1
|
Niciński K, Witkowska E, Korsak D, Szuplewska M, Kamińska A. The applicability of the SERS technique in food contamination testing - The detailed spectroscopic, chemometric, genetic, and comparative analysis of food-borne Cronobacter spp. strains. Int J Food Microbiol 2025; 426:110930. [PMID: 39393260 DOI: 10.1016/j.ijfoodmicro.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Microorganisms assigned as Cronobacter are Gram-negative, facultatively anaerobic, bacteria widely distributed in nature, home environments, and hospitals. They can also be detected in foods, milk powder, and powdered infant formula (PIF). Additionally, as an opportunistic pathogen, Cronobacter may cause serious infections, sometimes leading to the death of neonates and infants. Thus, it is essential to test food products for the presence of Cronobacter spp. The currently used standard described in ISO 22964:2017 is a laborious method that could be easily replaced by surface-enhanced Raman scattering (SERS). Here, we demonstrate that SERS allows the identification of food-borne bacteria belonging to Cronobacter spp. based on their SERS spectra. For this purpose, twenty-six Cronobacter strains from different food samples were analyzed. Additionally, it was shown that it is possible to differentiate them from other closely related pathogens such as Salmonella enterica subsp. enterica, Escherichia coli, or Enterobacter spp. The SERS results were supported by principal component analysis (PCA), as well as and sequencing of 16S rRNA, rpoB and fusA genes. Last but not least, it was demonstrated that the cells of Cronobacter sakazakii may be easily separated from PIF using an appropriate filter, microfluidic chip, and dielectrophoresis (DEP) technique.
Collapse
Affiliation(s)
- K Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - E Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - D Korsak
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Molecular Microbiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - M Szuplewska
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096 Warsaw, Poland
| | - A Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
2
|
Zhu A, Ali S, Wang Z, Xu Y, Lin R, Jiao T, Ouyang Q, Chen Q. ZnO@Ag-Functionalized Paper-Based Microarray Chip for SERS Detection of Bacteria and Antibacterial and Photocatalytic Inactivation. Anal Chem 2023; 95:18415-18425. [PMID: 38060837 DOI: 10.1021/acs.analchem.3c03492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Bacterial infections caused by pathogenic microorganisms have become a serious, widespread health concern. Thus, it is essential and required to develop a multifunctional platform that can rapidly and accurately determine bacteria and effectively inhibit or inactivate pathogens. Herein, a microarray SERS chip was successfully synthesized using novel metal/semiconductor composites (ZnO@Ag)-ZnO nanoflowers (ZnO NFs) decorated with Ag nanoparticles (Ag NPs) arrayed on a paper-based chip as a supporting substrate for in situ monitoring and photocatalytic inactivation of pathogenic bacteria. Typical Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Vibrio parahemolyticus were selected as models. Partial least-squares discriminant analysis (PLS-DA) was performed to minimize the dimensionality of SERS spectra data sets and to develop a cost-effective identification model. The classification accuracy was 100, 97.2, and 100% for S. aureus, E. coli, and V. parahemolyticus, respectively. The antimicrobial activity of ZnO@Ag was proved by the microbroth dilution method, and the minimum inhibitory concentrations (MICs) of S. aureus, E. coli, and V. parahemolyticus were 40, 50, and 55 μg/mL, respectively. Meanwhile, it demonstrated remarkable photocatalytic performance under natural sunlight for the inactivation of pathogenic bacteria, and the inactivation rates for S. aureus, E. coli, and V. parahemolyticus were 100, 97.03 and 97.56%, respectively. As a result, the microarray chip not only detected the bacteria with high sensitivity but also confirmed the antibacterial and photocatalytic sterilization properties. Consequently, it offers highly prospective strategies for foodborne diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Xu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| | - Rongxi Lin
- Fujian Bama Tea Industry Co., Ltd., Quanzhou 362442, P. R. China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| |
Collapse
|
3
|
Yang MC, Chien TY, Cheng YW, Hsieh CK, Syu WL, Wang KS, Chen YC, Chen JS, Chen CC, Liu TY. Reproducible SERS substrates manipulated by interparticle spacing and particle diameter of gold nano-island array using in-situ thermal evaporation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123190. [PMID: 37499474 DOI: 10.1016/j.saa.2023.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Gold (Au) nano-island arrays were deposited on the glass substrate to fabricate surface-enhanced Raman scattering (SERS) substrates by in-situ thermal evaporation (deposited and annealed samples at the same time). The optimal SERS intensity deposited by various thicknesses and in-situ annealing temperatures of Au nano-island arrays would be investigated. The biomolecules (adenine) were dropped on the well-designed SERS substrate for precise and quantitative SERS detection. The characterization of Au nano-island arrays SERS substrate would be evaluated by scanning electron microscope (SEM) and Raman spectroscopy. The results showed that the optimal deposition thickness and annealing temperature of Au nano-island arrays SERS substrate is about 14 nm and 200 °C respectively, which can construct the smallest interparticle spacing (W)/ particle diameter (D) ratio and the lowest reflection (%) and transmittance (%) to form the strongest SERS intensity. Moreover, finite-difference time-domain (FDTD) simulation of the electromagnetic field distributions on Au nano-island arrays displays the similar trend with the experimental results. The 14 nm deposition with 200 °C in-situ annealing temperature would display the highest density of hot-spots by FDTD simulation. The reproducible Au nano-island arrays SERS substrates with tunable surface roughness, W/D ratio, and lower reflection and transmittance show promising potential for SERS detection of biomolecules, bacteria, and viruses.
Collapse
Affiliation(s)
- Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Ting-Yin Chien
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| | - Chien-Kuo Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Wei-Lin Syu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Kuan-Syun Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yun-Chu Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Jeng-Shiung Chen
- Yottadeft Optoelectronics Technology Co., Ltd., Taipei 10460, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan.
| |
Collapse
|
4
|
Haque Chowdhury MA, Tasnim N, Hossain M, Habib A. Flexible, stretchable, and single-molecule-sensitive SERS-active sensor for wearable biosensing applications. RSC Adv 2023; 13:20787-20798. [PMID: 37441043 PMCID: PMC10334262 DOI: 10.1039/d3ra03050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The development of wearable sensors for remote patient monitoring and personalized medicine has led to a revolution in biomedical technology. Plasmonic metasurfaces that enhance Raman scattering signals have recently gained attention as wearable sensors. However, finding a flexible, sensitive, and easy-to-fabricate metasurface has been a challenge for decades. In this paper, a novel wearable device, the flexible, stretchable, and single-molecule-sensetive SERS-active sensor, is proposed. This device offers an unprecedented SERS enhancement factor in the order of 1011, along with other long-desired characteristics for SERS applications such as a high scattering to absorption ratio (∼2.5) and a large hotspot volume (40 nm × 40 nm × 5 nm). To achieve flexibility, we use polydimethylsiloxane (PDMS) as the substrate, which is stable, transparent, and biologically compatible. Our numerical calculations show that the proposed sensor offers reliable SERS performance even under bending (up to 100° angles) or stretching (up to 50% stretch). The easy-to-fabricate and flexible nature of our sensor offers a promising avenue for developing highly sensitive wearable sensors for a range of applications, particularly in the field of personalized medicine and remote patient monitoring.
Collapse
Affiliation(s)
| | - Nishat Tasnim
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Mainul Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Ahsan Habib
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| |
Collapse
|
5
|
Dos Santos DP, Sena MM, Almeida MR, Mazali IO, Olivieri AC, Villa JEL. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends. Anal Bioanal Chem 2023; 415:3945-3966. [PMID: 36864313 PMCID: PMC9981450 DOI: 10.1007/s00216-023-04620-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
Collapse
Affiliation(s)
- Diego P Dos Santos
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Marcelo M Sena
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCT Bio), Campinas, SP, 13083-970, Brazil
| | - Mariana R Almeida
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Italo O Mazali
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Alejandro C Olivieri
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
| | - Javier E L Villa
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
6
|
Gupta N, Kumar D, Das A, Sood S, Malhotra BD. Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae. BIOSENSORS 2023; 13:bios13040486. [PMID: 37185561 PMCID: PMC10136323 DOI: 10.3390/bios13040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated by homogenously dispersing carboxylated multiwalled carbon nanotubes (cMWCNTs) in a stable emulsion of terpineol and an aqueous suspension of carboxymethyl cellulose (CMC). The ink, labeled C5, was coated onto paper substrates to fabricate C5@paper conductive electrodes. Thereafter, a magnetic bead (MB)-assisted supersandwich DNA hybridization assay was optimized against the porA pseudogene of N. gonorrhoeae. For this purpose, a pair of specific 5' aminated capture probes (SCP) and supersandwich detector probes (SDP) was designed, which allowed the enrichment of target gonorrheal DNA sequence from a milieu of substances. The SD probe was designed such that instead of 1:1 binding, it allowed the binding of more than one T strand, leading to a 'ladder-like' DNA supersandwich structure. The MB-assisted supersandwich assay was integrated into the C5@paper electrodes for electrochemical analysis. The C5@paper electrodes were found to be highly conductive by a four-probe conductivity method (maximum conductivity of 10.1 S·cm-1). Further, the biosensing assay displayed a wide linear range of 100 aM-100 nM (109 orders of magnitude) with an excellent sensitivity of 22.6 kΩ·(log[concentration])-1. The clinical applicability of the biosensing assay was assessed by detecting genomic DNA extracted from N. gonorrhoeae in the presence of DNA from different non-gonorrheal bacterial species. In conclusion, this study demonstrates a highly sensitive, cost-effective, and label-free paper-based device for STI diagnostics. The ink formulation prepared for the study was found to be highly thixotropic, which indicates that the paper electrodes can be screen-printed in a reproducible and scalable manner.
Collapse
Affiliation(s)
- Niharika Gupta
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - D Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110016, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
7
|
Wu Z, Wang S, Shao J, Wang K, Zhang Z, Tao M, Ye J. Study of Raman scattering enhancement method based on optical multiplexing for on-line detection of gas components in strong-impact environments. OPTICS EXPRESS 2023; 31:9112-9122. [PMID: 36860010 DOI: 10.1364/oe.485144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
On-line gas detection under strong impact such as combustion and explosion is of great significance for understanding the reaction processes. To realize simultaneous on-line detection of various gases under strong impact, an approach based on optical multiplexing for enhancing spontaneous Raman scattering is proposed. A single beam is transmitted several times using optical fibers through a specific measurement point in the reaction zone. Thus, the excitation light intensity at the measurement point is enhanced and the Raman signal intensity is substantially increased. Indeed, the signal intensity can be increased by a factor of ∼10, and the constituent gases in air can be detected with sub-second time resolution, under a 100 g impact.
Collapse
|
8
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
9
|
Berus SM, Adamczyk-Popławska M, Goździk K, Przedpełska G, Szymborski TR, Stepanenko Y, Kamińska A. SERS-PLSR Analysis of Vaginal Microflora: Towards the Spectral Library of Microorganisms. Int J Mol Sci 2022; 23:ijms232012576. [PMID: 36293436 PMCID: PMC9604117 DOI: 10.3390/ijms232012576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The accurate identification of microorganisms belonging to vaginal microflora is crucial for establishing which microorganisms are responsible for microbial shifting from beneficial symbiotic to pathogenic bacteria and understanding pathogenesis leading to vaginosis and vaginal infections. In this study, we involved the surface-enhanced Raman spectroscopy (SERS) technique to compile the spectral signatures of the most significant microorganisms being part of the natural vaginal microbiota and some vaginal pathogens. Obtained data will supply our still developing spectral SERS database of microorganisms. The SERS results were assisted by Partial Least Squares Regression (PLSR), which visually discloses some dependencies between spectral images and hence their biochemical compositions of the outer structure. In our work, we focused on the most common and typical of the reproductive system microorganisms (Lactobacillus spp. and Bifidobacterium spp.) and vaginal pathogens: bacteria (e.g., Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae), fungi (e.g., Candida albicans, Candida glabrata), and protozoa (Trichomonas vaginalis). The obtained results proved that each microorganism has its unique spectral fingerprint that differentiates it from the rest. Moreover, the discrimination was obtained at a high level of explained information by subsequent factors, e.g., in the inter-species distinction of Candida spp. the first three factors explain 98% of the variance in block Y with 95% of data within the X matrix, while in differentiation between Lactobacillus spp. and Bifidobacterium spp. (natural flora) and pathogen (e.g., Candida glabrata) the information is explained at the level of 45% of the Y matrix with 94% of original data. PLSR gave us insight into discriminating variables based on which the marker bands representing specific compounds in the outer structure of microorganisms were found: for Lactobacillus spp. 1400 cm−1, for fungi 905 and 1209 cm−1, and for protozoa 805, 890, 1062, 1185, 1300, 1555, and 1610 cm−1. Then, they can be used as significant marker bands in the analysis of clinical subjects, e.g., vaginal swabs.
Collapse
Affiliation(s)
- Sylwia Magdalena Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| | - Monika Adamczyk-Popławska
- Department of Molecular Virology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Goździk
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Grażyna Przedpełska
- Department of Dermatology and Venerology, Infant Jesus Clinical Hospital, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yuriy Stepanenko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| |
Collapse
|
10
|
Qualitative and quantitative detection of microcystin-LR based on SERS-FET dual-mode biosensor. Biosens Bioelectron 2022; 212:114434. [DOI: 10.1016/j.bios.2022.114434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
|
11
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Hassanain WA, Johnson CL, Faulds K, Graham D, Keegan N. Recent advances in antibiotic resistance diagnosis using SERS: focus on the “ Big 5” challenges. Analyst 2022; 147:4674-4700. [DOI: 10.1039/d2an00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SERS for antibiotic resistance diagnosis.
Collapse
Affiliation(s)
- Waleed A. Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Christopher L. Johnson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Neil Keegan
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| |
Collapse
|