1
|
Fan R, Chen S, Lan F, Li W, Zhu Y, Zhang L, Zhang Y, Li L. Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review. Anal Chim Acta 2025; 1336:343264. [PMID: 39788643 DOI: 10.1016/j.aca.2024.343264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement. RESULTS Surface-Enhanced Raman Scattering (SERS) is known for its high sensitivity and specificity. It stands out in tackling the challenges that traditional EV detection methods face. In this review, we focus on the application of SERS-based biosensors in EV detection. It provides a detailed introduction to the recognition and capture of EVs, strategies for mediating signal amplification, and detection of EV biomarkers. Finally, the challenges and prospects of SERS-based biosensors are discussed. SIGNIFICANCE SERS-based biosensor enhances the Raman signal, allowing for the detection of biomarkers at low concentrations. This capability reveals its substantial potential in identifying EVs and analyzing molecular data. It paves the path for advanced EV detection.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yitong Zhu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
3
|
Zhang G, Huang X, Liu S, Xu Y, Wang N, Yang C, Zhu Z. Demystifying EV heterogeneity: emerging microfluidic technologies for isolation and multiplexed profiling of extracellular vesicles. LAB ON A CHIP 2025. [PMID: 39775292 DOI: 10.1039/d4lc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers carrying complex molecular cargoes, including proteins, nucleic acids, glycans, etc. These vesicles are closely associated with specific physiological characteristics, which makes them invaluable in the detection and monitoring of various diseases. However, traditional isolation methods are often labour-intensive, inefficient, and time-consuming. In addition, single biomarker analyses are no longer accurate enough to meet diagnostic needs. Routine isolation and molecular analysis of high-purity EVs in clinical applications is even more challenging. In this review, we discuss a promising solution, microfluidic-based techniques, that combine efficient isolation and multiplex detection of EVs, to further demystify EV heterogeneity. These microfluidic-based EV multiplexing platforms will hopefully facilitate development of liquid biopsies and offer promising opportunities for personalised therapy.
Collapse
Affiliation(s)
- Guihua Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaodan Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yiling Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Nan Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Lin X, Zhu J, Shen J, Zhang Y, Zhu J. Advances in exosome plasmonic sensing: Device integration strategies and AI-aided diagnosis. Biosens Bioelectron 2024; 266:116718. [PMID: 39216205 DOI: 10.1016/j.bios.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, as next-generation biomarkers, has great potential in tracking cancer progression. They face many detection limitations in cancer diagnosis. Plasmonic biosensors have attracted considerable attention at the forefront of exosome detection, due to their label-free, real-time, and high-sensitivity features. Their advantages in multiplex immunoassays of minimal liquid samples establish the leading position in various diagnostic studies. This review delineates the application principles of plasmonic sensing technologies, highlighting the importance of exosomes-based spectrum and image signals in disease diagnostics. It also introduces advancements in miniaturizing plasmonic biosensing platforms of exosomes, which can facilitate point-of-care testing for future healthcare. Nowadays, inspired by the surge of artificial intelligence (AI) for science and technology, more and more AI algorithms are being adopted to process the exosome spectrum and image data from plasmonic detection. Using representative algorithms of machine learning has become a mainstream trend in plasmonic biosensing research for exosome liquid biopsy. Typically, these algorithms process complex exosome datasets efficiently and establish powerful predictive models for precise diagnosis. This review further discusses critical strategies of AI algorithm selection in exosome-based diagnosis. Particularly, we categorize the AI algorithms into the interpretable and uninterpretable groups for exosome plasmonic detection applications. The interpretable AI enhances the transparency and reliability of diagnosis by elucidating the decision-making process, while the uninterpretable AI provides high diagnostic accuracy with robust data processing by a "black-box" working mode. We believe that AI will continue to promote significant progress of exosome plasmonic detection and mobile healthcare in the near future.
Collapse
Affiliation(s)
- Xiangyujie Lin
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Jiaheng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Jiaqing Shen
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Jinfeng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
6
|
Huo Z, Chen B, Wang Z, Li Y, He L, Hu B, Li H, Wang P, Yao J, Xu F, Li Y, Yang X. Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging. Anal Bioanal Chem 2024; 416:6773-6787. [PMID: 39316091 DOI: 10.1007/s00216-024-05550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Exosome analysis plays pivotal roles in various physiological and pathological processes. Plasmonic scattering microscopy (PSM) has proven to be an excellent label-free imaging platform for exosome detection. However, accurately detecting images scattered from exosomes remains a challenging task due to noise interference. Herein, we proposed an image processing strategy based on a new blind super-resolution deep learning neural network, named ESRGAN-SE, to improve the resolution of exosome PSI images. This model can obtain super-resolution reconstructed images without increasing experimental complexity. The trained model can directly generate high-resolution plasma scattering images from low-resolution images collected in experiments. The results of experiments involving the detection of light scattered by exosomes showed that the proposed super-resolution detection method has strong generalizability and robustness. Moreover, ESRGAN-SE achieved excellent results of 35.52036, 0.09081, and 8.13176 in terms of three reference-free image quality assessment metrics, respectively. These results show that the proposed network can effectively reduce image information loss, enhance mutual information between pixels, and decrease feature differentiation. And, the single-image SNR evaluation score of 3.93078 also showed that the distinction between the target and the background was significant. The suggested model lays the foundation for a potentially successful approach to imaging analysis. This approach has the potential to greatly improve the accuracy and efficiency of exosome analysis, leading to more accurate cancer diagnosis and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Zhaochen Huo
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhan Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yu Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lei He
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Boheng Hu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Haoliang Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Pengfei Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jianning Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaonan Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
7
|
Feng J, Zhang P, Wang D, Li Y, Tan J. New strategies for lung cancer diagnosis and treatment: applications and advances in nanotechnology. Biomark Res 2024; 12:136. [PMID: 39533445 PMCID: PMC11558848 DOI: 10.1186/s40364-024-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer leads in causing cancer-related mortality worldwide, continually posing a significant threat to human health. Current imaging diagnostic techniques, while offering non-invasive detection, suffer from issues such as insufficient sensitivity and the risks associated with radiation exposure. Pathological diagnosis, the gold standard for confirmation, also faces challenges like invasiveness and high costs. In treatment, surgery, radiotherapy, and chemotherapy are the main modalities, each encountering challenges related to precision, environmental adaptability, and side effects. Nanotechnology's advancement provides new solutions for the diagnosis and treatment of lung cancer, promising to enhance diagnostic accuracy and reduce side effects during treatment. This article introduces the main types of nanomaterials used in the field of lung cancer, offering a comprehensive overview of current research on the application of nanotechnology in early screening, diagnosis, treatment, and monitoring of lung cancer, and summarizing ongoing clinical research findings.
Collapse
Affiliation(s)
- Jiaqi Feng
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuting Li
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, China.
| | - Jiaxiong Tan
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
8
|
Pan X, Zhang Z, Yun Y, Zhang X, Sun Y, Zhang Z, Wang H, Yang X, Tan Z, Yang Y, Xie H, Bogdanov B, Zmaga G, Senyushkin P, Wei X, Song Y, Su M. Machine Learning-Assisted High-Throughput Identification and Quantification of Protein Biomarkers with Printed Heterochains. J Am Chem Soc 2024; 146:19239-19248. [PMID: 38949598 DOI: 10.1021/jacs.4c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.
Collapse
Affiliation(s)
- Xiangyu Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Zhang
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Zixuan Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yaqi Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Bogdan Bogdanov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Georgii Zmaga
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Pavel Senyushkin
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Xuemei Wei
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| |
Collapse
|
9
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Liu T, Sun L, Ji Y, Zhu W. Extracellular vesicles in cancer therapy: Roles, potential application, and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189101. [PMID: 38608963 DOI: 10.1016/j.bbcan.2024.189101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer as they play important roles in cancer development and progression. Considering their natural capacity to facilitate cell-to-cell communication as well as their high physiochemical stability and biocompatibility, EVs serve as superior delivery systems for a wide range of therapeutic agents, including medicines, nanomaterials, nucleic acids, and proteins. Therefore, EVs-based cancer therapy is of greater interest to researchers. Mounting studies indicate that EVs can be improved in efficiency, specificity, and safety for cancer therapy. However, their heterogeneity of physicochemical properties and functions is not fully understood, hindering the achievement of bioactive EVs with high yield and purity. Herein, we paid more attention to the EVs applications and their significance in cancer therapy.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Shen J, Ma Z, Xu J, Xue T, Lv X, Zhu G, Huang B. Exosome Isolation and Detection: From Microfluidic Chips to Nanoplasmonic Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676635 DOI: 10.1021/acsami.3c19396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.
Collapse
Affiliation(s)
- Jianing Shen
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Zhengtai Ma
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Tianhao Xue
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaoqing Lv
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
| | - Guixian Zhu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Beiju Huang
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Agnihotram R, Dhar R, Dhar D, Purushothaman K, Narasimhan AK, Devi A. Fusion of Exosomes and Nanotechnology: Cutting-Edge Cancer Theranostics. ACS APPLIED NANO MATERIALS 2024; 7:8489-8506. [DOI: 10.1021/acsanm.4c01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Rohan Agnihotram
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Debolina Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Kaavya Purushothaman
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| |
Collapse
|
14
|
Zhou M, Li C, Wei R, Wang H, Jia H, Yan C, Huang L. Exponential Amplification-Induced Activation of CRISPR/Cas9 for Sensitive Detection of Exosomal miRNA. Anal Chem 2024; 96:4322-4329. [PMID: 38422550 DOI: 10.1021/acs.analchem.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
As an important component of highly heterogeneous exosomes, exosomal microRNAs (miRNAs) have great potential as noninvasive biomarkers for cancer diagnosis. Therefore, a sensitive and simple sensor is the key for its clinical application. Herein, we designed an exponential amplification reaction (EXPAR) to induce the reactivation of the CRISPR-associated protein 9/small guide RNA (Cas9/sgRNA) complex, thus achieving sensitive and visual exosomal miRNAs-21 (miR-21) fluorescence sensing. In this design, we inactivated the sgRNA by hybridizing sgRNA and blocker DNA. Then, we used a trigger DNA to hybridize with miR-21 and produced a lot of activated DNA by EXPAR. Those activated DNA further hybridized with blocker DNA and released the free sgRNA to form the activated Cas9/sgRNA complex. Based on the quick cleavage of activated Cas9/sgRNA complex, the reporter DNA labeled by SYBR Green I was released from the surface of the magnetic nanoparticles (MNPs) into the supernatant, and thus was used to sensitively quantify the miRNAs concentration with a limit of detection of 3 × 103 particles/mL. In addition, this fluorescence sensor has also been successfully employed to distinguish healthy people and cancer patients by naked-eye observation of the fluorescence, thus demonstrating its great potential for accurate and point-of-care cancer diagnosis.
Collapse
Affiliation(s)
- Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rong Wei
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Haoyu Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei 230601, China
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
15
|
Pei Y, Guo Y, Wang W, Wang B, Zeng F, Shi Q, Xu J, Guo L, Ding C, Xie X, Ren T, Guo W. Extracellular vesicles as a new frontier of diagnostic biomarkers in osteosarcoma diseases: a bibliometric and visualized study. Front Oncol 2024; 14:1359807. [PMID: 38500663 PMCID: PMC10944918 DOI: 10.3389/fonc.2024.1359807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The use of liquid biopsy in cancer research has grown exponentially, offering potential for early detection, treatment stratification, and monitoring residual disease and recurrence. Exosomes, released by cancer cells, contain tumor-derived materials and are stable in biofluids, making them valuable biomarkers for clinical evaluation. Bibliometric research on osteosarcoma (OS) and exosome-derived diagnostic biomarkers is scarce. Therefore, we aimed to conduct a bibliometric evaluation of studies on OS and exosome-derived biomarkers. Using the Web of Science Core Collection database, Microsoft Excel, the R "Bibliometrix" package, CiteSpace, and VOSviewer software, quantitative analyses of the country, author, annual publications, journals, institutions, and keywords of studies on exosome-derived biomarkers for OS from 1995 to 2023 were performed. High-quality records (average citation rate ≥ 10/year) were filtered. The corresponding authors were mainly from China, the USA, Australia, and Canada. The University of Kansas Medical Center, National Cancer Center, Japan, and University of Kansas were major institutions, with limited cooperation reported by the University of Kansas Medical Center. Keyword analysis revealed a shift from cancer progression to mesenchymal stem cells, exosome expression, biogenesis, and prognostic biomarkers. Qualitative analysis highlighted exosome cargo, including miRNAs, circRNAs, lncRNAs, and proteins, as potential diagnostic OS biomarkers. This research emphasizes the rapid enhancement of exosomes as a diagnostic frontier, offering guidance for the clinical application of exosome-based liquid biopsy in OS, contributing to the evolving landscape of cancer diagnosis.
Collapse
Affiliation(s)
- Yanhong Pei
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Chaowei Ding
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xiangpang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Lee SH, Back JH, Joo HJ, Lim DS, Lee JE, Lee HJ. Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance. Talanta 2024; 267:125232. [PMID: 37806108 DOI: 10.1016/j.talanta.2023.125232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
A simultaneous detection method for two cardiac disease protein biomarkers present in serum samples on a single planar gold chip using surface plasmon resonance (SPR) is described. The detection of N-terminal pro-brain natriuretic peptide (NT-proBNP) and tumor necrosis factor α (TNF-α), which are known as acute myocardial infarction (AMI) biomarkers, with predetermined clinically relevant concentrations was performed using mixed aptamers specific to each protein tethered on a single gold surface. After the binding of NT-proBNP and/or TNF-α to the mixed aptamers, an antibody specific to each target protein was injected to form a surface sandwich complex to improve selectivity. In order to adjust the dynamic ranges in the known clinically relevant concentration significantly different for NT-proBNP (0.13-0.24 nM) and TNF-α (0.5-3 pM), the surface density ratios of the corresponding pair of aptamer and antibody were first systematically determined, which were the 1:1 mixed aptamer chip with 40 nM anti-NT-proBNP and 100 nM anti-TNF-α. This allowed to establish the distinct dynamic ranges of 0.05-0.5 nM for NT-proBNP and 0.1-5 pM for TNF-α in a buffer, along with detection and quantification limits of 0.03 and 0.19 nM for NT-proBNP and 0.06 and 0.21 pM for TNF-α, respectively. The changes in refractive unit (RU) values observed when exposing both proteins at different concentrations alongside the corresponding fixed concentration of antibodies onto the 1:1 mixed aptamer chip were then correlated to the sum of RU values measured when using the injection of individual protein for evaluating each protein concentration. With a complete characterization of the simultaneous quantification of two protein concentrations in the buffer, the mixed aptamer chip was finally employed for direct measurements of NT-proBNP and TNF-α concentrations in undiluted serum samples from healthy controls and AMI patients. The results of simultaneous SPR measurements for the two proteins in the serum samples were further compared to the individual protein concentration results using an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Hyun Back
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Eun Lee
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
17
|
Yang L, Guo H, Gao Q, Hou T, Zhang J, Liu X, Li F. Integrating Reliable Pt-S Bond-Mediated 3D DNA Nanomachine with Magnetic Separation in a Homogeneous Electrochemical Strategy for Exosomal MicroRNA Detection with Low Background and High Sensitivity. Anal Chem 2023; 95:17834-17842. [PMID: 37988125 DOI: 10.1021/acs.analchem.3c03914] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Precise and sensitive analysis of exosomal microRNA (miRNA) is of great importance for noninvasive early disease diagnosis, but it remains a great challenge to detect exosomal miRNA in human blood samples because of their small size, high sequence homology, and low abundance. Herein, we integrated reliable Pt-S bond-mediated three-dimensional (3D) DNA nanomachine and magnetic separation in a homogeneous electrochemical strategy for the detection of exosomal miRNA with low background and high sensitivity. The 3D DNA nanomachine was easily prepared via a facile and rapid freezing method, and it was capable of resisting the influence of biothiols, thus endowing it with high stability. Notably, the as-developed magnetic 3D DNA nanomachine not only enabled the detection system to have a low background but also coupled with liposome nanocarriers to synergistically amplify the current signal. Consequently, by ingeniously combining the low background and multiple signal-amplification strategies in homogeneous electrochemical biosensing, highly sensitive detection of exosomal miRNA was successfully achieved. More significantly, with good anti-interference ability, the as-proposed method could effectively discriminate plasma samples from cancer patients and healthy subjects, thus showing a high potential for application in the nondestructive early clinical diagnosis of disease.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
18
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Wang Y, Hu Y, Xie R, Zeng Q, Hong Y, Chen X, Zhang P, Zeng L, Zhang Y, Zeng S, Yang H. Ultrasensitive label-free miRNA-21 detection based on MXene-enhanced plasmonic lateral displacement measurement. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4055-4062. [PMID: 39635639 PMCID: PMC11501375 DOI: 10.1515/nanoph-2023-0432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 12/07/2024]
Abstract
miRNAs are small non-coding RNA molecules which serve as promising biomarkers due to their important roles in the development and progression of various cancer types. The detection of miRNAs is of vital importance to the early-stage diagnostics and prognostics of multiple diseases. However, traditional detection strategies have faced some challenges owing to the intrinsic characteristics of miRNAs including small size, short sequence length, low concentration level and high sequence homology in complex real samples. To overcome these challenges, we proposed a MXene-enhanced plasmonic biosensor for real-time and label-free detection of miRNA. By utilizing MXene nanomaterial which possesses unique characteristics including large surface area and strong carrier confinement abilities, we tuned the absorption of our plasmonic sensing substrate to reach a "zero-reflection" state and induced an extremely sharp phase change at the resonance angle. Combined with the sensing mechanism based on phase-induced lateral displacement measurement, this MXene-enhanced plasmonic biosensor can achieve a much superior sensing performance compared to traditional SPR devices. Based on this biosensing scheme, the ultrasensitive detection of target miRNA with a detection limit down to 10 fM has been successfully demonstrated. More importantly, single-base mismatched miRNA can be easily distinguished from the target miRNA according to the sensing signal. Furthermore, our plasmonic biosensor is capable of detecting miRNA in complex media such as 100 % human serum samples without compromising the detection sensitivity. This MXene-enhanced plasmonic sensing scheme has the ability of detecting miRNAs with extremely low concentration levels in complex surrounding media without the need of introducing extra labels or amplification tags, which holds great potential in various biological applications and clinical diagnostics.
Collapse
Affiliation(s)
- Yuye Wang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yurui Hu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Ruibin Xie
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Qi Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yanhang Hong
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xi Chen
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Pengcheng Zhang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Lin Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yi Zhang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000Troyes, France
| | - Hui Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
20
|
Norouzi S, Soltani S, Alipour E. Recent advancements in biosensor designs toward the detection of intestine cancer miRNA biomarkers. Int J Biol Macromol 2023:125509. [PMID: 37364808 DOI: 10.1016/j.ijbiomac.2023.125509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer diagnosis and treatment have been of broad interest among scientists in the last decades due to the high death rate, widespread occurrence, and recurrence after treatment. The survival rate of cancer patients depends greatly on early detection and appropriate treatments. Therefore developing new technologies applicable to sensitive and specific methods of cancer detection is an inevitable task for cancer researchers. Abnormal miRNA expression is contributed to severe diseases such as cancers and since their expression level and type differ strictly during carcinogenesis and later metastasis and treatments, the improved detection accuracy of these miRNAs would undoubtedly lead to early diagnosis, prognosis, and targeted therapy. Biosensors are accurate and straightforward analytical devices that have had practical applications especially in the last decade. Their domain is still growing through a combination of attractive nanomaterials and amplification methods, leading to innovative biosensing platforms for the efficient detection of miRNAs as diagnostic and prognostic biomarkers. In this review, we will provide the recent developments in biosensors to detect intestine cancer miRNA biomarkers and also discuss the challenges and outcomings of this field.
Collapse
Affiliation(s)
| | - Somaieh Soltani
- Pharmacy faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
21
|
Chen Y, Gao D, Zhu Q, Chu B, Peng J, Wang J, Liu L, Jiang Y. Rapid exosome isolation and in situ multiplexed detection of exosomal surface proteins and microRNAs on microfluidic platform. Analyst 2023; 148:2387-2394. [PMID: 37129052 DOI: 10.1039/d3an00335c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exosomes are considered as promising biomarkers for early cancer diagnosis and prognosis. However, the majority of the research studies focused on a single type of exosomal biomarkers, which cannot comprehensively reflect the state of cancer for accurate diagnosis. To address this problem, we presented a ship-shaped microfluidic device containing a microcolumn array for simultaneous in situ detection of exosomal surface proteins and miRNAs. Exosomes were first captured in the microchannels modified with CD63 protein aptamer. Exosomal surface proteins and miRNAs were simultaneously detected in four parallel channels to avoid the interference of fluorescent signals using specific aptamers labeled by Cy5 and catalytic hairpin assembly (CHA) based signal amplification strategy. The limit of detection for multiplexed markers in exosomes was 83 exosomes per μL, which is comparable to previously reported methods. Through quantitative analysis of two disease-specific surface proteins and miRNAs derived from different cancer cells and clinical serum samples, different cancer subtypes as well as cancer patients and healthy people could be significantly distinguished. These results suggest that this simple, highly sensitive, and more accurate analytical strategy by simultaneous in situ profiling of different types of exosomal biomarkers has potential applications in cancer diagnosis and stage monitoring.
Collapse
Affiliation(s)
- Yulin Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Qingyun Zhu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bizhu Chu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Jian Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern Uni-versity of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
22
|
Zheng X, Wu Y, Zuo H, Chen W, Wang K. Metal Nanoparticles as Novel Agents for Lung Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206624. [PMID: 36732908 DOI: 10.1002/smll.202206624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/31/2022] [Indexed: 05/04/2023]
Abstract
Lung cancer is one of the most common malignancies worldwide and contributes to most cancer-related morbidity and mortality cases. During the past decades, the rapid development of nanotechnology has provided opportunities and challenges for lung cancer diagnosis and therapeutics. As one of the most extensively studied nanostructures, metal nanoparticles obtain higher satisfaction in biomedical applications associated with lung cancer. Metal nanoparticles have enhanced almost all major imaging strategies and proved great potential as sensor for detecting cancer-specific biomarkers. Moreover, metal nanoparticles could also improve therapeutic efficiency via better drug delivery, improved radiotherapy, enhanced gene silencing, and facilitated photo-driven treatment. Herein, the recently advanced metal nanoparticles applied in lung cancer therapy and diagnosis are summarized. Future perspective on the direction of metal-based nanomedicine is also discussed. Stimulating more research interests to promote the development of metal nanoparticles in lung cancer is devoted.
Collapse
Affiliation(s)
- Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Yuan Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
23
|
Hsu CC, Yang Y, Kannisto E, Zeng X, Yu G, Patnaik SK, Dy GK, Reid ME, Gan Q, Wu Y. Simultaneous Detection of Tumor Derived Exosomal Protein-MicroRNA Pairs with an Exo-PROS Biosensor for Cancer Diagnosis. ACS NANO 2023; 17:8108-8122. [PMID: 37129374 DOI: 10.1021/acsnano.2c10970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor derived exosomes (TEXs) have emerged as promising biomarkers for cancer liquid biopsy. Conventional methods (such as ELISA and qRT-PCR) and emerging biosensing technologies mainly detect a single type of exosomal biomarker due to the distinct properties of different biomolecules. Sensitive detection of two different types of TEX biomarkers, i.e., protein and microRNA combined biomarkers, may greatly improve cancer diagnostic accuracy. We developed an exosome protein microRNA one-stop (Exo-PROS) biosensor that not only selectively captured TEXs but also enabled in situ, simultaneous detection of TEX protein-microRNA pairs via a surface plasmon resonance mechanism. Exo-PROS assay is a fast, reliable, low sample consumption, and user-friendly test. With a total of 175 cancer patients and normal controls, we demonstrated that TEX protein-microRNA pairs measured by Exo-PROS assay detected lung cancer and breast cancer with 99% and 96% accuracy, respectively. Exo-PROS assay also showed superior diagnostic performance to conventional ELISA and qRT-PCR methods. Our results demonstrated that Exo-PROS assay is a potent liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Chang-Chieh Hsu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Xie Zeng
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Guan Yu
- Department of Biostatistics, University at Buffalo, The State University of New York, Buffalo, New York 14263, United States
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Materials Science Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
24
|
Liu S, Chen S, Tian L, He Q, Wang X, Lu F, Ning Y. A graphene-oxide-based fluorometric assay for norA gene transcription in MRSA using Nb.BbvCI-assisted target recycling and T7 exonuclease-triggered cascade dual recycling signal amplification. Talanta 2023; 259:124549. [PMID: 37062089 DOI: 10.1016/j.talanta.2023.124549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/05/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
We describe a graphene oxide (GO)-based bioassay for the fluorometric determination of norA gene transcription (mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). This approach is based on Nb.BbvCI-assisted target recycling (NATR) and T7 exonuclease (T7 Exo)-triggered cascade dual-recycling signal amplification (TTCDRSA). The system included GO, a capture probe (CP), an assistant probe (AP), two carboxyfluorescein (FAM)-labeled hairpins (HP1 and HP2), endonuclease Nb.BbvcI, and exonuclease T7. In the presence of a target, AP, together with the target RNA, can hybridise with CP via partial complementarity to one another and open its hairpin structure to form a triple complex that is recognised by Nb.BbvCI. Once the CP is cleaved, the released AP and target RNA can walk on the carboxylated graphene oxide (CGO) surface to bind with another CP which induces the next round of cleavage, accumulating many trigger probes (TPs). The TPs then activate TTCDRSA with the assistance of T7 Exo, HP1, and HP2 to produce large amounts of free FAMs. These free FAMs are repelled by GO and exhibit enhanced fluorescence signals at excitation/emission wavelengths of 480/514 nm. The limit of detection (LOD) of the bioassay was calculated to be 0.37 fM, and the linear range of the method ranged from 1 fM to 1 nM. More importantly, the bioassay also exhibited high sensitivity and selectivity for target RNA detection in real samples, which may open a new promising avenue for monitoring drug efflux and studying the mechanisms of drug actions.
Collapse
Affiliation(s)
- Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Shanquan Chen
- Department of General Education, The School of Humanities and Social Science of the Chinese University of Hong Kong (Shenzhen Campus), Shenzhen, Guangdong, 518172, People's Republic of China
| | - Longzhi Tian
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Qizhi He
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, 410219, People's Republic of China
| | - Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
25
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
26
|
Clancy JW, D'Souza-Schorey C. Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment. ANNUAL REVIEW OF PATHOLOGY 2023; 18:205-229. [PMID: 36202098 PMCID: PMC10410237 DOI: 10.1146/annurev-pathmechdis-031521-022116] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor cells release extracellular vesicles (EVs) that can function as mediators of intercellular communication in the tumor microenvironment. EVs contain a host of bioactive cargo, including membrane, cytosolic, and nuclear proteins, in addition to noncoding RNAs, other RNA types, and double-stranded DNA fragments. These shed vesicles may deposit paracrine information and can also be taken up by stromal cells, causing the recipient cells to undergo phenotypic changes that profoundly impact diverse facets of cancer progression. For example, this unique form of cellular cross talk helps condition the premetastatic niche, facilitates evasion of the immune response, and promotes invasive and metastatic activity. These findings, coupled with those demonstrating that the number and content of EVs produced by tumors can vary depending on their tumor of origin, disease stage, or response to therapy, have raised the exciting possibility that EVs can be used for risk stratification, diagnostic, and even prognostic purposes. We summarize recent developments and the current knowledge of EV cargoes, their impact on disease progression, and implementation of EV-based liquid biopsies as tumor biomarkers.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; ,
| | | |
Collapse
|
27
|
Hsu CC, Wu Y. Recent advances in nanotechnology-enabled biosensors for detection of exosomes as new cancer liquid biopsy. Exp Biol Med (Maywood) 2022; 247:2152-2172. [PMID: 35938477 PMCID: PMC9837302 DOI: 10.1177/15353702221110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cancer liquid biopsy detects circulating biomarkers in body fluids, provides information that complements medical imaging and tissue biopsy, allows sequential monitoring of cancer development, and, therefore, has shown great promise in cancer screening, diagnosis, and prognosis. Exosomes (also known as small extracellular vesicles) are cell-secreted, nanosized vesicles that transport biomolecules such as proteins and RNAs for intercellular communication. Exosomes are actively involved in cancer development and progression and have become promising circulating biomarkers for cancer liquid biopsy. Conventional exosome characterization methods such as quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) are limited by low sensitivity, tedious process, large sample volume, and high cost. To overcome these challenges, new biosensors have been developed to offer sensitive, simple, fast, high throughput, low sample consumption, and cost-effective detection of exosomal biomarkers. In this review, we summarized recent advances in nanotechnology-enabled biosensors that detect exosomal RNAs (both microRNAs and mRNAs) and proteins for cancer screening, diagnosis, and prognosis. The biosensors were grouped based on their sensing mechanisms, including fluorescence-based biosensors, colorimetric biosensors, electrical/electrochemical biosensors, plasmonics-based biosensors, surface-enhanced Raman spectroscopy (SERS)-based biosensors, and inductively coupled plasma mass spectrometry (ICP-MS) and photothermal biosensors. The future directions for the development of exosome-based biosensors were discussed.
Collapse
|
28
|
Ma J, Gong L, Cen Y, Feng L, Su Y, Liu X, Chao J, Wan Y, Su S, Wang L. Electrochemical analysis of microRNAs with hybridization chain reaction-based triple signal amplification. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Yin S, Chen A, Ding Y, Song J, Chen R, Zhang P, Yang C. Recent advances in exosomal RNAs analysis towards diagnostic and therapeutic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
31
|
Wang Y, Yang M, Ge S, Wang X, Yu J. Piezotronic Effect-Assisted Photoelectrochemical Exosomal MicroRNA Monitoring Based on an Electron Donor Self-Supplying Strategy. Anal Chem 2022; 94:13522-13532. [PMID: 36125354 DOI: 10.1021/acs.analchem.2c02821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomal microRNAs (miRNAs) as newly emerging reliable and noninvasive biomarkers have demonstrated a significant function in early cancer diagnosis. Photoelectrochemical (PEC) biosensing has attracted unprecedented attention in exosomal miRNA monitoring due to its inherent advantages of both electrochemical and optical techniques; however, the severe charge carrier recombination greatly restricts the PEC assay performance. Herein, a high-sensitive PEC strategy assisted by the piezoelectric effect is designed based on Bi2WO6/Cu2S heterojunctions and implemented for the monitoring of exosomal miRNAs. The introduction of the piezoelectric effect enables promoted electron-hole transfer and separation, thereby improving the analytical sensitivity. In addition, a target reprogramming metal-organic framework-capped CaO2 (MOF@CaO2) hybrids is prepared, in which MOF@CaO2 being responsive to exosomal miRNAs induces exposure of the capped CaO2 to H2O and then triggers self-supplying of H2O2, which effectively suppresses the electron-hole recombination, giving rise to an amplified photocurrent and a decrease in the cost of the reaction. Benefiting from the coupled sensitization strategy, the as-fabricated PEC strategy exhibits high sensitivity, specificity, low cost, and ease of use for real-time analysis of exosomal miRNAs within the effectiveness linear range of 0.1 fM-1 μM. The present work demonstrates promising external field coupling-enhanced PEC bioassay and offers innovative thoughts for applying this strategy in other fields.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
32
|
Sahraei N, Mazloum-Ardakani M, Khoshroo A, Hoseynidokht F, Mohiti J, Moradi A. Electrochemical system designed on a paper platform as a label-free immunosensor for cancer derived exosomes based on a mesoporous carbon foam- ternary nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Zhao X, Cui L, Zhang Y, Guo C, Deng L, Wen Z, Lu Z, Shi X, Xing H, Liu Y, Zhang Y. Screening for Potential Therapeutic Agents for Non-Small Cell Lung Cancer by Targeting Ferroptosis. Front Mol Biosci 2022; 9:917602. [PMID: 36203872 PMCID: PMC9532010 DOI: 10.3389/fmolb.2022.917602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a form of non-apoptotic and iron-dependent cell death originally identified in cancer cells. Recently, emerging evidence showed that ferroptosis-targeting therapy could be a novel promising anti-tumour treatment. However, systematic analyses of ferroptosis-related genes for the prognosis of non-small cell lung cancer (NSCLC) and the development of antitumor drugs exploiting the ferroptosis process remain rare. This study aimed to identify genes related to ferroptosis and NSCLC and to initially screen lead compounds that induce ferroptosis in tumor cells. We downloaded mRNA expression profiles and NSCLC clinical data from The Cancer Genome Atlas database to explore the prognostic role of ferroptosis-related genes. Four prognosis-associated ferroptosis-related genes were screened using univariate Cox regression analysis and the lasso Cox regression analysis, which could divide patients with NSCLC into high- and low-risk groups. Then, based on differentially expressed risk- and ferroptosis-related genes, the negatively correlated lead compound flufenamic acid (FFA) was screened through the Connective Map database. This project confirmed that FFA induced ferroptosis in A549 cells and inhibited growth and migration in a dose-dependent manner through CCK-8, scratch, and immunofluorescence assays. In conclusion, targeting ferroptosis might be a therapeutic alternative for NSCLC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yushan Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xiaoyuan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Haojie Xing
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| |
Collapse
|
34
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Nangare S, Patil P. Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid. Int J Biol Macromol 2022; 214:568-582. [PMID: 35752342 DOI: 10.1016/j.ijbiomac.2022.06.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD), and its consequent effect primarily clinical dementia, Parkinson's disease dementia, etc. currently bring potential avenues for diagnosis centered on identification of beta-amyloid1-42 (Aβ1-42). Unfortunately, techniques engaged in AD core biomarker (Aβ1-42) detection are majorly suffering from poor sensitivity and selectivity. Thus, we fabricated graphene oxide (GO) surface decorated chitosan (CS) mediated layer-by-layer (LbL) assembly based surface plasmon resonance (SPR) biosensor for highly sensitive and selective recognition of Aβ1-42. Briefly, silver nanoparticles (AgNPs) and GO synthesis were achieved through a greener approach. LbL assembly was designed using CS and polystyrene sulphonate (PSS) on surface of AgNPs (AgNPs-CS-PSS-CS) and then antibodies of Aβ (anti-Aβ) were fixed on LbL assembly (AgNPs-CS-PSS-CS@anti-Aβ). Herein, amine functionality of CS offers a plethora of sites for anti-Aβ antibody immobilization that gives specific direction, high selectivity, and an adequate amount of antibody immobilization. For fabrication, synthesized GO was immobilized on an amine-modified gold-coated sensor chip via carbodiimide chemistry followed by AgNPs-CS-PSS-CS@anti-Aβ immobilization on an activated GO surface. Inimitable features of LbL assembly showed improved selectivity towards Aβ peptide whereas utilization of affinity biotransducer with a combination of plasmonic and non-plasmonic nanomaterial improved sensitivity and selectivity. Consequently, linearity range and limit of detection (LOD) of Aβ1-42 antigens were found to be 2 fg/mL to 400 ng/mL and 1.21 fg/mL, respectively. Moreover, analysis of Aβ1-42 in AD-induced rats confirmed the real-time-applicability of the designed SPR biosensor. Hence, GO surface decorated AgNPs-CS-PSS-CS@anti-Aβ mediated SPR biosensor would provide a novel approach for exceptionally sensitive and selective Aβ detection.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India.
| |
Collapse
|
36
|
Wu Q, Wu W, Chen F, Ren P. Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein. Analyst 2022; 147:2809-2818. [PMID: 35616214 DOI: 10.1039/d2an00426g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reality that the coronavirus disease 2019 (COVID-19) is still raging around the world and making a comeback with a strong presence has highlighted the need for rapid and sensitive quantitative detection methods of viral RNA, antibody and antigen for widespread tracking and screening applications. Surface plasmon resonance (SPR) detection technology has achieved rapid development and become a standard measurement method in the fields of biosensing, biomedicine, biochemistry and biopharmaceuticals due to its advantages of high sensitivity, fast response and no need for labelling. Here, we report a sandwiched structure-based SPR biosensor for detecting a specific viral antigen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike S1 protein. The sensor combines a Ti3C2-MXene nanosheet modified sensing platform and polydopamine (PDA)-Ag nanoparticle (AgNP)/anti-SARS-CoV-2 spike S1 protein nanoconjugate signal enhancers, exhibiting a wide linear range of 0.0001 to 1000 ng mL-1 with a low detection limit of 12 fg mL-1 (S/N = 3). In the analysis of artificial saliva and human serum samples, the proposed SPR biosensor exhibits good reproducibility and high specificity, which indicates its potential for application in complex bodily fluids. The exploitation of the MXene-based SPR biochip for recognizing the SARS-CoV-2 antigen provides an accessible and rapid way for COVID-19 diagnosis, and promotes the application of 2D nanomaterial-based sensing chips in clinical diagnosis and disease screening. Significantly, the proposed method possesses general applicability that can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available.
Collapse
Affiliation(s)
- Qiong Wu
- Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Wen Wu
- Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Fangfang Chen
- Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China.
| |
Collapse
|
37
|
Integration of a multichannel surface plasmon resonance sensor chip and refractive index matching film array for protein detection in human urine. Talanta 2022; 246:123533. [DOI: 10.1016/j.talanta.2022.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
|
38
|
Xia Y, Huang Z, Chen T, Xu L, Zhu G, Chen W, Chen G, Wu S, Lan J, Lin X, Chen J. Sensitive fluorescent detection of exosomal microRNA based on enzymes-assisted dual-signal amplification. Biosens Bioelectron 2022; 209:114259. [PMID: 35421672 DOI: 10.1016/j.bios.2022.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
The analysis of microRNAs (miRNAs) in exosomes offers significant information for a rapid and non-invasive diagnosis of cancer. However, the clinical utility of miRNAs as biomarkers is often hampered by their low abundance in exosomes. Herein, we develop a dual-signal amplification biosensor for the sensitive detection of exosomal miRNA-21 (miR-21). In the presence of a cognate target, it hybridizes with a biotin-modified capture probe (Cp) to form a DNA-RNA heteroduplex that serves as a substrate for duplex-specific nuclease (DSN). With the assistance of DSN, the Cps are enzymatically hydrolyzed and numerous DNA catalysts are released, leading to the first signal amplification. After magnetic isolation, the DNA catalyst remaining in the supernatant triggers a strand displacement reaction based on the nicking-assisted reactant recycling strategy, without depleting the reactants, to implement the second signal amplification. Using this dual-signal amplification concept, our biosensor achieves a limit of detection of miR-21 of 0.34 fM, with a linear range of 0.5-100 fM. The receiver operating characteristic curve generated during clinical sample analysis indicates that the exosomal miR-21 outperforms serum carcinoembryonic antigen in discriminating between patients with gastric cancer (GC) and patients with precancerous (PC) lesions (area under the curve: 0.89 versus 0.74, n = 40). Moreover, the proposed biosensor exhibits an 83.9% accuracy in classifying patients with GC or PC lesions and healthy donors using a confusion matrix. Furthermore, patients with GC with or without metastases are discriminated using the proposed biosensor. Our technology may expand the applications of DNA-based biosensor-enabled cancer diagnostic tools.
Collapse
Affiliation(s)
- Yaokun Xia
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, PR China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China
| | - Lilan Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China
| | - Gengzhen Zhu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China
| | - Wenqian Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China
| | - Guanyu Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China
| | - Shuxiang Wu
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China
| | - Xu Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China.
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province PR China, 350108, PR China.
| |
Collapse
|
39
|
In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core–Shell Nanostars. NANOMATERIALS 2022; 12:nano12071156. [PMID: 35407274 PMCID: PMC9000786 DOI: 10.3390/nano12071156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Plasmon-induced photocatalysis on noble metal surfaces has attracted broad attention due to its application in sunlight energy conversion, while the selectivity of plasmonic platforms remains unclear. Herein, we present the controlled plasmon-mediated oxidation of para-aminothiophenol (p-ATP) by employing Au@Ag core–shell nanostars with tunable tip plasmons in visible–near-infrared range as reactors. In-situ Raman measurements indicate that Au@Ag core–shell nanostars essentially promote the conversion of p-ATP to 4,4′-dimercaptoazobenzene (DMAB) due to hot carriers excited by localized surface plasmon resonance. Au@Ag nanostars with plasmon modes under resonant light excitation suggested higher catalytic efficiency, as evidenced by the larger intensity ratios between 1440 cm−1 (N=N stretching of DMAB) and 1080 cm−1 shifts (C–S stretching of p-ATP). Importantly, the time-dependent surface-enhanced Raman scattering spectra showed that the conversion efficiency of p-ATP was mainly dictated by the resonance condition between the tip plasmon mode of Au@Ag core–shell nanostars and the excitation light, as well as the choice of excitation wavelength. These results show that plasmon bands of metal nanostructures play an important role in the efficiency of plasmon-driven photocatalysis.
Collapse
|
40
|
Chen G, Chen W, Xu L, Jin H, Sun W, Lan J, Wu F, Zhang X, Zhang J, Chen J. Sensitive, Highly Stable, and Anti-Fouling Electrode with Hexanethiol and Poly-A Modification for Exosomal microRNA Detection. Anal Chem 2022; 94:5382-5391. [PMID: 35323012 DOI: 10.1021/acs.analchem.2c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It remains a huge challenge to integrate the sensitivity, stability, reproducibility, and anti-fouling ability of electrochemical biosensors for practical applications. Herein, we propose a self-assembled electrode combining hexanethiol (HT), poly-adenine (poly-A), and cholesteryl-modified DNA to meet this challenge. HT can tightly pack at the electrode interface to form a hydrophobic self-assembled monolayer (SAM), effectively improving the stability and signal-to-noise ratio (SNR) of electrochemical detection. Cholesteryl-modified DNA was immobilized at the electrode through the hydrophobic interaction with HT to avoid the competition between the SAM and the DNA probe on the gold site. Thus, the assembly efficiency and uniformity of the DNA probe as well as the detection reproducibility were increased remarkedly. Poly-A was added on the HT assembled electrode to occupy the unreacted sites of gold to further enhance the anti-fouling ability. The combination of HT and poly-A allows the electrode to ensure favorable anti-fouling ability without sacrificing the detection performance. On this basis, we proposed a dual-signal amplification electrochemical biosensor for the detection of exosomal microRNAs, which showed excellent sensitivity with a detection limit down to 1.46 aM. Importantly, this method has been successfully applied to detect exosomal microRNA-21 in cells and human serum samples, proving its potential utility in cancer diagnosis.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| | - Wenqian Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| | - Huixuan Jin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, P.R. China
| | - Weiming Sun
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| | - Jianming Lan
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| | - Fang Wu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| | - Xi Zhang
- Department of Clinical Pharmacy, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P. R. China
| | - Jing Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, P.R. China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian Province, P.R. China
| |
Collapse
|
41
|
Biocatalysis-mediated MOF-to-prussian blue transformation enabling sensitive detection of NSCLC-associated miRNAs with dual-readout signals. Biosens Bioelectron 2022; 206:114139. [PMID: 35272213 DOI: 10.1016/j.bios.2022.114139] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Sensitive and accurate miRNAs assay is critical for early diagnosis of non-small-cell lung carcinomas (NSCLC). Herein, we demonstrate a photothermal and electrochemical dual-readout assay method for miRNA detection based on a novel biocatalysis-mediated MOF-to-prussian blue (PB) transformation (BMMPT) strategy and the catalytic hairpin assembly (CHA) amplification strategy. It is found that the Fe2+-based MOF (MOF-Fe2+) can act as the Fe2+ source to react with K3[Fe(CN)6], leading to the in-situ formation of prussian blue (PB) on MOF-Fe2+. Due the inherent near-infrared (NIR) photothermal conversion ability and electrochemical signal of PB, the resulting PB@MOF-Fe2+ is employed to arouse temperature readout or electrochemical signal. The presence of target miRNA-21 triggers the CHA reaction on magnetic beads (MBs), resulting the capture of numerous glucose oxidase (GOx) tags on MBs. The GOx tags then catalyze the generation of H2O2 using glucose as substrate. The H2O2 is used to inhibit the MOF-to-PB transformation process by oxidizing Fe2+ into Fe3+, leading to the decrease in temperature and electrochemical readout aroused by PB@MOF-Fe2+. By this means, a signal-off assay mode with dual readout is established for miRNA-21. Under the optimal conditions, using temperature readout or electrochemical readout, miRNA-21 can be detected at concentrations as low as 0.3 fM and 0.32 fM, respectively. Moreover, the developed method is successfully applied to evaluate the expression level of miRNA-21 in serum of NSCLC patients. This work not only provides a practical tool for NSCLC diagnosis but also presents the new features of MOF materials as signal transduction tags.
Collapse
|
42
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
43
|
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022; 21:56. [PMID: 35180868 PMCID: PMC8855550 DOI: 10.1186/s12943-022-01509-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/15/2022] [Indexed: 02/08/2023] Open
Abstract
Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracellular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediating intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numerous physiological and pathological processes. However, the further clinical application of exosomes has been greatly restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagnosis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges of applying exosome-based liquid biopsy to precision medicine are evaluated.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixin Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China.
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
44
|
Chen L, Zhang J, Lin Z, Zhang Z, Mao M, Wu J, Li Q, Zhang Y, Fan C. Pharmaceutical applications of framework nucleic acids. Acta Pharm Sin B 2022; 12:76-91. [PMID: 35127373 PMCID: PMC8799870 DOI: 10.1016/j.apsb.2021.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
DNA is a biological polymer that encodes and stores genetic information in all living organism. Particularly, the precise nucleobase pairing inside DNA is exploited for the self-assembling of nanostructures with defined size, shape and functionality. These DNA nanostructures are known as framework nucleic acids (FNAs) for their skeleton-like features. Recently, FNAs have been explored in various fields ranging from physics, chemistry to biology. In this review, we mainly focus on the recent progress of FNAs in a pharmaceutical perspective. We summarize the advantages and applications of FNAs for drug discovery, drug delivery and drug analysis. We further discuss the drawbacks of FNAs and provide an outlook on the pharmaceutical research direction of FNAs in the future.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
45
|
Visualizing electron transfer at semiconductor–metal interface by surface plasmon resonance imaging. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Chen W, Li Z, Cheng W, Wu T, Li J, Li X, Liu L, Bai H, Ding S, Li X, Yu X. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J Nanobiotechnology 2021; 19:450. [PMID: 34952586 PMCID: PMC8709980 DOI: 10.1186/s12951-021-01210-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive exosomes play an extremely important role in the diagnosis and treatment options of breast cancers. Herein, based on the reformative tyramine signal amplification (TSA) enabled by molecular aptamer beacon (MAB) conversion, a label-free surface plasmon resonance (SPR) biosensor was proposed for highly sensitive and specific detection of HER2-positive exosomes. The exosomes were captured by the HER2 aptamer region of MAB immobilized on the chip surface, which enabled the exposure of the G-quadruplex DNA (G4 DNA) that could form peroxidase-like G4-hemin. In turn, the formed G4-hemin catalyzed the deposition of plentiful tyramine-coated gold nanoparticles (AuNPs-Ty) on the exosome membrane with the help of H2O2, generating a significantly enhanced SPR signal. In the reformative TSA system, the horseradish peroxidase (HRP) as a major component was replaced with nonenzymic G4-hemin, bypassing the defects of natural enzymes. Moreover, the dual-recognition of the surface proteins and lipid membrane of the desired exosomes endowed the sensing strategy with high specificity without the interruption of free proteins. As a result, this developed SPR biosensor exhibited a wide linear range from 1.0 × 104 to 1.0 × 107 particles/mL. Importantly, this strategy was able to accurately distinguish HER2-positive breast cancer patients from healthy individuals, exhibiting great potential clinical application. ![]()
Collapse
Affiliation(s)
- Wenqin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Wu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Liu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaolin Yu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China.
| |
Collapse
|
47
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Sardarabadi P, Kojabad AA, Jafari D, Liu CH. Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC). BIOSENSORS 2021; 11:394. [PMID: 34677350 PMCID: PMC8533977 DOI: 10.3390/bios11100394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths. Despite advancements in chemotherapy and targeted therapies, the 5-year survival rate has remained at 16% for the past forty years. Minimal residual disease (MRD) is described as the existence of either isolated tumour cells or circulating tumour cells in biological liquid of patients after removal of the primary tumour without any clinical signs of cancer. Recently, liquid biopsy has been promising as a non-invasive method of disease monitoring and treatment guidelines as an MRD marker. Liquid biopsy could be used to detect and assess earlier stages of NSCLC, post-treatment MRD, resistance to targeted therapies, immune checkpoint inhibitors (ICIs) and tumour mutational burden. MRD surveillance has been proposed as a potential marker for lung cancer relapse. Principally, biosensors provide the quantitative analysis of various materials by converting biological functions into quantifiable signals. Biosensors are usually operated to detect antibodies, enzymes, DNA, RNA, extracellular vesicles (EVs) and whole cells. Here, we present a category of biosensors based on the signal transduction method for identifying biosensor-based biomarkers in liquid biopsy specimens to monitor lung cancer treatment.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Davod Jafari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
49
|
D’Agata R, Bellassai N, Jungbluth V, Spoto G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers (Basel) 2021; 13:1929. [PMID: 34200632 PMCID: PMC8229487 DOI: 10.3390/polym13121929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Strategies to develop antifouling surface coatings are crucial for surface plasmon resonance (SPR) sensing in many analytical application fields, such as detecting human disease biomarkers for clinical diagnostics and monitoring foodborne pathogens and toxins involved in food quality control. In this review, firstly, we provide a brief discussion with considerations about the importance of adopting appropriate antifouling materials for achieving excellent performances in biosensing for food safety and clinical diagnosis. Secondly, a non-exhaustive landscape of polymeric layers is given in the context of surface modification and the mechanism of fouling resistance. Finally, we present an overview of some selected developments in SPR sensing, emphasizing applications of antifouling materials and progress to overcome the challenges related to the detection of targets in complex matrices relevant for diagnosis and food biosensing.
Collapse
Affiliation(s)
- Roberta D’Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|