1
|
Han J, Choi YJ, Kang SK. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024:e2401753. [PMID: 39087395 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yi-Jeong Choi
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Nano Systems Institute SOFT Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
2
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Huo Z, Lv Y, Wang N, Zhou C, Su X. Construction of a dual-signal readout platform for effective glutathione S-transferase sensing based on polyethyleneimine-capped silver nanoclusters and cobalt-manganese oxide nanosheets with oxidase-mimicking activity. Mikrochim Acta 2024; 191:282. [PMID: 38652326 DOI: 10.1007/s00604-024-06363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.
Collapse
Affiliation(s)
- Zejiao Huo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
4
|
Tang X, Lu M, Wang J, Man S, Peng W, Ma L. Recent Advances of DNA-Templated Metal Nanoclusters for Food Safety Detection: From Synthesis, Applications, Challenges, and Beyond. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5542-5554. [PMID: 38377578 DOI: 10.1021/acs.jafc.3c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Food safety concerns have become a significant threat to human health and well-being, catching global attention in recent years. As a result, it is imperative to research conceptually novel biosensing and effective techniques for food matrices detection. Currently, DNA-templated metal nanoclusters (DNA-MNCs) are considered as one of the most promising nanomaterials due to their excellent properties in biosensing. While DNA-MNCs have garnered increasing interest, the reviews of design strategies, applications, and futuristic prospects for biosensing have been hardly found especially in food safety. The synthesis of DNA-MNCs and their use as biosensing materials in food contamination detection, including pathogenic bacteria, toxins, heavy metals, residues of pesticides, and others were comprehensively reviewed. In addition, we summarize the properties of DNA-MNCs briefly and discuss the challenges and future trends. The application of DNA-MNCs powered biosensing has been demonstrated and actively studied, which is a promising paradigm for food safety testing that can supplement or even replace current existing methods. Despite the challenges of difficulty regulating accurately, poor stability, low quantum yield, and difficult commercial transformation, the application prospects of DNA-MNCs biosensors are promising. This review aims to provide insights and directions for the future development of DNA-MNCs based food detection technology.
Collapse
Affiliation(s)
- Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiajing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
6
|
Deng Y, Guo Y, Zhang Y. Aggregation of gold nanoclusters in amyloid fibers: a luminescence assay for amyloid fibrillation detection and inhibitor screening. Analyst 2024; 149:870-875. [PMID: 38170814 DOI: 10.1039/d3an01789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Amyloid fibrillation is associated with a great variety of human diseases, such as Alzheimer's and Huntington's diseases. A fluorescence assay for amyloid fibrillation detection and inhibitor screening was developed based on the fact that the fluorescence emission of gold nanoclusters (Au NCs) is largely enhanced upon adding amyloids, such as lysozyme amyloid fibers. A good linear relationship exists between the enhanced fluorescence intensity of Au NCs and lysozyme fiber within the concentration range of 0-0.05 mg mL-1. This ultra-sensitive method can detect the protein fiber earlier than thioflavin T (THT), allowing more time for disease treatment. Furthermore, Au NCs have many advantages over the classical probe (i.e., THT), such as large Stokes shifts and low toxicity. We selected ascorbic acid as a representative inhibitor and used this method to screen inhibitors. If inhibitors are added when incubating lysozyme, the lysozyme fibrosis process will be crimped, decreasing the amount of lysozyme fibers.
Collapse
Affiliation(s)
- Yilin Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Ying Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| |
Collapse
|
7
|
Tian R, Chen J, Li D, Sun X, Ma H. Preparation of chitosan/SiO 2 coated silver nanoclusters and its application in enhanced fluorescence detection of berberine hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123417. [PMID: 37774585 DOI: 10.1016/j.saa.2023.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Although the synthesis and applications of the metal nanoclusters and silica coated metal noclusters were widely explored, however, the fluorescence sensing application of silica coated metal nanoclusters are still challenges. In this work, the composite nanoparticles (PEI-Ag NCs/CSNPs) were synthesized by coating polyethyleneimine capped silver nanoclusters (PEI-Ag NCs) with chitosan/silica through a reverse microemulsion method, and then used for fluorescence enhancement detection of berberine hydrochloride (BRH). UV-vis absorption spectra, fluorescence spectra, IR spectra, transmission electron microscope (TEM) and X-ray Photoelectron Spectroscopy (XPS) technique were used to reveal the possible binding relationship between PEI-AgNCs and chitosan/silica and fluorescence sensing mechanism of PEI-Ag NCs/CSNPs to BRH. The results showed that PEI-Ag NCs/CSNPs possess better sensing ability as compared to the free PEI- Ag NCs and can be successfully applied to evaluate the BRH content in actual medicine.
Collapse
Affiliation(s)
- Rui Tian
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| | - Junyu Chen
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China
| | - Duo Li
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China
| | - Xuehua Sun
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China
| | - Hongyan Ma
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China
| |
Collapse
|
8
|
Pang L, Pi X, Zhao Q, Man C, Yang X, Jiang Y. Optical nanosensors based on noble metal nanoclusters for detecting food contaminants: A review. Compr Rev Food Sci Food Saf 2024; 23:e13295. [PMID: 38284598 DOI: 10.1111/1541-4337.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Yang ZY, Jiang WY, Ran SY. Reductant-dependent DNA-templated silver nanoparticle formation kinetics. Phys Chem Chem Phys 2023; 25:23197-23206. [PMID: 37605826 DOI: 10.1039/d3cp02623j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
DNA molecules have been demonstrated to be good templates for producing silver nanoparticles (AgNPs), with the advantages of well-controlled sizes, shapes, and properties. Revealing the formation kinetics of DNA-templated AgNPs is crucial for their efficient synthesis. Herein, using magnetic tweezers, we studied the reduction kinetics of the Ag+-DNA structure and the subsequent nucleation kinetics by adding NaBH4, L-ascorbic acid, and sodium citrate solutions. At [Ag+] = 0.01 mM, the addition of NaBH4 solution with the same concentration resulted in the restoration of DNA. In contrast, by increasing the [NaBH4]/[Ag+] ratio (r) to 10 and 100, the DNA extension initially decreased rapidly and then increased, indicating nucleation-dissolution kinetics. With AgNO3 solutions of higher concentrations (0.1 mM and 1 mM), direct particle nucleation and growth kinetics were observed by adding a tenfold (r = 10) or a hundredfold (r = 100) amount of NaBH4, which were evidenced by a significant reduction in DNA extension. The reductant dependence of the kinetics was further investigated. Addition of L-ascorbic acid to the DNA-Ag+ solution yielded an increase-decrease kinetics that was different from that caused by NaBH4, suggesting that nucleation was not initially favored due to the lack of sufficient Ag atoms; while sodium citrate showed a weak nucleation-promoting ability to form AgNPs. We discussed the findings within the framework of classical nucleation theory, in which the supersaturation of the Ag atom is strongly influenced by multiple factors (including the reducing ability of the reductant), resulting in different kinetics.
Collapse
Affiliation(s)
- Zi-Yang Yang
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Wen-Yan Jiang
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Shi-Yong Ran
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Wang B, Fang J, Tang H, Lu S, Chen Y, Yang X, He Y. Dual-functional cellulase-mediated gold nanoclusters for ascorbic acid detection and fluorescence bacterial imaging. Front Bioeng Biotechnol 2023; 11:1258036. [PMID: 37711455 PMCID: PMC10498280 DOI: 10.3389/fbioe.2023.1258036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Protein-protected metal nanomaterials are becoming the most promising fluorescent nanomaterials for biosensing, bioimaging, and therapeutic applications due to their obvious fluorescent molecular properties, favorable biocompatibility and excellent physicochemical properties. Herein, we pioneeringly prepared a cellulase protected fluorescent gold nanoclusters (Cel-Au NCs) exhibiting red fluorescence under the excitation wavelength of 560 nm via a facile and green one-step method. Based on the fluorescence turn-off mechanism, the Cel-Au NCs were used as a biosensor for specificity determination of ascorbic acid (AA) at the emission of 680 nm, which exhibited satisfactory linearity over the range of 10-400 µM and the detection limit of 2.5 µM. Further, the actual sample application of the Au NCs was successfully established by evaluating AA in serum with good recoveries of 98.76%-104.83%. Additionally, the bacteria, including gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and gram-negative bacteria (Escherichia coli), were obviously stained by Cel-Au NCs with strong red emission. Thereby, as dual-functional nanoclusters, the prepared Cel-Au NCs have been proven to be an excellent fluorescent bioprobe for the detection of AA and bacterial labeling in medical diagnosis and human health maintenance.
Collapse
Affiliation(s)
- Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinxin Fang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huiliang Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yan Chen
- Anhui Key Laboratory of Chemo-Biosensing, Ministry of Education, Anhui Normal University, Wuhu, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, China
- Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Xiaoqi Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yuezhen He
- Anhui Key Laboratory of Chemo-Biosensing, Ministry of Education, Anhui Normal University, Wuhu, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, China
- Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
11
|
Shu W, Zhang X, Tang H, Wang L, Cheng M, Xu J, Li R, Ran X. Catalytic probes based on aggregation-induced emission-active Au nanoclusters for visualizing MicroRNA in living cells and in vivo. Anal Chim Acta 2023; 1268:341372. [PMID: 37268339 DOI: 10.1016/j.aca.2023.341372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Highly sensitive monitoring of cancer-related miRNAs is of great significance for tumor diagnosis. Herein, catalytic probes based on DNA-functionalized Au nanoclusters (AuNCs) were prepared in this work. The aggregation-induced emission-active Au nanoclusters showed an interesting phenomenon of aggregation induced emission (AIE) affected by the aggregation state. Leveraging this property, the AIE-active AuNCs were used to develop catalytic turn-on probes for detecting in vivo cancer-related miRNA based on a hybridization chain reaction (HCR). The target miRNA triggered the HCR and induced aggregation of AIE-active AuNCs, leading to a highly luminescent signal. The catalytic approach demonstrated a remarkable selectivity and a low detection limit in comparison to noncatalytic sensing signals. In addition, the excellent delivery the ability of MnO2 carrier made it possible to use the probes for intracellular imaging and in vivo imaging. Effective in situ visualization of miR-21 was achieved not only in living cells but also in tumors in living animals. This approach potentially offers a novel method for obtaining information for tumor diagnosis via highly sensitive cancer-related miRNA imaging in vivo.
Collapse
Affiliation(s)
- Wenhao Shu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Linna Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Manxiao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Jingwen Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
12
|
Tan SCL, He Z, Wang G, Yu Y, Yang L. Protein-Templated Metal Nanoclusters: Molecular-like Hybrids for Biosensing, Diagnostics and Pharmaceutics. Molecules 2023; 28:5531. [PMID: 37513403 PMCID: PMC10383052 DOI: 10.3390/molecules28145531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The use of proteins as biomolecular templates to synthesize atomically precise metal nanoclusters has been gaining traction due to their appealing properties such as photoluminescence, good colloidal- and photostability and biocompatibility. The synergistic effect of using a protein scaffold and metal nanoclusters makes it especially attractive for biomedical applications. Unlike other reviews, we focus on proteins in general as the protective ligand for various metal nanoclusters and highlight their applications in the biomedical field. We first introduce the approaches and underlined principles in synthesizing protein-templated metal nanoclusters and summarize some of the typical proteins that have been used thus far. Afterwards, we highlight the key physicochemical properties and the characterization techniques commonly used for the size, structure and optical properties of protein-templated metal nanoclusters. We feature two case studies to illustrate the importance of combining these characterization techniques to elucidate the formation process of protein-templated metal nanoclusters. Lastly, we highlight the promising applications of protein-templated metal nanoclusters in three areas-biosensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhijian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Guan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|
13
|
Cheng Y, Zhou H, Xu J, Zhao Y, Chen X, Antoine R, Ding M, Zhang K, Zhang S. Photoluminescent gold nanoclusters as two-photon excited ratiometric pH sensor and photoactivated peroxidase. Mikrochim Acta 2023; 190:225. [PMID: 37195510 DOI: 10.1007/s00604-023-05803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/16/2023] [Indexed: 05/18/2023]
Abstract
A two-photon excited ratiometric fluorescent pH sensor is reported by combining L-cysteine-protected AuNCs (Cys@AuNCs) with fluorescein isothiocyanate (FITC). Cys@AuNCs were synthesized through a one-step self-reduction route and showed pH-responsive photoluminescence at 650 nm. Benefiting from the opposite pH response of Cys@AuNCs and FITC, the fluorescence ratio (F515 nm/F650 nm) of FITC&Cys@AuNCs provided a large dynamic range of 200-fold for pH measurement in the response interval of pH 5.0-8.0. Based on the excellent two-photon absorption coefficient of Cys@AuNCs, the sensor was expected to achieve sensitive quantitation of pH in living cells under two-photon excitation. In addition, colorimetric biosensing based on enzyme-like metal nanoclusters has attracted wide attention due to their low-cost, simplicity, and practicality. It is crucial to develop high catalytic activity nanozyme from the viewpoint of practical application. The synthesized Cys@AuNCs exhibited excellent photoactivated peroxidase-like activity with high substrate affinity and catalytic reaction rate, promising for rapid colorimetric biosensing of field analysis and the control of catalytic reactions by photostimulation.
Collapse
Affiliation(s)
- Yuchi Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F69100, Villeurbanne, France.
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Road, Shanghai, 200062, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Road, Shanghai, 200062, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
14
|
Liu J, Pang B, Liu S, Li Z. The synthesis of tunable fluorescence iron nanoclusters and the detection of pH value and hydroxyl radical. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
16
|
Teng X, Ling Q, Liu T, Li L, Lu C. Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
17
|
Qiao Z, Wei X, Liu H, Liu K, Gao C. Seed-Mediated Synthesis of Thin Gold Nanoplates with Tunable Edge Lengths and Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040711. [PMID: 36839081 PMCID: PMC9961956 DOI: 10.3390/nano13040711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/13/2023]
Abstract
Thin Au nanoplates show intriguing localized surface plasmon resonance (LSPR) properties with potential applications in various fields. The conventional synthesis of Au nanoplates usually involves the formation of spherical nanoparticles or produces nanoplates with large thicknesses. Herein, we demonstrate a synthesis of uniform thin Au nanoplates by using Au-Ag alloy nanoframes obtained by the galvanic replacement of Ag nanoplates with HAuCl4 as the seeds and a sulfite (SO32-) as a ligand. The SO32- ligand not only complexes with the Au salt for the controlled reduction kinetics but also strongly adsorbs on Au {111} facets for effectively constraining the crystal growth on both basal sides of the Au nanoplates for controlled shape and reduced thicknesses. This seed-mediated synthesis affords Au nanoplates with a thickness of only 7.5 nm, although the thickness increases with the edge length. The edge length can be customizable in a range of 48-167 nm, leading to tunable LSPR bands in the range of 600-1000 nm. These thin Au nanoplates are applicable not only to surface-enhanced Raman spectroscopy with enhanced sensitivity and reliability but also to a broader range of LSPR-based applications.
Collapse
Affiliation(s)
| | | | | | - Kai Liu
- Correspondence: (K.L.); (C.G.)
| | | |
Collapse
|
18
|
Xin Y, Zhang D, Zeng Y, Wang Y, Qi P. A dual-emission ratiometric fluorescent sensor based on copper nanoclusters encapsulated in zeolitic imidazolate framework-90 for rapid detection and imaging of adenosine triphosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:788-796. [PMID: 36691974 DOI: 10.1039/d2ay01932a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adenosine triphosphate (ATP) is the primary energy carrier for intracellular metabolic processes. Accurate and rapid detection of ATP has important implications for clinical diagnosis. In this work, we reported a dual-emission ratiometric fluorescent probe Cu NCs-Al@ZIF-90 formed by encapsulating copper nanoclusters (Cu NCs) into zeolitic imidazolate framework-90 (ZIF-90) using a simple one-pot method. Cu NCs exhibited a remarkable fluorescence enhancement in the presence of aluminum ions due to the aggregation-induced emission (AIE) properties. When ATP existed, the Zn2+ nodes in the MOF material acted as selective sites for ATP recognition, resulting in the cleavage of Cu NCs-Al@ZIF-90. As a consequence, two reverse fluorescence changes were observed from released Cu NCs at 620 nm and imidazole-2-carboxaldehyde (2-ICA) at 450 nm, respectively. With the dual-emission ratiometric strategy, efficient and rapid determination of ATP was realized, giving a detection limit down to 0.034 mM in the concentration range of 0.2 mM to 0.625 mM. The convenient synthesis process and the rapid ATP-responsive ability made the proposed Cu NCs-Al@ZIF-90 probe highly promising in clinical and environmental analysis.
Collapse
Affiliation(s)
- Yue Xin
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yingwen Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
19
|
Construction of fluorescent copper nanoclusters for selective sensing Fe3+ in food samples based on absorption competition quenching mechanism. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Fabrication of water-soluble blue emitting molybdenum nanoclusters for sensitive detection of cancer drug methotrexate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022; 24:ijms24010456. [PMID: 36613898 PMCID: PMC9820281 DOI: 10.3390/ijms24010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-ion coordination has been widely exploited to control the supramolecular behavior of a variety of building blocks into functional materials. In particular, peptides offer great chemical diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability that make them attractive especially for medicine, sensing, and environmental remediation. The focus of this review is the last 5 years' progress in this exciting field to conclude with an overview of the future directions that this research area is currently undertaking.
Collapse
|
23
|
Qin Z, Li Z, Sharma S, Peng Y, Jin R, Li G. Self-Assembly of Silver Clusters into One- and Two-Dimensional Structures and Highly Selective Methanol Sensing. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0018. [PMID: 39290962 PMCID: PMC11407582 DOI: 10.34133/research.0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 09/19/2024]
Abstract
The development of new materials for the design of sensitive and responsive sensors has become a crucial research direction. Here, two silver cluster-based polymers (Ag-CBPs), including one-dimensional {[Ag22(L1)8(CF3CO2)14](CH3OH)2} n chain and two-dimensional {[Ag12(L2)2(CO2CF3)14(H2O)4(AgCO2CF3)4](HNEt3)2} n film, are designed and used to simulate the human nose, an elegant sensor to smells, to distinguish organic solvents. We study the relationship between the atomic structures of Ag-CBPs determined by x-ray diffraction and the electrical properties in the presence of organic solvents (e.g., methanol and ethanol). The ligands, cations, and the ligated solvent molecules not only play an important role in the self-assembly process of Ag-CBP materials but also determine their physiochemical properties such as the sensing functionality.
Collapse
Affiliation(s)
- Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Sachil Sharma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongwu Peng
- College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
24
|
Gold nanoclusters-loaded hydrogel formed by dimeric hydrogen bonds crosslinking: A novel strategy for multidrug-resistant bacteria-infected wound healing. Mater Today Bio 2022; 16:100426. [PMID: 36133795 PMCID: PMC9483737 DOI: 10.1016/j.mtbio.2022.100426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Restoring skin integrity after wound infection remains a tougher health challenge due to the uncontrolled antibiotic-resistant pathogens caused by antibiotic abuse. Herein, an injectable hydrogel with dual antibacterial and anti-inflammatory activities composed of gold nanoclusters (GNCs) and carbomer (CBM) is developed for wound dressing to overcome multidrug-resistant infection. Firstly, both experimental investigations and molecular dynamics simulation validate the protonation state of 6-mercaptohexanoic acid (MHA) ligands play an important role in its antibacterial action of GNCs. The self-organizing GNCs-CBM composite hydrogel is then spontaneously cross-linked by the dimeric hydrogen bonds (H-bonds) between the MHA ligands and the acrylic acid groups of CBM. Benefitting from the dimeric H-bonds, the hydrogel becomes thickening enough as an ideal wound dressing and the GNCs exist in the hydrogel with a high protonation level that contributes to the enhanced bactericidal function. In all, by combining bactericidal and immunomodulatory actions, the GNCs-CBM hydrogel demonstrated excellent synergy in accelerating wound healing in animal infection models. Hence, the dimeric H-bonds strengthening strategy makes the GNCs-CBM hydrogel hold great potential as a safe and effective dressing for treating infected wounds.
Collapse
|
25
|
Modulating the size and photoluminescence of a copper nanocluster via metal-organic frameworks encapsulating strategy for fluorescence sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Tian D, Zhao D, Li W, Li Z, Zhai M, Feng Q. Interfacial DNA/RNA duplex-templated copper nanoclusters as a label-free electrochemiluminescence strategy for the detection of ribonuclease H. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Tang X, Chen T, Chen H, Yu S, Cao S, Liu C, Ma Y, Sun F, Pan Q, Zhu X. Sperm-like nanocarriers for ultrafast delivery of antisense DNA. NANOSCALE 2022; 14:10844-10850. [PMID: 35838371 DOI: 10.1039/d2nr02050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although various nanomaterials have been designed as intracellular delivery tools, the following aspects have become obstacles to limit their development, like a complex and time-consuming synthesis process, as well as relatively limited application areas (i.e. biosensing or cell imaging). Here, we developed a novel nano-delivery system called "nano-sperm" with low cytotoxicity and high biocompatibility. In this system, we used DNA oligonucleotides as a backbone to synthesize a nanostructure with silver nanoclusters in the head and functional fragments in the tail, which is shaped like a sperm, to achieve dual functions of ultrafast delivery and imaging/therapy. As a model, we analyzed the possibility of the "nano-sperm" carrying DNA with different structures for imaging or survivin-asDNA for tumor therapy. Therefore, this work reports a novel bifunctional high-speed delivery vehicle, which successfully fills the gap in the field of tumor therapy using DNA-templated nanoclusters as a delivery vehicle.
Collapse
Affiliation(s)
- Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Huinan Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sinuo Yu
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Siyu Cao
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Yonggeng Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| |
Collapse
|
28
|
Lin X, Li W, Wen Y, Su L, Zhang X. Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials 2022; 287:121603. [PMID: 35688028 DOI: 10.1016/j.biomaterials.2022.121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
As a non-invasive visualization technique, photoluminescence imaging (PLI) has found its huge value in many biological applications associated with intracellular process monitoring and early and accurate diagnosis of diseases. PLI can also be combined with therapeutics to build imaging-guided theragnostic platforms for achieving early and precise treatment of diseases. Photodynamic therapy (PDT) as a quintessential phototheranostics technology has gained great benefits from the combination with PLI. Recently, aggregation-induced emission (AIE)-active materials have emerged as one of the most promising bioimaging and phototheranostic agents. Most of AIEgens, however, need to be chemically engineered to form versatile nanocomposites with improved their photophysical property, photochemical activity, biocompatibility, etc. In this review, we focus on three categories of AIE-active nanocomposites and highlight their application progresses in the intracellular biological process monitoring and PLI-guided PDT. We hope this review can guide further development of AIE-active nanocomposites and promote their practical applications for monitoring intracellular biological processes and imaging-guided PDT.
Collapse
Affiliation(s)
- Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wei Li
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| |
Collapse
|
29
|
Recyclable surface enhanced Raman scattering monitoring of nucleotides and their metabolites based on Au nanoflowers modified g-C3N4 nanosheets. Colloids Surf B Biointerfaces 2022; 218:112735. [DOI: 10.1016/j.colsurfb.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
30
|
Wu Q, Peng R, Gong F, Luo Y, Zhang H, Cui Q. Aqueous synthesis of N-heterocyclic carbene-protected gold nanoclusters with intrinsic antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
An upconversion biosensor based on DNA hybridization and DNA-templated silver nanoclusters for the determination of acrylamide. Biosens Bioelectron 2022; 215:114581. [DOI: 10.1016/j.bios.2022.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
|
32
|
Tang Z, Chen F, Wang D, Xiong D, Yan S, Liu S, Tang H. Fabrication of avidin-stabilized gold nanoclusters with dual emissions and their application in biosensing. J Nanobiotechnology 2022; 20:306. [PMID: 35761380 PMCID: PMC9235210 DOI: 10.1186/s12951-022-01512-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Protein-stabilized gold nanoclusters (Prot-Au NCs) have been widely used in biosensing and cell imaging owing to their excellent optical properties and low biotoxicity. However, several Prot-Au NCs reported in the literature do not retain the biological role of the protein, which greatly limits their ability to directly detect biomarkers. This study demonstrated for the first time the successful synthesis of dual-function avidin-stabilized gold nanoclusters (Av–Au NCs) using a one-pot method. The resulting Av–Au NCs exhibited intense blue and red emissions under 374 nm excitation. Furthermore, the Av–Au NCs retained the native functionality of avidin to bind to biotin. When DNA strands modified with biotin at both ends (i.e., linker chains) were mixed with Av–Au NCs, large polymers were formed, indicating that Av–Au NCs could achieve fluorescence signal amplification by interacting with biotin. Taking advantage of the aforementioned properties, we constructed a novel enzyme-free fluorescent biosensor based on the Av–Au NCs-biotin system to detect DNA. The designed fluorescent biosensor could detect target DNA down to 0.043 nM, with a wide line range from 0.2 nM to 20 µM. Thus, these dual-functional Av–Au NCs were shown to be an excellent fluorescent material for biosensing. Avidin-stabilized gold nanoclusters (Av–Au NCs) were synthesized for the first time by a water-bath method. The synthesized Av–Au NCs not only exhibited intense blue and red emissions under 374 nm excitation, but also retained the native functionality of avidin to bind to biotin. The fluorescent signal amplification system constructed by the interaction of Av–Au NCs with biotin was successfully applied to detect target DNA in vitro.
Collapse
Affiliation(s)
- Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Fengjiao Chen
- Guangshan County People's Hospital, Xinyang, 465450, Henan, China
| | - Dan Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Dongmei Xiong
- Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
33
|
Wu X, Lin Z, Zhao C, Liu L, Zhang K, Lai J, Meng QF, Yao G, Huang Q, Zhao XZ, Rao L. Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells. Biosens Bioelectron 2022; 213:114425. [PMID: 35688024 DOI: 10.1016/j.bios.2022.114425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022]
Abstract
The isolation and analysis of scarce circulating tumor cells (CTCs) with immunomagnetic nanoparticles (IMNs) have shown promising outcomes in noninvasive cancer diagnosis. However, the IMNs adsorb nonspecific proteins after entering into biofluids and the formed protein coronas cover surface targeting ligands, limiting the detection efficiency of IMNs. In addition, the interaction between surface targeting ligands and white blood cells (WBCs) significantly limits the purity of CTCs isolated by IMNs. Furthermore, the interfacial collision of nanoparticles and cells has negative effects on the viability of isolated CTCs. All of these limitations synthetically restrict the isolation and analysis of rare CTCs for early diagnosis and precision medicine. Here, we proposed that surface functionalization of IMNs with neutrophil membranes can simultaneously reduce nonspecific protein adsorption, enhance the interaction with CTCs, reduce the distraction from WBCs, and improve the viability of isolated CTCs. In spiked blood samples, our neutrophil membrane-coated IMNs (Neu-IMNs) exhibited a superior separation efficiency from 41.36% to 96.82% and an improved purity from 40.25% to 90.68% when compared to bare IMNs. Additionally, we successfully isolated CTCs in 19 out of total 20 blood samples from breast cancer patients using Neu-IMNs and further confirmed the feasibility of the isolated CTCs for downstream cell sequencing. Our work provides a new perspective on engineered IMNs for efficient isolation and analysis of CTCs, paving the way for early noninvasive diagnosis of cancer.
Collapse
Affiliation(s)
- Xianjia Wu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhousheng Lin
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China; Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chenchen Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Kelin Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Gaungyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
34
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
35
|
Lei Z, Lei P, Guo J, Wang Z. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta 2022; 248:123607. [PMID: 35661001 DOI: 10.1016/j.talanta.2022.123607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The existence of cyanotoxins poses serious threats to human health, it is highly desirable to develop specific and sensitive methods for rapid detection of cyanotoxins in food and water. Due to the distinct advantages of aptamer including high specificity, good stability and easy preparation, various aptamer-based sensors (aptasensors) have been proposed to promote the detection of cyanotoxins. In this review, we summarize recent advance in optical and electrochemical aptasensors for cyanotoxins sensing by integrating with versatile nanomaterials or innovative sensing strategies, such as colorimetric aptasensors, fluorescent aptasensors, surface enhancement Raman spectroscopy-based aptasensors, voltammetric aptasensors, electrochemical impedance spectroscopy-based aptasensors and photoelectrochemical aptasensors. We highlight the accomplishments and advancements of aptasensors with improved performance. Furthermore, the current challenges and future prospects in cyanotoxins detection are discussed from our perspectives, which we hope to provide more ideas for future researchers.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Peng Lei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
36
|
Yang Y, Wang P, Cheng H, Cheng Y, Zhao Z, Xu Y, Shen Y, Zhu M. A multi-responsive Au NCs@PMLE/Ca 2+ antitumor hydrogel formed in situ on the interior/surface of tumors for PT imaging-guided synergistic PTT/O 2-enhanced PDT effects. NANOSCALE 2022; 14:7372-7386. [PMID: 35535969 DOI: 10.1039/d2nr00953f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
At present, although phototherapy and related imaging have proven to be promising cancer diagnosis and treatment strategies, the free diffusion of photosensitizers into normal tissues can cause side effects, and the efficiency of photodynamic therapy (PDT) can also be limited by the tumor hypoxic microenvironment. Herein, we designed and prepared a new cancer nanoplatform containing Au nanoclusters (NCs)@Premna microphylla leaf extract (PMLE) with both responsiveness to near-infrared (NIR) laser irradiation and tumor microenvironment (TME) by facile redox and coordination reactions. Then, the Au NCs@PMLE/Ca2+ hydrogel was constructed in situ inside and on the surface of tumors for locoregional antitumor activity under 808 nm laser irradiation. The Au NCs@PMLE nanoplatform showed distinguished performance in killing cancer cells and alleviating tumor hypoxia by enhancing the temperature of the tumor sites and producing reactive oxygen species (ROS) under NIR irradiation as well as catalyzing hydrogen peroxide (H2O2) decomposition in TME for oxygen (O2) generation via catalase in PMLE. The ultra-small size of about 3 nm of the Au NCs in this nanoplatform was obtained using the biological molecules present in PMLE as reductants and coordination agents simultaneously, which also demonstrated the outstanding capability of photothermal (PT) imaging and photothermal therapy (PTT) towards tumors. Furthermore, the Au NCs@PMLE/Ca2+ hydrogel formed in situ through natural PMLE and intrinsic Ca2+ in TME could not only improve the biocompatibility of the nanoplatform and stability of Au NCs but was also highly concentrated around the tumor thus enhancing the therapeutic efficiency and inhibiting its migration to normal tissues, decreasing the side effects. The results of the experiments confirmed that the Au NCs@PMLE/Ca2+ hydrogel possessed PT imaging-guided NIR laser/TME-responsive synergetic cancer PTT/O2-enhanced PDT and remarkable locoregional antitumor effect for cancer therapy. This work may open a new versatile route for multi-responsive localized cancer therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Yongmei Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, P. R. China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei Anhui 230032, P. R. China
| | - Hanlong Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yinkai Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Zhou Zhao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yahan Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yuhua Shen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
37
|
Li Y, Lu H, Qu Z, Li M, Zheng H, Gu P, Shi J, Li J, Li Q, Wang L, Chen J, Fan C, Shen J. Phase transferring luminescent gold nanoclusters via single-stranded DNA. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1238-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Imidazole-stabilized gold nanoclusters with thiol depletion capacity for antibacterial application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
A universal strategy of glyconanoparticle preparation using a bifunctional linker for lectin sensing and cell imaging. Mikrochim Acta 2022; 189:154. [PMID: 35332420 PMCID: PMC8948015 DOI: 10.1007/s00604-022-05220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/05/2022] [Indexed: 11/12/2022]
Abstract
Glyconanoparticles (G-NPs), biofunctional nanomaterials that can fully combine the unique properties of nanoparticles (NPs) with the bioactivities of carbohydrates, have become an appealing nanoplatform in analytical chemistry and biomedical research. However, there is currently a lack of an efficient and universal method for facile immobilization of reducing carbohydrates on NPs while maintaining their structure integrity, greatly limiting the preparation and application of G-NPs. Herein, a new and universal strategy for preparing carbohydrate-functionalized gold nanoclusters (Au NCs) was developed by using S-(3-(methoxyamino)propyl) thioacetate (MPTA) as a new bifunctional linker. MPTA with an N-methoxyamine group (-NHOMe) and a thioacetyl group (-SAc) was synthesized by a two-step strategy and then grafted onto Au NCs by an efficient click reaction. Subsequently, reducing carbohydrates could be readily immobilized onto MPTA-functionalized Au NCs (MPTA-Au NCs) by a reducing end ring-closure reaction under mild conditions. The obtained G-NPs showed average size of 1.9 ± 0.42 nm and strong fluorescence at 610 nm. Carbohydrates grafted on G-NPs still retained their structure integrity and specific recognition ability toward their receptor proteins. Notably, the affinity between G-NPs and proteins was increased by 1300 times compared with free carbohydrates with an association constant of (1.47 ± 0.356) × 106 M−1. The prepared fluorescent G-NPs were also successfully applied to lectin sensing and targeted breast cancer cell imaging with good performance. These results indicated that the intact immobilization of reducing carbohydrates (whether naturally or chemically accessed) on NPs could be easily achieved using MPTA, providing a simple, efficient, and universal strategy for G-NP preparation.
Collapse
|
40
|
Mi W, Tang S, Guo S, Li H, Shao N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Xu F, Qiao Z, Luo L, He X, Lei Y, Tang J, Shi H, Wang K. A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 2022; 243:123323. [PMID: 35247818 DOI: 10.1016/j.talanta.2022.123323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Herein, based on a terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly-T-templated-copper nanoparticles (poly T-CuNPs) strategy, a simple, universal and label-free fluorescent biosensor for the detection of miRNA was constructed by employing graphene oxide (GO) and DNase I. In this strategy, GO and DNase I were used as a switch and amplifier of the signal generation pathway, respectively, and the fluorescence of poly T-CuNPs was used as the signal output. In the presence of target miRNA, the DNA dissociated from the GO surface by forming a miRNA/DNA duplex and was degraded by DNase I. The short oligos with 3'-OH, the product of DNase I degradation, could be recognized by the TdT and added to a long poly-T tail. Finally, the fluorescence signal was output through the synthesis of poly T-CuNPs. As a proof of concept, let-7a was analyzed. The method showed good sensitivity and selectivity with a linear response in the 50 pM-10,000 pM let-7a concentration range and a 30 pM limit of detection (LOD = 30 pM, R2 = 0.9954, the relative standard deviation were 2.79%-5.30%). It was also successfully applied to the determination of miRNA in spiked human serum samples. It showed good linearity in the range of 500-10000 pM (R2 = 0.9969, the relative standard deviation were 1.61%-3.85%). Moreover, both the adsorption of GO and the degradation of DNase I are DNA sequence-independent; thus, this method can be applied to the detection of any miRNA simply by changing the assisted-DNA sequence.
Collapse
Affiliation(s)
- Fengzhou Xu
- Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Lan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
42
|
Photoluminescent nanocluster-based probes for bioimaging applications. Photochem Photobiol Sci 2022; 21:787-801. [PMID: 35032005 DOI: 10.1007/s43630-021-00153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
In the continuous search for versatile and better performing probes for optical bioimaging and biosensing applications, many research efforts have focused on the design and optimization of photoluminescent metal nanoclusters. They consist of a metal core composed by a small number of atoms (diameter < 2-3 nm), usually coated by a shell of stabilizing ligands of different nature, and are characterized by molecule-like quantization of electronic states, resulting in discrete and tunable optical transitions in the UV-Vis and NIR spectral regions. Recent advances in their size-selective synthesis and tailored surface functionalization have allowed the effective combination of nanoclusters and biologically relevant molecules into hybrid platforms, that hold a large potential for bioimaging purposes, as well as for the detection and tracking of specific markers of biological processes or diseases. Here, we will present an overview of the latest combined imaging or sensing nanocluster-based systems reported in the literature, classified according to the different families of coating ligands (namely, peptides, proteins, nucleic acids, and biocompatible polymers), highlighting for each of them the possible applications in the biomedical field.
Collapse
|
43
|
Lu C, Zhou S, Gao F, Lin J, Liu J, Zheng J. DNA-Mediated Growth of Noble Metal Nanomaterials for Biosensing Applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Tang Z, Zhao W, Deng Y, Sun Y, Qiu C, Wu B, Bao J, Chen Z, Yu L. Universal point-of-care detection of proteins based on proximity hybridization-mediated isothermal exponential amplification. Analyst 2022; 147:1709-1715. [DOI: 10.1039/d1an02245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lateral flow biosensor has been fabricated for protein detection based on a protein-to-DNA signal transducer, isothermal exponential amplification and catalytic hairpin assembly with high sensitivity and specificity.
Collapse
Affiliation(s)
- Zibin Tang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wenyong Zhao
- Faculty of Forensic Medicine, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Yuling Deng
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuanzhong Sun
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Cailing Qiu
- Department of Medical Laboratory, Dalang Hospital of Dongguan, Dongguan 523770, China
| | - Binhua Wu
- Marine Biomedical Research Institute of Guangdong Medical University, Zhanjiang, 524023, China
| | - Juan Bao
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhangquan Chen
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Luxin Yu
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
45
|
Yu F, Xiang H, He S, Zhao G, Cao Z, Yang L, Liu H. Gold nanocluster-based ratiometric fluorescent probe for biosensing of Hg 2+ ions in living organisms. Analyst 2022; 147:2773-2778. [DOI: 10.1039/d2an00369d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold nanocluster-based dual-emission fluorescent nanoprobe for ratiometric sensing and imaging of Hg2+ ions in living organisms.
Collapse
Affiliation(s)
- Fanfan Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| | - Hui Xiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| | - Shiyu He
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| | - Gan Zhao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| | - Zheng Cao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| | - Lina Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei,230009, China
| |
Collapse
|
46
|
Chen H, Jiang Y, Xu T, Xu J, Yu J, Chu Z, Jiang Y, Song Y, Wang H, Qian H. Au nanoclusters modulated macrophages polarization and synoviocytes apoptosis for enhanced rheumatoid arthritis treatment. J Mater Chem B 2022; 10:4789-4799. [DOI: 10.1039/d2tb00869f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The persistent progression of synovial inflammation and cartilage destruction was contributed to the cross-talk of pro-inflammatory macrophages and activated fibroblast-like synoviocytes (FLS) in synovial microenvironment. In this work, a structurally...
Collapse
|
47
|
Fu X, Sun J, Ye Y, Zhang Y, Sun X. A rapid and ultrasensitive dual detection platform based on Cas12a for simultaneous detection of virulence and resistance genes of drug-resistant Salmonella. Biosens Bioelectron 2022; 195:113682. [PMID: 34624800 DOI: 10.1016/j.bios.2021.113682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022]
Abstract
Accurate, sensitive, and rapid detection of Salmonella and determination of whether it carries drug resistance genes plays an important role in guiding the clinical medication of salmonellosis and laying a foundation for studying the mechanism of drug resistance transmission of Salmonella. Here, a novel nontransferable, ultrasensitive dual detection platform (Cas12a-Ddp) was developed. The round cap allowed for temporary storage of more Cas12a detection solution than flat cap, enabling one-pot assays and reducing aerosol contamination. The results were read out in dual mode by the microplate reader and UV visualization to achieve sensitive dual-target detection of the virulence genes and drug resistance genes of Salmonella simultaneously, with the possibility of onsite detection. Cas12a-Ddp was combined with multiple polymerase chain reactions and recombinase polymerase amplifications successively. An ultrasensitive dual detection limit of 1 CFU/mL was obtained without any cross-reaction within 40 min. This was an improvement of 1-2 orders of magnitude over the existing methods. Cas12a-Ddp overcame the influence of proteins and fat in liquid matrix foods. It was used for the detection of drug-resistant Salmonella in milk and skim milk powder, also with the dual detection limit of 1 CFU/mL and spiked recovery of 68.58%-158.49%. It was also used for the analysis of Salmonella resistance rate analysis. The Cas12a-Ddp provided a reliable, fast, sensitive, and practical multi-CRISPR detection platform.
Collapse
Affiliation(s)
- Xuran Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
48
|
Ratiometric fluorescence determination of chlortetracycline based on the aggregation of copper nanoclusters triggered by aluminum ion. Mikrochim Acta 2021; 189:28. [PMID: 34907464 DOI: 10.1007/s00604-021-05093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The aggregation-induced emission (AIE) characteristic of copper nanoclusters (CuNC) was for the first time used to construct a ratiometric fluorescence probe (CuNC-Al3+) for detection of chlortetracycline (CTC). Aluminum ion (Al3+) can aggregate free CuNC and make it emit a bright and stable red fluorescence. A slight excess of Al3+ in CuNC-Al3+ solution can form a CTC-Al3+ complex to limit the conformational rotation of CTC molecule and enhance CTC fluorescence. So, the red fluorescence of CuNC-Al3+ probe and the enhanced CTC fluorescence are used as a reference signal and a response signal to detect CTC, respectively. The method developed shows a good linear relationship between the CTC concentration and the fluorescence intensity ratio (I495/I575) in the range 0.1-3.0 µM, and the detection limit is 25.3 nM (S/N = 3). In addition, the fluorescent color of CuNC-Al3+ probe changes from red to yellow-green as the concentration of CTC increases. Based on this observation, a fluorescent test paper has also been fabricated. Schematic illustration of Al3+ inducing CuNC to produce AIE performance and detecting CTC.
Collapse
|
49
|
Zhou R, Zeng Z, Sun R, Liu W, Zhu Q, Zhang X, Chen C. Traditional and new applications of the HCR in biosensing and biomedicine. Analyst 2021; 146:7087-7103. [PMID: 34775502 DOI: 10.1039/d1an01371h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hybridization chain reaction is a very popular isothermal nucleic acid amplification technology. A single-stranded DNA initiator triggers an alternate hybridization event between two hairpins forming a double helix polymer. Due to isothermal, enzyme-free and high amplification efficiency characteristics, the HCR is often used as a signal amplification technology for various biosensing and biomedicine fields. However, as an enzyme-free self-assembly reaction, it has some inevitable shortcomings of relatively slow kinetics, low cell internalization efficiency, weak biostability of DNA probes and uncontrollable reaction in these applications. More and more researchers use this reaction system to synthesize new materials. New materials can avoid these problems skillfully by virtue of their inherent biological characteristics, molecular recognition ability, sequence programmability and biocompatibility. Here, we summarized the traditional application of the HCR in biosensing and biomedicine in recent years, and also introduced its new application in the synthesis of new materials for biosensing and biomedicine. Finally, we summarized the development and challenges of the HCR in biosensing and biomedicine in recent years. We hope to give readers some enlightenment and help.
Collapse
Affiliation(s)
- Rong Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, Hunan, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, Hunan, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
50
|
Quijada-Garrido I, García O. How a family of nanostructured amphiphilic block copolymers synthesized by RAFT-PISA take advantage of thiol groups to direct the in situ assembly of high luminescent CuNCs within their thermo-responsive core. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|