1
|
Zhang J, Luan Y, Ma Q, Hu Y, Ou R, Szydzik C, Yang Y, Trinh V, Ha N, Zhang Z, Ren G, Jia HJ, Zhang BY, Ou JZ. Large-area grown ultrathin molybdenum oxides for label-free sensitive biomarker detection. NANOSCALE 2024; 16:13061-13070. [PMID: 38887082 DOI: 10.1039/d4nr01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.
Collapse
Affiliation(s)
- Jiaru Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yange Luan
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Qijie Ma
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yihong Hu
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Rui Ou
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yunyi Yang
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Vien Trinh
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Zhenyue Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Hu Jun Jia
- College of Microelectronics, Xidian University, Xi'an, Shaanxi, 710000, China
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800 Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| |
Collapse
|
2
|
Park H, Kim G, Kim W, Park E, Park J, Park J. Highly Sensitive and Wide-Range Detection of Thiabendazole via Surface-Enhanced Raman Scattering Using Bimetallic Nanoparticle-Functionalized Nanopillars. BIOSENSORS 2024; 14:133. [PMID: 38534240 DOI: 10.3390/bios14030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Thiabendazole (TBZ) is a benzimidazole; owing to its potent antimicrobial properties, TBZ is extensively employed in agriculture as a fungicide and pesticide. However, TBZ poses environmental risks, and excessive exposure to TBZ through various leakage pathways can cause adverse effects in humans. Therefore, a method must be developed for early and sensitive detection of TBZ over a range of concentrations, considering both human and environmental perspectives. In this study, we used silver nanopillar structures (SNPis) and Au@Ag bimetallic nanoparticles (BNPs) to fabricate a BNP@SNPi substrate. This substrate exhibited a broad reaction surface with significantly enhanced surface-enhanced Raman scattering hotspots, demonstrating excellent Raman performance, along with high reproducibility, sensitivity, and selectivity for TBZ detection. Ultimately, the BNP@SNPi substrate successfully detected TBZ across a wide concentration range in samples of tap water, drinking water, juice, and human serum, with respective limits of detection of 146.5, 245.5, 195.6, and 219.4 pM. This study highlights BNP@SNPi as a promising sensor platform for TBZ detection in diverse environments and contributes to environmental monitoring and bioanalytical studies.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gayoung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woochang Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eugene Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joohyung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
4
|
Zhang H, Zhang C, Wang Z, Cao W, Yu M, Sun Y. Antibody- and aptamer-free SERS substrate for ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva. Biosens Bioelectron 2023; 237:115457. [PMID: 37321043 PMCID: PMC10247595 DOI: 10.1016/j.bios.2023.115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Sensitive and anti-interference detection of targeted signal(s) in body fluids is one of the paramount tasks in biosensing. Overcoming the complication and high cost of antibody/aptamer-modification, surface-enhanced Raman spectroscopy (SERS) based on antibody/aptamer-free (AAF) substrates has shown great promise, yet with rather limited detection sensitivity. Herein, we report ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva by an AAF SERS substrate, applying the evanescent field induced by the high-order waveguide modes of well-defined nanorods for SERS for the first time. A detection limit of 3.6 × 10-17 M and 1.6 × 10-16 M are obtained in phosphate buffered saline and untreated saliva, respectively; the detection limits are three orders of magnitude improved than the best records from AAF substrates. This work unlocks an exciting path to design AAF SERS substrates for ultrasensitive biosensing, not limited to detection of viral antigens.
Collapse
Affiliation(s)
- Hong Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Chenggang Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Zhaotong Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Wenwu Cao
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China.
| | - Ye Sun
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China.
| |
Collapse
|
5
|
Tovar-Lopez FJ. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:5406. [PMID: 37420577 DOI: 10.3390/s23125406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Micro- and nanotechnology-enabled sensors have made remarkable advancements in the fields of biomedicine and the environment, enabling the sensitive and selective detection and quantification of diverse analytes. In biomedicine, these sensors have facilitated disease diagnosis, drug discovery, and point-of-care devices. In environmental monitoring, they have played a crucial role in assessing air, water, and soil quality, as well as ensured food safety. Despite notable progress, numerous challenges persist. This review article addresses recent developments in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges, focusing on enhancing basic sensing techniques through micro/nanotechnology. Additionally, it explores the applications of these sensors in addressing current challenges in both biomedical and environmental domains. The article concludes by emphasizing the need for further research to expand the detection capabilities of sensors/devices, enhance sensitivity and selectivity, integrate wireless communication and energy-harvesting technologies, and optimize sample preparation, material selection, and automated components for sensor design, fabrication, and characterization.
Collapse
|
6
|
Wan J, Cheng W, Xing X, He Y, Tang P, Feng Y, Liu S, Lu X, Zhong L. A SERS-Based Dual-Parameter Monitoring Nanoprobe of ROS and PI3K/Akt during Ginsenoside Rg3-Induced Cell Apoptosis. BIOSENSORS 2023; 13:212. [PMID: 36831977 PMCID: PMC9953484 DOI: 10.3390/bios13020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Both the reactive oxygen species (ROS) level and Phosphatidylinositol 3 Kinase (PI3K) protein content are two crucial parameters for characterizing states of cell apoptosis. Current methods measure these parameters with two different techniques, respectively, which usually lead to evaluation contingency. Ginsenoside Rg3 exhibits an excellent anticancer effect, which is enacted by the Phosphatidylinositol 3 Kinase/Protein Kinase B (PI3K/Akt) pathway involving ROS; however, the precise mechanism that induces cell apoptosis remains unknown. This is due to the lack of information on quantitative intracellular ROS and PI3K. Here, we used a surface-enhanced Raman scattering (SERS)-based boric acid nanoprobe to monitor the intracellular ROS level and phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) content, which reflects the regulatory effect of the PI3K/Akt pathway. After treatment with ginsenoside Rg3, the PI3K/Akt content first increased and then decreased as the ROS level increased. Moreover, when the ROS level significantly increased, the mitochondrial membrane potential reduced, thus indicating the dynamic regulation effect of intracellular ROS level on the PI3K/Akt pathway. Importantly, in addition to avoiding evaluation contingency, which is caused by measuring the aforementioned parameters with two different techniques, this SERS-based dual-parameter monitoring nanoprobe provides an effective solution for simultaneous ROS level and PI3K content measurements during cell apoptosis. Furthermore, the intracellular ROS level was also able to have a dynamic regulatory effect on the PI3K/Akt pathway, which is essential for studying ROS/PI3K/Akt-pathway-related cell apoptosis and its activation mechanism.
Collapse
Affiliation(s)
- Jianhui Wan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Yuting He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Ping Tang
- Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Feng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Liang H, Kong X, Wang H, Ren Y, Liu E, Sun F, Qi J, Zhang Q, Zhou Y. Elucidating the Heterogeneity of Serum Metabolism in Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia by Raman Spectroscopy. ACS OMEGA 2022; 7:47056-47069. [PMID: 36570283 PMCID: PMC9773805 DOI: 10.1021/acsomega.2c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Myelodysplastic syndrome (MDS) is difficult to diagnose and classify because it has the potential to evolve into acute myeloid leukemia (AML). Raman spectroscopy and orthogonal partial least squares discrimination analysis (OPLS-DA) are used to systematically analyze peripheral blood serum samples from 33 patients with MDS, 25 patients with AML, and 29 control volunteers to gain insight into the heterogeneity of serum metabolism in patients with MDS and AML. AML patients show unique serum spectral data compared to MDS patients with considerably greater peak intensities of collagen (859 and 1345 cm-1) and carbohydrate (920 and 1123 cm-1) compared to MDS patients. Screening and bioinformatics analysis of MDS- and AML-related genes based on the Gene Expression Omnibus (GEO) database shows that 1459 genes are differentially expressed, and the main signaling pathways are related to Th17 cell differentiation, pertussis, and cytokine receptor interaction. Statistical analysis of serological indexes related to glucose and lipid metabolism shows that patients with AML have increased serum triglyceride (TG) levels and decreased total protein levels. This study provides a spectral basis for the relationship between the massive serological data of patients and the typing of MDS and AML and provides important information for the rapid and early identification of MDS and AML.
Collapse
Affiliation(s)
- Haoyue Liang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaodong Kong
- Department
of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haoyu Wang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yansong Ren
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ertao Liu
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fanfan Sun
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jianwei Qi
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qiang Zhang
- Department
of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Zhou
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
8
|
Tavakkoli Yaraki M, Tukova A, Wang Y. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. NANOSCALE 2022; 14:15242-15268. [PMID: 36218172 DOI: 10.1039/d2nr03005e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells and their derived extracellular vesicles (EVs) or exosomes contain unique molecular signatures that could be used as biomarkers for the detection of severe diseases such as cancer, as well as monitoring the treatment response. Revealing these molecular signatures requires developing non-invasive ultrasensitive tools to enable single molecule/cell-level detection using a small volume of sample with low signal-to-noise ratio background and multiplex capability. Surface-enhanced Raman scattering (SERS) can address the current limitations in studying cells and EVs through two main mechanisms: plasmon-enhanced electric field (the so-called electromagnetic mechanism (EM)), and chemical mechanism (CM). In this review, we first highlight these two SERS mechanisms and then discuss the nanomaterials that have been used to develop SERS biosensors based on each of the aforementioned mechanisms as well as the combination of these two mechanisms in order to take advantage of the synergic effect between electromagnetic enhancement and chemical enhancement. Then, we review the recent advances in designing label-aided and label-free SERS biosensors in both colloidal and planar systems to investigate the surface biomarkers on cancer cells and their derived EVs. Finally, we discuss perspectives of emerging SERS biosensors in future biomedical applications. We believe this review article will thus appeal to researchers in the field of nanobiotechnology including material sciences, biosensors, and biomedical fields.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
Ai B, Sun Y, Zhao Y. Plasmonic Hydrogen Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107882. [PMID: 35567399 DOI: 10.1002/smll.202107882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen is regarded as the ultimate fuel and energy carrier with a high theoretical energy density and universality of sourcing. However, hydrogen is easy to leak and has a wide flammability range in air. For safely handling hydrogen, robust sensors are in high demand. Plasmonic hydrogen sensors (PHS) are attracting growing interest due to the advantages of high sensitivity, fast response speed, miniaturization, and high-degree of integration, etc. In this review, the mechanism and recent development (mainly after the year 2015) of hydrogen sensors based on plasmonic nanostructures are presented. The working principle of PHS is introduced. The sensing properties and the effects of resonance mode, configuration, material, and structure of the plasmonic nanostructures on the sensing performances are discussed. The merit and demerit of different types of plasmonic nanostructures are summarized and potential development directions are proposed. The aim of this review is not only to clarify the current strategies for PHS, but also to give a comprehensive understanding of the working principle of PHS, which may inspire more ingenious designs and execution of plasmonics for advanced hydrogen sensors.
Collapse
Affiliation(s)
- Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Key Laboratory of Bio perception & Intelligent Information Processing, Chongqing, 400044, P. R. China
| | - Yujing Sun
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
10
|
Abstract
In the last decade, there has been a rapid increase in the number of surface-enhanced Raman scattering (SERS) spectroscopy applications in medical research. In this article we review some recent, and in our opinion, most interesting and promising applications of SERS spectroscopy in medical diagnostics, including those that permit multiplexing within the range important for clinical samples. We focus on the SERS-based detection of markers of various diseases (or those whose presence significantly increases the chance of developing a given disease), and on drug monitoring. We present selected examples of the SERS detection of particular fragments of DNA or RNA, or of bacteria, viruses, and disease-related proteins. We also describe a very promising and elegant ‘lab-on-chip’ approach used to carry out practical SERS measurements via a pad whose action is similar to that of a pregnancy test. The fundamental theoretical background of SERS spectroscopy, which should allow a better understanding of the operation of the sensors described, is also briefly outlined. We hope that this review article will be useful for researchers planning to enter this fascinating field.
Collapse
|