China.
| |
Collapse
|
4
|
Pu C, Li S, Cao X, Zhou M, Deng W, Wang P. Rational design of peptide-based fluorescent probe for sequential recognitions of Cu(II) ions and glyphosate: Smartphone, test strip, real sample and living cells applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124424. [PMID: 38733917 DOI: 10.1016/j.saa.2024.124424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
A new peptide-based fluorescent probe named DMDH with easy-to-synthesize, excellent stability, good water solubility and large Stokes shift (225 nm) was synthesized for highly selective sequential detections of copper ions (Cu2+) and glyphosate (Glyp). DMDH demonstrated great detection performance towards Cu2+via strong fluorescence quenching, and forming non-fluorescence DMDH-Cu2+ ensemble. As a new promising cascade probe, the fluorescence of DMDH-Cu2+ ensemble was significantly recovered based on displacement approach after glyphosate was added. Interestingly, the limit of detections (LODs) for Cu2+ and glyphosate were 40.6 nM and 10.6 nM, respectively, which were far lower than those recommended by the WHO guidelines for drinking water. More importantly, DMDH was utilized to evaluate Cu2+ and glyphosate content in three real water samples, demonstrating that its effectiveness in water quality monitoring. Additionally, it is worth noting that DMDH was also applied to analyze Cu2+ and glyphosate in living cells in view of significant cells permeability and low cytotoxicity. Moreover, DMDH soaked in filter paper was used to create qualitative test strips and visually identify Cu2+ and glyphosate through significant color changes. Furthermore, smartphone RGB color recognition provided a new method for semi-quantitative testing of Cu2+ and glyphosate in the absence of expensive instruments.
Collapse
Affiliation(s)
- Chunmei Pu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Xinlin Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
5
|
Zheng M, Zhou M, Deng W, Wang P, An Y. Semi-quantitative and visual detection of Cu 2+ and glyphosate in real samples and living cells using fluorescent and colorimetric dual-signals peptide-based probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124327. [PMID: 38669979 DOI: 10.1016/j.saa.2024.124327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The excessive emission of copper ions (Cu2+) and the abuse of glyphosate (Glyp) have caused serious harm to the ecological environment and human health, so it is important to develop a fast and convenient method for the analysis of Cu2+ and glyphosate to ensure environmental and food safety. Herein, a dual-signals peptide-based probe (FASRH) with fluorescent and colorimetric was prepared using 5-carboxyl fluorescein modified tetrapeptide (Ala-Ser-Arg-His-NH2). FASRH was successfully used to recognize Cu2+ as a fluorescence "on-off" probe, forming the FASRH-Cu2+ complex with non-fluorescence. As a new promising cascade probe, FASRH-Cu2+ complex probe has high selectivity (only Glyp), good sensitivity (50.2 nM), good anti-interference ability and wide pH range (7.0-11.0) for the detection of glyphosate by ligand replacement method. In addition, the recognizable color changed markedly under 365 nm UV light and natural light. Notably, FASRH not only achieved accurate monitoring of Cu2+ and glyphosate in two real water samples, but also successfully applied to detect Cu2+ and glyphosate in live Hacat cells based on low cytotoxicity. Moreover, it is worth noting that FASRH-impregnated test strips exhibited significant fluorescence and colorimetric color changes for Cu2+ and glyphosate via naked eye. Furthermore, smartphone-assisted FASRH was used for the portable detection of Cu2+ and glyphosate based on the advantages of simplicity, low cost and fast response.
Collapse
Affiliation(s)
- Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
6
|
Deng W, Li S, Zhou M, Zheng M, Wang P, An Y. Ratiometric peptide-based fluorescent probe with large Stokes shift for detection of Hg 2+ and S 2- and its applications in cells imaging and smartphone-assisted recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124306. [PMID: 38640624 DOI: 10.1016/j.saa.2024.124306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this work, a new ratiometric fluorescent probe DKA was synthesized based on the double sides of lysine backbone conjugated with alanine and dansyl groups. DKA exhibited fluorescence ratiometric response for Hg2+ with high sensitivity (13.4 nM), specific selectivity (only Hg2+), strong anti-interference ability (no interference), fast recognition (within 60 s) and wide pH range (5-10). The stoichiometry of binding of DKA and Hg2+ was determined to be 1:1 via Job's plot, ESI-HRMS and 1HNMR titration analysis. Subsequently, the in situ formation of DKA-Hg2+ complex was used for highly selective detection of S2- as a novel fluorescence "on-off" probe, and the lowest detection limit for S2- was 12.9 nM. In addition, DKA possessed excellent cells permeation and low toxicity, and fluorescence imaging of Hg2+ and S2- was performed in living Hacat cells. Most importantly, the digital imaging using a smartphone color recognition APP indicated that DKA could semi-quantitatively and visually detected Hg2+ and S2- without expensive equipment.
Collapse
Affiliation(s)
- Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
7
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
8
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
9
|
Zhou M, Zheng M, Wang P, An Y. A novel ratiometric peptide-based fluorescent probe for sequential detection of Hg 2+ and S 2- ions and its application in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123829. [PMID: 38176191 DOI: 10.1016/j.saa.2023.123829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
A new ratiometric peptide-based fluorescent probe DWPH was designed and synthesized, comprising dansyl fluorophore as a fluorescent dye, and tripeptide backbone (Trp-Pro-His-NH2) as a recognition group. The addition of Hg2+ caused the maximum emission peak of DWPH to blue shift from 560 nm to 510 nm. DWPH exhibited large Stokes shift (230 nm), satisfactory water solubility (100 % aqueous medium), good selectivity (only Hg2+), high sensitivity (24.6 nM), rapid response (within 50 s) and strong anti-interference ability for Hg2+ detection over a wide pH range (7-11). Additionally, the complex DWPH-Hg2+ as a relay response probe could also be applied to S2- according to displacement approach. Notably, the detection limit for S2- was calculated as 23.3 nM, exhibiting that DWPH showed great potential for environmental monitoring and bioimaging. In addition, DWPH were successfully used to determine Hg2+ and S2- in living cells and zebrafish based on excellent permeability and low cytotoxicity. What's more, the gradient concentration color changes of Hg2+ and S2- were combined with the smartphone APP to obtain red-green-blue (RGB) values, thus enabling rapid semi-quantitative detection of Hg2+ and S2- without expensive instruments.
Collapse
Affiliation(s)
- Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
10
|
Fang X, Wang S, Wang Q, Gong J, Li L, Lu H, Xue P, Ren Z, Wang X. A highly selective and sensitive fluorescence probe based on BODIPY-cyclen for hydrogen sulfide detection in living cells and serum. Talanta 2024; 268:125339. [PMID: 37918241 DOI: 10.1016/j.talanta.2023.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule that plays a vital role in several biological processes. In the present study, a BODIPY-based fluorescent probe called 8-[4-((1,4,7,10-tetraazacyclododecane)methyl)phenyl]-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a, 4a-diaza-s-indacene (BA-Cyclen)-Cu was designed and synthesized; this probe is a Cu(Ⅱ) complex that uses Cu(Ⅱ) decomplexation to achieve the sensitive and rapid detection of aqueous H2S via the "turn-on" mode. We observed that BA-Cyclen-Cu exhibited good membrane permeability, low toxicity, and lysosome-targeting ability, facilitating H2S detection in living cells. Furthermore, we demonstrated the potential biological applications of the probe by measuring exogenous H2S originating from Na2S and GYY4137, a slow-release donor, and endogenous H2S generated via the catalysis of cystathionine-β-synthase in both normal (H9c2) and cancerous (U87) cells. Moreover, BA-Cyclen-Cu was successfully used to detect exogenous H2S by the external standard method in fetal bovine serum, the serum of a healthy person, and the serum of a patient with liver cancer.
Collapse
Affiliation(s)
- Xiao Fang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Siqi Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Qingqing Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Li Li
- Beijing You'an Hospital, Capital Medical University, Beijing 100071, PR China
| | - Helin Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Ping Xue
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Xiaobo Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China.
| |
Collapse
|
11
|
Zheng M, Zhou M, Xue S, Chen B, Wang P. Rational development of a peptide-based probe for fluorescence and colorimetric dual-mode detection of Cu 2+ and S 2- ions: Real application in cell imaging and test strips. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123006. [PMID: 37369144 DOI: 10.1016/j.saa.2023.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
A new dual-mode probe FAM-SSH with fluorescence and colorimetric properties was developed by solid-phase peptide synthesis, comprising 5-carboxy fluorescein (5-FAM) as a fluorophore, and tripeptide (Ser-Ser-His) as a recognition group. FAM-SSH not only displayed highly selective detection of Cu2+ based on fluorescence quenching mode, but also achieved colorimetric recognition of Cu2+ in solution, wherein a color change was observable to the naked eye. Additionally, the FAM-SSH-Cu2+ ensemble was highly selective for S2- over a wide pH range (7.0-12.0), characterized by a fluorescence enhanced response and colorimetric recognition, which was caused by the release of FAM-SSH and the precipitation of CuS. Moreover, the limit of detection (LOD) values for Cu2+ and S2- were 55.5 nM and 31.1 nM, respectively. Results of sample analyses and cell imaging experiments indicated that FAM-SSH has exciting field practicability and good cell permeability, and would be further useful for detection and imaging in environmental systems and living cells. Finally, test strips were produced by immersing them in FAM-SSH solution, thereby creating a method for portable visual detection. More importantly, a smartphone-assisted visual sensing platform was also developed for semi-quantitative Cu2+ and S2- detection with LOD values of 0.48 μM and 1.22 μM, respectively.
Collapse
Affiliation(s)
- Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shirui Xue
- School of Journalism and Communications, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
12
|
Wei P, Xiao L, Hou P, Wang Q, Wang P. A novel Cu(II)-assisted peptide fluorescent probe for highly sensitive detection of glyphosate in real samples: real application in test strips and smartphone. Anal Bioanal Chem 2023; 415:5985-5996. [PMID: 37505235 DOI: 10.1007/s00216-023-04869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Glyphosate (Glyp) is an organophosphorus herbicide, and its abuse causes potential harm to the environment and human health. Thus, the development of simple and portable methods for rapid and visual detection of glyphosate is of great importance. Herein, we successfully developed a new fluorescent probe L with dansyl fluorophore as a fluorescent dye and tetrapeptide (Ala-Ser-Arg-His-NH2) as a recognition group. According to the design, L exhibited a specific fluorescence quenching response to Cu2+ and formed an L-Cu2+ ensemble with a molecular ratio of 2:1, demonstrating a limit of detection (LOD) as low as 12.04 nM. Interestingly, the L-Cu2+ ensemble as a relay response probe exhibited a specific fluorescence "off-on" response to glyphosate without interference from other pesticides and anions based on the strong complexation of glyphosate and Cu2+. The LOD of the L-Cu2+ ensemble for glyphosate was calculated as 12.59 nM. Additionally, the results of three recovery experiments with real samples showed that L has good practicability and accuracy in detecting glyphosate. Test strips were also fabricated to achieve facile detection of glyphosate to demonstrate the practical application potential of the L-Cu2+ ensemble. The L-Cu2+ ensemble was integrated with a smartphone for semi-quantification of glyphosate in a field environment under a 365 nm UV lamp.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Peilian Hou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China.
| |
Collapse
|
13
|
Wei P, Xiao L, Gou Y, He F, Wang P. A novel fluorescent probe based on a tripeptide-Cu(II) complex system for detection of histidine and its application on test strips and smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122290. [PMID: 36608521 DOI: 10.1016/j.saa.2022.122290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Herein, we reported a novel peptide-based fluorescent probe DSSH for highly selective and sensitive detections of both Cu2+ and l-histidine (l-His). DSSH exhibited different color changes and fluorescence "on-off" response toward Cu2+ with a 2:1 binding stoichiometry, and the limit of detection (LOD) for Cu2+ was calculated to be 22.9 nM. The in situ formed DSSH-Cu2+ ensemble showed obvious fluorescence "off-on" response to l-His based on replacement reaction with Cu2+, as well as the discernable color changes under 365 nm UV lamp irradiation with "naked eye". The specificity of Cu2+/l-His interactions allowed l-His to be determined without interference from other amino acids, and the detection limit of DSSH-Cu2+ ensemble response to l-His was determined as 25.7 nM. Notably, DSSH was successfully applied for detecting Cu2+ and l-His in RKO living cells owing to its remarkable fluorescence behavior and low cytotoxicity. Test strips experiments suggested that DSSH can recognize Cu2+ and l-His together by a remarkable fluorescence change. More importantly, smartphone was combined with l-His solutions of different concentrations and converted into digital values through RGB channels, which was successfully used for semi-quantitative identification of l-His, and the limit of detection (LOD) was 0.97 μM.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yuting Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Fang He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
14
|
Wei P, Xiao L, Gou Y, He F, Wang P, Yang X. A novel peptide-based relay fluorescent probe with a large Stokes shift for detection of Hg 2+ and S 2- in 100 % aqueous medium and living cells: Visual detection via test strips and smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121836. [PMID: 36126620 DOI: 10.1016/j.saa.2022.121836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Herein, a novel relay peptide-based fluorescent probe DGRK was synthesized via solid phase peptide synthesis (SPPS) technology. DGRK exhibited excellent water-solubility, good stability, remarkably large Stokes shift (230 nm) and high selectivity response to Hg2+ with a non-fluorescence complex DGRK-Hg2+ formation via a 1:1 binding mode. Further studies indicated that the DGRK-Hg2+ complex could act as a secondary probe for rapidly and sequentially detecting S2- based on fluorescent "off-on" response, and without interference from a range of anions. The limit of detection (LOD) for Hg2+ and S2- were calculated to be 33.6 nM and 60.9 nM, respectively. In addition, The reversibility of interaction of confirmed that the continuous and reversible recognition behavior of Hg2+ and S2- by the probe DGRK, and could be cycled more than 5 times. In addition, DGRK could be successfully applied to the fluorescence imaging of Hg2+ and S2- in two living cells based on excellent cells permeability and low cytotoxicity. Meanwhile, DGRK was successfully used to create the low-cost and portable test strips for visual detection and rapid analysis under 365 nm UV lamp, and the test strips combined with a smartphone (RGB color) was successfully applied to the semi-quantitative analysis and monitoring of dynamic changes of Hg2+ levels.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yuting Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Fang He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China; Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Sichuan University of Science & Engineering, Zigong 643000, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
15
|
Xiao L, Wei P, He F, Gou Y, Ge Y, Liu Y, Wang P, Liao Y. Peptide-based fluorescent and colorimetric dual-functional probe for visual detection of Cu2+, Hg2+ and S2− in 100% aqueous media, living cells and paper test strips. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Choe D, Kim C. A benzothiadiazole-based colorimetric chemosensor for detecting Cu2+ and sequential H2S in practical samples. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Ruthenium(II) complex encapsulated multifunctional metal organic frameworks based electrochemiluminescence sensor for sensitive detection of hydrogen sulfide. Talanta 2022; 249:123602. [DOI: 10.1016/j.talanta.2022.123602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
|
18
|
Xiao L, Wei P, He F, Gou Y, Zhou J, Wang P, Wu J. Smartphone-assisted colorimetric and fluorescent dual-functional peptide-based probe for multianalyte visual detection in 100% aqueous media, living cells and test strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wang Y, Li J, Pei Z, Pei Y. Lactosylation leads to a water-soluble fluorescent probe for detection of S2− in water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Liu G, Xia N, Tian L, Sun Z, Liu L. Progress in the Development of Biosensors Based on Peptide-Copper Coordination Interaction. BIOSENSORS 2022; 12:bios12100809. [PMID: 36290946 PMCID: PMC9599103 DOI: 10.3390/bios12100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 05/17/2023]
Abstract
Copper ions, as the active centers of natural enzymes, play an important role in many physiological processes. Copper ion-based catalysts which mimic the activity of enzymes have been widely used in the field of industrial catalysis and sensing devices. As an important class of small biological molecules, peptides have the advantages of easy synthesis, excellent biocompatibility, low toxicity, and good water solubility. The peptide-copper complexes exhibit the characteristics of low molecular weight, high tenability, and unique catalytic and photophysical properties. Biosensors with peptide-copper complexes as the signal probes have promising application prospects in environmental monitoring and biomedical analysis and diagnosis. In this review, we discussed the design and application of fluorescent, colorimetric and electrochemical biosensors based on the peptide-copper coordination interaction.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| | - Linxu Tian
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Zhifang Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| |
Collapse
|
21
|
Wang P, Xue S, Zhou D, Guo Z, Wang Q, Guo B, Yang X, Wu J. Peptide-based colorimetric and fluorescent dual-functional probe for sequential detection of copper(Ⅱ) and cyanide ions and its application in real water samples, test strips and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121222. [PMID: 35413531 DOI: 10.1016/j.saa.2022.121222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
A novel dual-functional peptide probe FLH based on fluorescent "on-off-on" strategy and colorimetric visualization method was designed and synthesized. This new probe exhibited highly selective and rapid detection of Cu2+ with significant fluorescent "turn-off" response, with a visible colorimetric change from yellow to orange. The combination ratio of FLH to Cu2+ (1:1) was determined using ESI-HRMS spectra and Job's plot. The fluorescent emission showed a good linear response (R2 = 0.9986) with a low detection limit of 1.5 nM. In addition, the FLH-Cu2+ complex displayed colorimetric changes and a fluorescent "off-on" response toward CN- over a wide pH range from 7 to 12. This detection behavior was observed within 20 s, with a limit of detection (LOD) for CN- at 12.7 nM. Based on stability and accuracy, FLH was next developed as dual-functional test strips, and was also successfully applied to detect Cu2+ and CN- in two actual water samples. More importantly, the cytotoxicity studies indicated that FLH had good biocompatibility and low toxicity, and was successfully utilized for monitoring Cu2+ and CN- in living cells through fluorescence imaging.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Shirui Xue
- School of Journalism and Communications, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Dagang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Bingxue Guo
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China.
| |
Collapse
|
22
|
Detection of S2− in Water by a Glucose Enhanced Water-Soluble Fluorescent Bioprobe. BIOSENSORS 2022; 12:bios12080600. [PMID: 36004996 PMCID: PMC9406183 DOI: 10.3390/bios12080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
That sulfide anions (S2−) in aquatic environments are produced by microorganisms through degrading sulfur-containing proteins and other organics are harmful to human health. Thus, it is of significance to develop a convenient method for the detection of S2− in water. Small molecular fluorescent probes are very popular for their advantages of visualization, real-time, high sensitivity, and convenience. However, low solubility in water limits the application of existing S2− probes. In this work, we found that our previously developed water-soluble glycosylated fluorescent bioprobe Cu[GluC] can achieve detection of S2− in water. Cu[GluC] can restore fluorescence within 20 s when it encounters S2− and shows good sensitivity towards S2− with a detection limit of 49.6 nM. Besides, Cu[GluC] derived fluorescent test strips were obtained by immersion and realized conveniently visual S2− detection in water by coupling with a UV lamp and a smartphone app. This work provides a fluorescent bioprobe with good water solubility as well as its derived fluorescent test strip for sensitive and simple detection of S2− in water, which shows good prospects in on-site water quality monitoring.
Collapse
|
23
|
Wei P, Xiao L, Gou Y, He F, Zhou D, Liu Y, Xu B, Wang P, Zhou Y. Fluorescent “on–off–on” probe based on copper peptide backbone for specific detection of Cu(II) and hydrogen sulfide in 100% aqueous medium and application in cell imaging, real water samples and test strips. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Liu Y, Chen Q, Li Y, Bi L, Lin S, Ji H, Sun D, Jin L, Peng R. Hydrogen sulfide-induced oxidative stress mediated apoptosis via mitochondria pathway in embryo-larval stages of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113666. [PMID: 35605332 DOI: 10.1016/j.ecoenv.2022.113666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S), a highly toxic gas, has become a polluting gas that cannot be ignored, while H2S exposure results in acute or chronic poisoning or even death in humans or animals and plants, but the relevant mechanisms remain poorly understood. In this study, 9-day-old zebrafish larvae were exposed continuously to culture medium containing 30 μM survival rate was counted on H2S, and our results indicated that H2S exposure increased intracellular ROS, Ca2+, NO and MDA contents and decreased SOD activity, meaning that H2S caused oxidative stress in embryo-larval stages of zebrafish. Furthermore, we found that transgenic zebrafish (cms Tg/+ AB) displayed a lower fluorescence intensity, and cytochrome c oxidase (COX) activity and JC-1 monomer fluorescence ratio increased under H2S treatment conditions. These findings indicated that H2S caused mitochondrial dysfunction. Moreover, in this experiment, after H2S treatment, the increase of apoptotic cells, activity of caspase 3 and transcription of typical apoptosis-associated genes including BCL2 associated agonist of cell death (Bad), and BCL2 associated X apoptosis (Baxa) and so on were found, which suggested that H2S caused apoptosis in zebrafish larvae. Therefore, our data meant that H2S-traggered oxidative stress mediate mitochondrial dysfunction, thus triggering apoptosis. In conclusion, oxidative stress triggered H2S-induced apoptosis via mitochondria pathway in embryo-larval stages of zebrafish.
Collapse
Affiliation(s)
- Yinai Liu
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hao Ji
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
25
|
A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect. Anal Bioanal Chem 2022; 414:4717-4726. [PMID: 35589864 DOI: 10.1007/s00216-022-04094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
A new fluorescent probe TPE-GHK was synthesized containing a tetrastyrene (TPE) derivative as fluorophore and classical tripeptide (Gly-His-Lys-NH2) as a receptor based on the aggregation-induced emission (AIE) mechanism. TPE-GHK displayed high selectivity and rapid fluorescent "turn-on" response to Hg2+ among other competitive metal ions. The 2:1 complex binding mechanism of TPE-GHK toward Hg2+ was verified by fluorometric titration, Job's plots, and ESI-HRMS spectra. The fluorescent emission showed a good linear response in the range of 0-1.0 μM with the low detection limit of 28.6 nM. Meanwhile, TPE-GHK exhibited the excellent biocompatibility and low toxicity and was successfully applied in monitoring Hg2+ in living CAKI 2 cells, which demonstrated its potential application in environment and biological science. More importantly, TPE-GHK could be used to detect Hg2+ in two real water samples and also was successfully designed as test strips.
Collapse
|
26
|
Wang P, Wang Q, Guo Z, Xue S, Chen B, Liu Y, Ren W, Yang X, Wen S. A bifunctional peptide-based fluorescent probe for ratiometric and "turn-on" detection of Zn(II) ions and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120653. [PMID: 34838424 DOI: 10.1016/j.saa.2021.120653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In this work, a bifunctional peptide-based fluorescent probe L containing a tetrapeptide scaffold (Pro-Gly-His-Trp-NH2) and a dansyl group was synthesized using solid phase peptide synthesis (SPPS) technology. As designed, L, based on a FRET mechanism, exhibited high selectivity, excellent ratiometric signals, and fast response to Zn2+ in aqueous solutions at an excitation wavelength of 280 nm. In addition, when excited at 320 nm, L exhibited a fluorescent "turn-on" response towards Zn2+ based on PET mechanism. More importantly, the stoichiometry of L and Zn2+ was determined to be 2:1 by fluorescent titration, Job's plot method, and ESI-MS spectrometry. The association constant for Zn2+ ions was determined to be 6.26 × 108 M-2, while the limit of detection (LOD) of L was estimated as 5.43 nM, which is a much lower value than WHO and EPA guidelines for drinking water. Moreover, L was successfully applied to detect both Zn2+ and Cu2+ in living cells due to good biocompatibility and excellent low toxicity.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Shirui Xue
- School of Journalism and Communications, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wang Ren
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| | - Shaohua Wen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| |
Collapse
|
27
|
Wang P, Zhou D, Xue S, Chen B, Wen S, Yang X, Wu J. Rational design of dual-functional peptide-based chemosensor for sequential detection of Ag+ (AgNPs) and S2- ions by fluorescent and colorimetric changes and its application in live cells, real water samples and test strips. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Liu W, Bu D, Zhang H, Zhang M, Ren H, Li Z, Yu M. A mitochondrial and lysosomal targeted ratiometric probe for detecting intracellular H 2S. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:101-105. [PMID: 34937075 DOI: 10.1039/d1ay01783g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on coumarin and benzopyran derivatives, a dual-wavelength excitation ratiometric fluorescent probe, HABA, was prepared to detect H2S. The HABA probe showed good selectivity and anti-interference abilities during H2S detection. Fluorescence co-localization experiments showed that HABA had excellent localization abilities toward mitochondria and lysosomes. More importantly, HABA can not only detect exogenous H2S, but it can also detect endogenous H2S, indicating that HABA has high application potential and value in the biological field.
Collapse
Affiliation(s)
- Wenjie Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Dandan Bu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Meng Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanxian Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingming Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
29
|
Guo Z, Wang Q, Zhou D, An Y, Wang P, Liao F. A novel peptide-based fluorescent probe with a large stokes shift for rapid and sequential detection of Cu 2+ and CN - in aqueous systems and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120257. [PMID: 34411770 DOI: 10.1016/j.saa.2021.120257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A novel fluorescent probe (DSD) was reasonably designed and synthesized with dansyl-labeled dipeptide (Dan-Ser-Asp-NH2). DSD featured remarkably large Stokes shift (230 nm) and perfect water solubility, and exhibited high selectivity and rapid recognition toward Cu2+via fluorescence quenching. The detection limit of DSD for Cu2+ was 2.4 nM, indicated that DSD has excellent sensitivity. In addition, the stoichiometry between DSD and Cu2+ were detected as 1:1 by fluorescence titration, Job's plot and ESI-HRMS data. As designed, DSD-Cu2+ system was able to sequentially detect CN- according to the displacement approach with fluorescence "off-on" response, and the detection limit for CN- was calculated to be 41.9 nM. Specifically, the response time of DSD with Cu2+ and CN- was less than 40 s, which rendered it suitable for real time detection in actual water samples. In addition, with the alternate addition of Cu2+ and CN-, the reversible cycles could be repeated for at least 10 times, indicated that DSD was a promising reversibility probe. DSD showed low toxicity and good biocompatibility, and was successfully applied to detect Cu2+ and CN- in living cells.
Collapse
Affiliation(s)
- Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Dagang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| | - Fang Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| |
Collapse
|
30
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
31
|
A novel fluorescent probe for highly selective and sensitive detection of sulfur ions in real samples and living cells based on the tripeptide-Cu2+ ensemble system. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Wen S, Wang Q, Guo Z, Chen B, Liu Y, Wang P, Yang X, An Y. A rapid “on-off-on” peptide-based fluorescent probe for selective and consecutive detection of mercury and sulfide ions in aqueous systems and live cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Wang P, Sun L, Wu J, Yang X, Lin P, Wang M. A dual-functional colorimetric and fluorescent peptide-based probe for sequential detection of Cu 2+ and S 2- in 100% aqueous buffered solutions and living cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124388. [PMID: 33199144 DOI: 10.1016/j.jhazmat.2020.124388] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 05/12/2023]
Abstract
Highly sensitive and selectivite detection of copper ions (Cu2+) and hydrogen sulfide (H2S) have become important research topics due to the potential harmful impacts of these chemicals to human health and the environment. In this study, we report the synthesis of a dual-functional peptide-based probe L (FITC-AhxSerSerHis), designed to mimic a copper-sulfur metalloprotein, and capable of continuous detection of Cu2+ and S2- based on colorimetric and fluorescent methods. The new probe L displayed excellent "turn off" fluorescence response and good selectivity for Cu2+ ions via a modification of the tripeptide and fluorescein isothiocyanate group, and produced an obvious color change visible to the naked eye. Furthermore, as an excitable probe, the L-Cu complex could continuously detect S2- with high selectivity and sensitivity in 100% aqueous buffered solutions. The detection limits for fluorescence titration measurements, calculated using the equation 3σ/k, were 76.7 nM (Cu2+) and 27.2 nM (S2-), which were well below U.S. EPA safety levels. In addition, L could be cycled to alternately detect Cu2+ and S2-, thereby making it a promising reversible probe. Moreover, L was successfully applied to monitoring Cu2+ and S2- in live RKO cells through fluorescence imaging, exhibiting low cytotoxicity and good cell permeability.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Liangyu Sun
- Bankpeptide Biological Technology Co., LTD, Hefei 230031, PR China
| | - Jiang Wu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Pengchen Lin
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| | - Min Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| |
Collapse
|
34
|
Wang P, Zhou D, Liao Y, Wu J. A new peptide-based fluorescent probe for highly selective and sensitive detection of zinc (II) and application in real samples and cells imaging. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Zhang J, Chen MY, Bai CB, Qiao R, Wei B, Zhang L, Li RQ, Qu CQ. A Coumarin-Based Fluorescent Probe for Ratiometric Detection of Cu 2+ and Its Application in Bioimaging. Front Chem 2020; 8:800. [PMID: 33134262 PMCID: PMC7573568 DOI: 10.3389/fchem.2020.00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022] Open
Abstract
The fluorescent probe L, based on naphthalimide-modified coumarin, was designed, synthesized, and characterized, which could recognize Cu2+ from other cations selectively and sensitively in HEPES buffer (10 mM, Ph = 7. 4)/CH3CN (1:4, V/V). When the probe L interacted with Cu2+, the color and the fluorescent intensity changed obviously and it provided the naked-eye detection for Cu2+. The recognition mode between them was achieved by Job's plot, IR, MS, SEM, and 1HNMR. In addition, test strips made from L could still interact with Cu2+ in tap water effectively. The limit of detection (LOD) of L was 3.5 × 10-6 M. Additionally, the density functional theory (DFT) calculation method was used to analyze the action mechanism of L toward Cu2+. Importantly, the fluorescent probe L could demonstrate favorable selectivity toward Cu2+ in Caenorhabditis elegans. Thus, L was considered to have some potential for application in bioimaging.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Meng-Yu Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Cui-Bing Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (TIPC-CAS), Beijing, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (TIPC-CAS), Beijing, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Biao Wei
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Lin Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Rui-Qian Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Chang-Qing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, China
| |
Collapse
|