1
|
Qi J, Wan Y, Li J, Jiang G, Wang J, Ozaki Y, Pi F. A competitive dual-mode for tetracycline antibiotics sensing based on colorimetry and surface-enhanced Raman scattering. Biosens Bioelectron 2025; 272:117114. [PMID: 39752887 DOI: 10.1016/j.bios.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs. In this method, an Ag@NH2-MIL-101(Al)-Ag nanoprobe that leverages the synergistic effect between silver nanoparticles (AgNPs) and NH2-MIL-101(Al), resulting in remarkable peroxidase-like activity and enhanced SERS performance, was proposed. Moreover, for the instant colorimetric sensing, a competitive oxidative-reaction between TCs and 3,3',5,5'-tetramethylbenzidine (TMB) was developed based on the peroxidase-like activity of nanoprobe. Our innovative colorimetric-SERS dual-mode approach demonstrated high sensitivity accompanied by robust selectivity with limits of detection (LODs) for TCs of 10-3 ppm in colorimetric mode and 10-5 ppm in SERS mode. Furthermore, TCs can be reliably detected in honey samples with recoveries ranging from 87.69% to 120.49%. This dual-mode sensing strategy effectively combining the ease of colorimetric detection with high sensitivity of SERS provides significant values for rapid, direct, and multiplexed evaluation on various hazards in environment and food chains.
Collapse
Affiliation(s)
- Junjie Qi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 669-1330, Sanda, Hyogo, Japan
| | - Fuwei Pi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Chen L, Yang R, Li W, Wen X, Li Y, Tang J, Hu J, Kou Q. Nanoparticle-aptamer based cytosensing for the detection of human non-small cell lung cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39835521 DOI: 10.1039/d4ay02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study reports a simple and rapid aptamer-based sensor platform designed for the sensitive and selective detection of human non-small cell lung cancer (NSCLC) cells. Under standard conditions, gold nanoparticles (AuNPs) remain dispersed and exhibit a characteristic peak at 520 nm. However, the addition of sodium chloride (NaCl) destabilizes the charge of the solution, leading to the aggregation of AuNPs. The AS1411 aptamer can adsorb onto the surface of AuNPs, effectively preventing their aggregation. In the presence of A549 cells, the AS1411 aptamer is induced to form stable G-tetrads, which allows for specific binding to the cells and results in the aggregation of AuNPs in the NaCl solution. This proposed aptasensor platform demonstrates high specificity for A549 cells when compared to other control human normal cells. The method exhibits a dynamic range of 101 to 106 cells per mL, with a detection limit of 7 cells per mL.
Collapse
Affiliation(s)
- Lianju Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Jilin Medical University, Jilin, 132013, China
| | - Rong Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Wenwei Li
- College of Life Sciences, Guizhou University, Guiyang City, Guizhou Province, 550000, China
| | - Xu Wen
- College of Food Engineering, Chongqing Vocational College of Light Industry, Chongqing, 401329, China
| | - Yue Li
- Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiaming Tang
- Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jing Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Qiming Kou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Jilin Medical University, Jilin, 132013, China
- Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
3
|
Mao Z, Chen R, Huang L, Ren S, Liu B, Gao Z. CRISPR analysis based on Pt@MOF dual-modal signal for multichannel fluorescence and visual detection of norovirus. Biosens Bioelectron 2025; 273:117153. [PMID: 39832407 DOI: 10.1016/j.bios.2025.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Norovirus is a globally prevalent pathogen that causes acute viral gastroenteritis across all age groups, characterized by its high infectivity and low infectious dose. Consequently, the development of rapid, sensitive, and accurate detection technologies for norovirus presents a significant challenge. In this study, we demonstrate a combination of CRISPR-Cas-based reactions with Pt@MOF-linked immunoassay-like assays. This methodology enables both qualitative analysis and colorimetric readouts of Cas12a-mediated DNA/RNA detection at room temperature, as well as the generation of fluorescent signal readout through base deprotonation-induced Pt@MOF cleavage of a fluorogenic substrate. Furthermore, the integration of RPA amplification with noncanonical PAM-designed CRISPR significantly enhances the sensitivity and flexibility of detection, facilitating the extension of this strategy to other targets. Ultimately, the strategy was validated in spiked food samples with a 100% accuracy rate, consistent with RT-qPCR results. Collectively, this work showcases a viable approach for a dual-functional Pt@MOF-based CRISPR biosensing platform for bioanalysis and a flexible, universal strategy based on noncanonical PAM-designed gRNAs.
Collapse
Affiliation(s)
- Zefeng Mao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| |
Collapse
|
4
|
Wang W, Sun J, Gao Y, Jia XX, Ye Y, Ren S, Peng Y, Han D, Zhou H, Gao Z, Sun X. Ultra-sensitive detection of norovirus using a three-in-one CRISPR platform based on a DNA hydrogel and composite functional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136523. [PMID: 39581026 DOI: 10.1016/j.jhazmat.2024.136523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
The ultrasensitive sensor with three optical response mechanisms was proposed for the determination of trace amounts of norovirus using a 3-in-1 GCSNAs (a gap-containing spherical nucleic acid nanoparticles) probe. A simple and highly sensitive three-mode biosensor with Raman, colorimetric, and fluorescence functions was proposed and implemented using the GCSNAs probe and a DNA hydrogel for norovirus detection. When the virus exists, the trans-cleavage activity of CRISPR-Cas12a was activated by double-stranded dsDNA (dsDNA) generated by reverse transcription and recombinase polymerase isothermal amplification (RT-RPA) to degrade the DNA hydrogel/GCSNA composition and release the three-in-one (3-in-1) probe-GCSNA, realising the triple ultrasensitive detection of norovirus. The colorimetric sensing mode allows for semi-quantitative on-site detection, which is visible to the naked eye and the quantitative detection can be achieved by conducting grayscale analysis using the "Colour Grab" function of a smartphone. This new triple sensor achieved the successful quantification of norovirus at concentrations as low as the femtomolar scale with an excellent selectivity and accuracy. Considering the colorimetric properties of rolling circle amplification (RCA)-based DNA hydrogels and GCSNAs, the proposed method has a broad application prospect in virus on-site detection in food. It should be applicable for virus detection in a wide range of fields such, as environmental analysis, medical diagnosis, and food safety. It is anticipated that this mechanism will open new avenues for the development of multimodal analyses and multifunctional sensing platforms for various applications. We anticipate that this sensing mechanism will open up a new way for the development of food safety detection.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xue Xia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China.
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Zheng L, Ye Q, Wang M, Sun F, Chen Q, Yu X, Wang Y, Liang P. Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques. BIOSENSORS 2025; 15:29. [PMID: 39852080 PMCID: PMC11764255 DOI: 10.3390/bios15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the "fingerprint information" of the measured molecules. It has been widely applied in qualitative and trace analysis across various fields, including food safety, environmental monitoring, and biomedical applications. Small molecules, such as toxins, antibiotics, and pesticides, have significant biological effects and are harmful to both human health and the environment. In this paper, we mainly introduced the application and the research progress of SERS detection with aptamers (aptamer-based SERS techniques) in the field of small-molecule detection, particularly in the analysis of pesticide (animal) residues, antibiotics, and toxins. And the progress and prospect of combining the two methods in detection were reviewed.
Collapse
Affiliation(s)
- Li Zheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| | - Qingdan Ye
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| | - Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| | - Fan Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (F.S.); (X.Y.)
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
| | - Xiaoping Yu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (F.S.); (X.Y.)
| | - Yufeng Wang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (F.S.); (X.Y.)
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| |
Collapse
|
6
|
Yang Z, Zhang N, Lv H, Ju X, Chen Y, Zhang Z, Tian Y, Zhao B. An aptamer sensor based on AgNPs@MOF for surface-enhanced Raman spectroscopy detection of sulfadimethoxine in food. Mikrochim Acta 2024; 192:29. [PMID: 39718634 DOI: 10.1007/s00604-024-06897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
A highly sensitive aptamer sensor (aptasensor) is proposed based on metal-organic frameworks-silver nanoparticles (AgNPs@MOF) to detect sulfadimethoxine (SDM) by surface-enhanced Raman spectroscopy (SERS). AgNPs@MOF with SERS activity was successfully fabricated by synthesizing AgNPs in situ on the surface of MIL-101(Fe), and SDM aptamer and Raman reporter 4-aminophenthiophenol (4-ATP) were selected as specific recognition elements and signal probes, respectively. When SDM was absent, the SDM aptamers were effectively adsorbed on the surface of AgNPs@MOF, thus keeping AgNPs@MOF in a dispersed state, resulting in a weakened SERS signal of 4-ATP. In the presence of SDM, the combination of SDM and aptamer formed a rigid hairpin SDM-aptamer complex, which bound less to AgNPs@MOF. Therefore, fewer aptamers were adsorbed on AgNPs@MOF, which exposed more hot spots, resulting in an enhanced SERS signal of 4-ATP. The aptasensor had good selectivity and sensitivity towards SDM and a good linear relationship between SERS intensity and SDM concentration in the range 6.00-150.00 ng/mL, with the limit of detection as low as 2.73 ng/mL. Further application to honey and chicken samples spiked with SDM resulted in satisfactory recoveries, and the aptasensor showed good stability and reproducibility in real samples. The aptasensor based on AgNPs@MOF was proposed for the first time to detect trace SDM by SERS, which provided a favorable way to develop various sensing platforms for antibiotic detection in food safety.
Collapse
Affiliation(s)
- Zhanye Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Haiyang Lv
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Xinge Ju
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
7
|
Tang Y, Yao L, Wang Y, Lin B, Yao Y, Chen L, Huang H, Xu J, Guo L. Signal-on lateral flow immunoassays for rapid detection of tetrodotoxin in pufferfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136973. [PMID: 39724712 DOI: 10.1016/j.jhazmat.2024.136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Small-molecule biotoxins are frequently founded in grains, corns, peanuts, and different kinds of aquatic products, and they are harmful to human health. Lateral flow immunoassays (LFIAs) have been widely used for on-site detection of small-molecule biotoxins. However, most of the reported LFIAs approaches are signal-off type because each small-molecule biotoxin only has one antigen binding site due to the small size of the molecule. In this work, we demonstrate a signal-on LFIAs approach for on-site detection of small-molecule biotoxin based on the aptamer/antibody molecular recognition system, and the detection of tetrodotoxin (TTX) was selected as an example. A TTX specific aptamer with high affinity was modified on the gold nanoparticles (AuNPs) to act as the colloid gold labels, and a TTX specific antibody was immobilized on the testing line of the LFIAs to act as the capture antibody. This aptamer/antibody combinations not only allow qualitative screening by the naked eye but also enable semi-quantitative detection when combined with smartphone measurement of RGB values. The detection range was 8-100 ng/mL, with a detection limit of 8 ng/mL, and recoveries ranging from 99.00 % to 110.95 %. The RSD for intra-batch reproducibility was 6.98 %, and the RSD for batch-to-batch reproducibility was 5.20 %. Meanwhile, the proposed LFIAs was successfully demonstrated for the detection of TTX in globefish indicating that the aptamer sensor has good homogeneity for the detection of TTX.
Collapse
Affiliation(s)
- Yajie Tang
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China; Hefei University of Technology, Hefei, Anhui 230009, China
| | - Li Yao
- Changsha University of Science & Technology, Changsha, Hunan 410114, China; Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yueliang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Bingyong Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Yuanyuan Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Jianguo Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China.
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China.
| |
Collapse
|
8
|
Peng L, Zhu A, Ahmad W, Adade SYSS, Chen Q, Wei W, Chen X, Wei J, Jiao T, Chen Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe 3O 4@Cu for on-site detection of tetrodotoxin in fish. Food Chem 2024; 460:140566. [PMID: 39067423 DOI: 10.1016/j.foodchem.2024.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Tetrodotoxin (TTX), a lethal neurotoxin, poses a grave threat to human health. The available spectroscopic methods suffer from limitations such as complex procedures and inadequate on-site capabilities. In this study, we proposed a method using Fe3O4@Cu as a catalytic biosensor combined with SERS, colorimetry and image processing for TTX detection. Integrating the aptamer amplifies the specificity of the system and masks the catalytic activity of Fe3O4@Cu. The catalytic efficiency of Fe3O4@Cu in the H2O2-TMB reaction can quantify the concentration of TTX in the system. Consequently, oxidation of TMB (oxTMB) led to the generation and change of signals for SERS, colorimetry and image processing, enabling a three-channel quantitative detection of TTX. Under the optimal conditions, the detection limit of established SERS, colorimetry and image processing were 0.055, 2.127 and 0.243 ng/mL, respectively. This three-channel biosensor was applied to real samples, providing an accurate, stable and adaptable alternative for on-site TTX detection.
Collapse
Affiliation(s)
- Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | | | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
9
|
Ding L, Wang P, Xiao B, Gao Z, Zhang D, Che T, Zuo J, Li Y. A novel sensing probe based on AuNPs-Apt for the detection of enrofloxacin. NANOTECHNOLOGY 2024; 36:045501. [PMID: 39511915 DOI: 10.1088/1361-6528/ad8c4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Enrofloxacin (ENR), as a synthetic broad-spectrum antibiotic is widely utilized in veterinary medicine to treat animal diseases and promote livestock growth, it can inhibit bacterial DNA gyrase subunit A, thereby preventing bacterial DNA replication and exerting its antibacterial effect. However, excessive use of enrofloxacin poses significant risks to ecological balance and human health due to residual contamination. We have developed a novel ENR aptamer sensor based on the gold nanoparticles/aptamer (AuNPs-Apt) complexes, in which AuNPs were synthesized via the seed method and functionalized with aptamers. The optical properties, particle size, functional groups and morphology of the AuNPs-Apt probe were characterized by transmission electron microscope, Fourier transform infrared spectrometer and UV-vis spectrophotometer, respectively. The aptamer biosensor can specifically identify enrofloxacin, with a wide detection range (0.05-100μg ml-1) and a good linear relationship (R2=0.99) within the detection range. In addition, the biosensor also has the advantages of short detection time, low biological toxicity, good stability, and low detection cost. Therefore, it shows a great prospect for practical application in the field of detecting enrofloxacin residues.
Collapse
Affiliation(s)
- Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Pan Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - BaoQuan Xiao
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zelin Gao
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dekui Zhang
- Lanzhou University Second Hospital, LanZhou 730000, People's Republic of China
| | - Tuanjie Che
- Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, People's Republic of China
| | - Juanjuan Zuo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yumai Li
- Huazhong University of Science and Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
10
|
Gu Y, Pu X, Chen J, Yi L, Bi J, Duan F, Ge K. Recent advances of MOF-based SERS substrates in quantitative analysis of food contaminants: a review. Analyst 2024; 149:4997-5013. [PMID: 39310955 DOI: 10.1039/d4an00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Advancements in food-contaminant detection technologies can significantly improve food safety and human health. Surface-enhanced Raman spectroscopy (SERS) has become the preferred analytical method for food-safety detection owing to its numerous advantages, which include unique 'molecular fingerprinting' features, high sensitivity, rapid responses, and non-invasive characteristics. Raman-signal enhancements rely heavily on high-performance SERS substrates. In recent years, metal-organic framework (MOF)-based SERS substrates have gained attention as promising candidates for developing SERS technologies owing to their distinctive structures and functions. This review comprehensively examines recent advances in MOF-based SERS substrates, focusing on the main role of MOFs in SERS substrates as well as their typical categories and structures, construction methods, and representative applications in food-contaminant detection. First, the primary roles of MOFs in SERS substrates are briefly introduced. Next, a comprehensive overview of the typical categories and structures of MOF-based SERS substrates is discussed. Subsequently, a fundamental view of the general construction methods for MOF-based SERS substrates is presented. Next, the main applications of MOF-based SERS substrates for food-contaminant detection are summarised. Finally, challenges and perspectives, including improvements in SERS performance and stability, and the unification of SERS mechanisms, are addressed and discussed.
Collapse
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xujun Pu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinxin Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fengmin Duan
- YunNan Institute of Measuring and Testing Technology, Kunming, 650228, China.
| | - Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
11
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
13
|
Lin C, Li Q, Liu D, Feng Q, Zhou H, Shi B, Zhang X, Hu Y, Jiang X, Sun X, Wang D. Recent research progress in tetrodotoxin detection and quantitative analysis methods. Front Chem 2024; 12:1447312. [PMID: 39206441 PMCID: PMC11349515 DOI: 10.3389/fchem.2024.1447312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine neurotoxin; it has no specific antidote and poses a great risk to human health. Therefore, detecting and quantifying TTX to effectively implement prevention strategies is important for food safety. The development of novel and highly sensitive, highly specific, rapid, and simple techniques for trace TTX detection has attracted widespread attention. This review summarizes the latest advances in the detection and quantitative analysis of TTX, covering detection methods based on biological and cellular sensors, immunoassays and immunosensors, aptamers, and liquid chromatography-mass spectrometry. It further discusses the advantages and applications of various detection technologies developed for TTX and focuses on the frontier areas and development directions of TTX detection, providing relevant information for further investigations.
Collapse
Affiliation(s)
- Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dong Liu
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Bohe Shi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinxin Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xiaoming Sun
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
15
|
Sun J, Zhang M, Gao Q, Shao B. Screening biotoxin aptamer and their application of optical aptasensor in food stuff: a review. Front Chem 2024; 12:1425774. [PMID: 39114265 PMCID: PMC11303198 DOI: 10.3389/fchem.2024.1425774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Biotoxins are ranges of toxic substances produced by animals, plants, and microorganisms, which could contaminate foods during their production, processing, transportation, or storage, thus leading to foodborne illness, even food terrorism. Therefore, proposing simple, rapid, and effective detection methods for ensuring food free from biotoxin contamination shows a highly realistic demand. Aptamers are single-stranded oligonucleotides obtained from the systematic evolution of ligands by performing exponential enrichment (SELEX). They can specifically bind to wide ranges of targets with high affinity; thus, they have become important recognizing units in safety monitoring in food control and anti-terrorism. In this paper, we reviewed the technical points and difficulties of typical aptamer screening processes for biotoxins. For promoting the understanding of food control in the food supply chain, the latest progresses in rapid optical detection of biotoxins based on aptamers were summarized. In the end, we outlined some challenges and prospects in this field. We hope this paper could stimulate widespread interest in developing advanced sensing systems for ensuring food safety.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Meng Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Qianlong Gao
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Liu S, Huo Y, Yin S, Chen C, Shi T, Mi W, Hu Z, Gao Z. A smartphone-based fluorescent biosensor with metal-organic framework biocomposites and cotton swabs for the rapid determination of tetrodotoxin in seafood. Anal Chim Acta 2024; 1311:342738. [PMID: 38816159 DOI: 10.1016/j.aca.2024.342738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Tetrodotoxin (TTX) is a potent neurovirulent marine biotoxin that is present in puffer fish and certain marine animals. It is capable of causing severe neurotoxic symptoms and even death when consumed through contaminated seafood. Due to its high toxicity, developing an effective assay for TTX determination in seafood has significant benefits for food safety and human health. Currently, it remains challenging to achieve on-site determination of TTX in seafood. To facilitate mass on-site assays, more affordable technologies utilizing accessible equipment that require no skilled personnel are needed. RESULTS A smartphone-based portable fluorescent biosensor is proposed for TTX determination by using metal-organic framework (MOF) biocomposites and cotton swabs. Oriented antibody (Ab)-decorated and fluorescent quantum dot (QD)-loaded MOF biocomposites (QD@MOF*Ab) are rapidly synthesized for binding targets and fluorescent responses by utilizing the tunability of zinc-based MOF. Moreover, facile Ab-immobilized household cotton swabs are utilized as TTX capture tools. TTX forms sandwich immune complexes with QD@MOF*Ab probes, achieving signal amplification. These probes are excited by a portable device to generate bright fluorescent signals, which can be detected by the naked eye, and TTX quantitative results are obtained using a smartphone. When observed with the naked eye, the limit of detection (LOD) is 0.4 ng/mL, while intelligent quantitation presents an LOD of 0.13 ng/mL at logarithmic concentrations of 0.2-400 ng/mL. SIGNIFICANCE This biosensor is convenient to use, and an easy-to-operate analysis is completed within 15 min, thus demonstrating excellent performance in terms of detection speed and portability. Furthermore, it successfully determines TTX contents in puffer fish and clam samples, demonstrating its potential for monitoring seafood. Herein, this work provides a favorable rapid sensing platform that is easily portable.
Collapse
Affiliation(s)
- Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Caiyun Chen
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyong Hu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
17
|
Ding X, Ahmad W, Rong Y, Wu J, Ouyang Q, Chen Q. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem 2024; 442:138417. [PMID: 38237297 DOI: 10.1016/j.foodchem.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Trace detection of ofloxacin (OFL) with high sensitivity, reliability, and visual clarity is challenging. To address this, a novel dual-modal aptasensor with fluorescence-colorimetric capabilities was designed that exploit the target-induced release of 3,3',5,5'-tetramethylbenzidine (TMB) molecules from aptamer-gated mesoporous silica nanoparticles (MSNs), the oxidase-like activity of iron alkoxide (IA) nanozyme, and the fluorescence attributes of core-shell upconversion nanoparticles. Therefore, the study reports a dual mode detection, with a fluorescence detection range for OFL spanning from 0.1 μg/kg to 1000 μg/kg (and a detection limit of 0.048 μg/kg). Additionally, the colorimetric method offered a linear detection range of 0.3 μg/kg to 1000 μg/kg, with a detection limit of 0.165 μg/kg. The proposed biosensor had been successfully applied to the determination of OFL content in real samples with satisfactory recoveries (78.24-96.14 %).
Collapse
Affiliation(s)
- Xiaodan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
18
|
Aeindartehran L, Sadri Z, Rahimi F, Alinejad T. Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research. Methods Appl Fluoresc 2024; 12:032002. [PMID: 38697201 DOI: 10.1088/2050-6120/ad46e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Zahra Sadri
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75205, United States of America
| | - Fateme Rahimi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou 325015, Zhejiang, People's Republic of China
- Institute of Cell Growth Factor, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
19
|
Zhu X, Zhao Y, Wu L, Gao X, Huang H, Han Y, Zhu T. Advances in Biosensors for the Rapid Detection of Marine Biotoxins: Current Status and Future Perspectives. BIOSENSORS 2024; 14:203. [PMID: 38667196 PMCID: PMC11048312 DOI: 10.3390/bios14040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Marine biotoxins (MBs), harmful metabolites of marine organisms, pose a significant threat to marine ecosystems and human health due to their diverse composition and widespread occurrence. Consequently, rapid and efficient detection technology is crucial for maintaining marine ecosystem and human health. In recent years, rapid detection technology has garnered considerable attention for its pivotal role in identifying MBs, with advancements in sensitivity, specificity, and accuracy. These technologies offer attributes such as speed, high throughput, and automation, thereby meeting detection requirements across various scenarios. This review provides an overview of the classification and risks associated with MBs. It briefly outlines the current research status of marine biotoxin biosensors and introduces the fundamental principles, advantages, and limitations of optical, electrochemical, and piezoelectric biosensors. Additionally, the review explores the current applications in the detection of MBs and presents forward-looking perspectives on their development, which aims to be a comprehensive resource for the design and implementation of tailored biosensors for effective MB detection.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| | - Yufa Zhao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China;
| | - Xin Gao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China;
| | - Huang Huang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| | - Yu Han
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Ting Zhu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| |
Collapse
|
20
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
21
|
Qi J, Li J, Wan Y, Li Y, Pi F. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH 2-MIL-101(Al) nanoprobe. Food Chem 2024; 435:137586. [PMID: 37774622 DOI: 10.1016/j.foodchem.2023.137586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Antibiotic residues are becoming more and more concern due to the increasingly serious resistance from bacteria to organism. On-site and accurate evaluation on antibiotics is necessary and urgent to effectively solve such public issue. To provide point-of-care-test (POCT) ideas for antibiotic accurate evaluation, a fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode detection of tetracycline antibiotic (TCs) was realized for the first time. Based on the inner filter effect in Ag@NH2-MIL-101(Al) nanoprobe, the fluorescence quenching was induced and the SERS signal was swiftly turn on through π-π interaction and hydrogen bonding in the presence of TCs. This FL-SERS dual mode sensor displayed excellent detection limits (FL in ∼10-3 ppm, SERS in ∼10-5 ppm), and achieved a reliable detection of TCs in honey with a recovery rate of 84.45%-112.08%. This method combines the advantages of FL and SERS detection, meanwhile, two techniques verified against each other to achieve highly sensitive and specific FL-SERS dual-mode sensor for TCs. We believe that such antibody-or aptamer-independent FL and SERS complementary nanoprobe can be applied to fast, direct and multiple sensing in environment and food hazards.
Collapse
Affiliation(s)
- Junjie Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
22
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
23
|
Zhao YJ, Shen PF, Fu JH, Yang FR, Chen ZP, Yu RQ. A target-triggered fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular telomerase activity. Talanta 2024; 269:125469. [PMID: 38043337 DOI: 10.1016/j.talanta.2023.125469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Ping-Fan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Jing-Hao Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Feng-Rui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Zeng-Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
24
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
25
|
Liu S, Huo Y, Hu Z, Cao G, Gao Z. A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin. Mikrochim Acta 2023; 191:57. [PMID: 38153525 DOI: 10.1007/s00604-023-06118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445 nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555 nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555 nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445 nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027 ng/mL and a linear range of 0.05-500 ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.
Collapse
Affiliation(s)
- Sha Liu
- Binzhou Medical University, Yantai, 264003, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Zhiyong Hu
- Binzhou Medical University, Yantai, 264003, China
| | - Gaofang Cao
- Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- Binzhou Medical University, Yantai, 264003, China.
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
26
|
Sun Q, Li Z, Liu N, Zhou Y, Zhang F, Li S, Jin P, Xiang R, Le T. Development of a novel fluorescent aptasensor based on the interaction between hexagonal β-Co(OH) 2 nanoplates and nitrogen-doped carbon dots for ultrasensitive detection of patulin. Anal Chim Acta 2023; 1278:341710. [PMID: 37709454 DOI: 10.1016/j.aca.2023.341710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
There is an urgent need to develop an economical and convenient method for the ultrasensitive detection of patulin (PAT), a mycotoxin that can potentially harm human health when it is found in fruits and their derivatives. In this study, we have developed a novel fluorescent aptasensor that utilizes nitrogen-doped carbon dots (N-CDs) as the fluorescent donor and hexagonal β-Co(OH)2 nanoplates as the fluorescent acceptor. N-CDs were synthesized through the hydrothermal method, resulting in spherical particles with a diameter of 7.6 nm. These nanoparticles exhibited excellent water solubility and displayed a vibrant blue emission at 448 nm when excited at 360 nm. Cobalt hydroxide nanoplates with a beta crystal structure [β-Co(OH)2] were synthesized using a simple co-precipitation method, exhibiting hexagonal plate-like shapes with uniform lateral sizes of 4-5 μm. The fluorescence of N-CDs can be efficiently quenched by hexagonal β-Co(OH)2 nanoplates through Förster resonance energy transfer mechanism. The maximum quenching-recovery capability can be achieved when the concentrations of N-CDs-Apt and β-Co(OH)2 nanoplates are 150 nmol/L and 100 μg/mL, respectively. The pH of the TE buffer should be 8.0, and the incubation time should be 10 min at 25 °C. The developed fluorescent aptasensor displayed an excellent selectivity for PAT determination with a detection limit of 0.57 pg/mL in the linear range of 1.25 pg/mL-100 ng/mL. The rapid PAT determination in fruit juice samples was realized with good recoveries (96.9-105.8%). The developed fluorescent aptasensor based on the interaction between N-CDs and hexagonal β-Co(OH)2 nanoplates can be a promising method for the rapid and ultrasensitive detection of PAT in agricultural products.
Collapse
Affiliation(s)
- Qi Sun
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Zhijuan Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Ningxin Liu
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Peng Jin
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Rui Xiang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
27
|
Li H, Yao S, Wang C, Bai C, Zhou P. Diverse applications and development of aptamer detection technology. ANAL SCI 2023; 39:1627-1641. [PMID: 37700097 DOI: 10.1007/s44211-023-00409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/04/2023] [Indexed: 09/14/2023]
Abstract
Aptamers have received extensive attention in recent years because of their advantages of high specificity, high sensitivity and low immunogenicity. Aptamers can perform almost all functions of antibodies through the combination of spatial structure and target, which are called "chemical antibodies". At present, aptamers have been widely used in cell imaging, new drug development, disease treatment, microbial detection and other fields. Due to the diversity of modifications, aptamers can be combined with different detection technologies to construct aptasensors. This review focuses on the diversity of aptamers in the field of detection and the development of aptamer-based detection technology and proposes new challenges for aptamers in this field.
Collapse
Affiliation(s)
- Haozheng Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
28
|
Chen D, Wu Z, Zhang Y, Li D, Wei J, Jiao T, Chen Q, Oyama M, Chen Q, Chen X. Boric acid group-functional Tb-MOF as a fluorescent and captured probe for the highly sensitive and selective determination of propyl gallate in edible oils. Food Chem 2023; 418:136012. [PMID: 36996649 DOI: 10.1016/j.foodchem.2023.136012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
This study reports the development of a Tb-metal-organic framework (Tb-MOF)-based fluorescent platform for the detection of propyl gallate (PG). The Tb-MOF using 5-boronoisophthalic acid (5-bop) as the ligand exhibited multiple emissions at 490, 543, 585, and 622 nm under an excitation wavelength of 256 nm. The fluorescence of Tb-MOF was selectively and significantly weakened in the presence of PG due to the special nucleophilic reaction between the boric acid of Tb-MOF and o-diphenol hydroxyl of PG, and the combined effect of static quenching and internal filtering. Furthermore, this sensor enabled the determination of PG within seconds in a wide linear range of 1-150 μg/mL, and with a low detection limit of 0.098 μg/mL, and high specificity against other phenolic antioxidants. This work provided a new route for the sensitive and selective determination of PG in soybean oil, thus was perspective to monitor and reduce the risk of PG overuse.
Collapse
|
29
|
Huang L, Zhang Z. Recent Advances in the DNA-Mediated Multi-Mode Analytical Methods for Biological Samples. BIOSENSORS 2023; 13:693. [PMID: 37504092 PMCID: PMC10377368 DOI: 10.3390/bios13070693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
30
|
Li J, Li S, Li Z, Zhou Y, Jin P, Zhang F, Sun Q, Le T, Jirimutu. Chromium hydroxide nanoparticles-based fluorescent aptameric sensing for sensitive patulin detection: The significance of nanocrystal and morphology modulation. Talanta 2023; 257:124296. [PMID: 36758442 DOI: 10.1016/j.talanta.2023.124296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
The widespread of patulin (PAT) and its potential hazards to human health call for alternative rapid assays to monitor it in food and the environment. Herein, we prepared chromium hydroxide [Cr(OH)3] nanoparticles via a one-pot chemical precipitation strategy and used them to fabricate a turn-on fluorescent aptasensor employing a morphological effect for sensitive PAT detection. Three Cr(OH)3 nanoparticle structures were synthesized by changing the solvent, and their structures and physicochemical properties were investigated. Then, we evaluated the effects of morphological structures on the fluorescence quenching-recovery capability of Cr(OH)3 nanoparticles before and after incubation with PAT. We found that the Cr(OH)3-3 nanoparticles efficiently absorbed the fluorescence dye 6-carboxyfluorescein labeled aptamer (FAM-Apt) and quenched the fluorophore through photoinduced electron transfer. Under optimal experimental conditions, the turn-on fluorescent aptasensor for PAT determination displayed two linear ranges (0.01-10 ng/mL and 1-200 ng/mL) with a low detection limit of 7.3 pg/mL. Moreover, the proposed aptasensor had no cross-reactivity with interferents that usually coexist with PAT and can be used to detect PAT in apple juices accurately. The results of the as-fabricated method were not significantly different from the high-performance liquid chromatography. Hence, we demonstrated that different Cr(OH)3 nanoparticles can be prepared by changing reaction conditions, and provided a novel strategy to improve the detection performance of fluorescent aptasensor by changing the morphological structure and crystalline properties of nano-quenchers.
Collapse
Affiliation(s)
- Jianmei Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Zhijuan Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Peng Jin
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
31
|
Liu M, Dong J, Suo Z, Wang Q, Wei M, He B, Jin H. A convenient fluorescent/electrochemical dual-mode biosensor for accurate detection of Pb 2+ based on DNAzyme cycle. Bioelectrochemistry 2023; 152:108452. [PMID: 37137224 DOI: 10.1016/j.bioelechem.2023.108452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
The presence of heavy metals in the ecological environment is a serious threat to human health. Therefore, it is very important to establish a simple and sensitive method for the detection of heavy metals. Currently, most of the methods are single-channel sensing, and these methods are prone to false-positive signals, which reduces the accuracy. In this work, Pb2+-DNAzyme was immobilized on magnetic beads (MBs) using a linkage of biotin and streptavidin and successfully applied to the construction of a fluorescent/electrochemical dual-mode (DM) biosensor. The supernatant after magnetic separation formed a double strand on the electrode, which was combined with methylene blue (MB) for electrochemical detection (EC). At the same time, FAM-d was added to the precipitate, and after magnetic separation, the supernatant was subjected to fluorescent detection (FL). Under optimal conditions, the signal response of the constructed dual-mode biosensor showed a good linear relationship with the concentration of Pb2+. The DNAzyme-based dual-mode biosensor achieved sensitive and selective detection of Pb2+ with good accuracy and reliability, opening a new way for the development of biosensing strategies for the detection of Pb2+. More importantly, the sensor has high sensitivity and accuracy for the detection of Pb2+ in actual sample analysis.
Collapse
Affiliation(s)
- Mingwei Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Dong
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Qixuan Wang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
32
|
Huang L, Huang H, Zhang Z, Li G. Contractile Hairpin DNA-Mediated Dual-Mode Strategy for Simultaneous Quantification of Lactoferrin and Iron Ion by Surface-Enhanced Raman Scattering and Fluorescence Analysis. Anal Chem 2023; 95:5946-5954. [PMID: 36972417 DOI: 10.1021/acs.analchem.2c05473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
DNA-mediated self-assembly technology with good sensitivity and affinity ability has been rapidly developed in the field of probe sensing. The efficient and accurate quantification of lactoferrin (Lac) and iron ions (Fe3+) in human serum and milk samples by the probe sensing method can provide useful clues for human health and early diagnosis of anemia. In this paper, contractile hairpin DNA-mediated dual-mode probes of Fe3O4/Ag-ZIF8/graphitic quantum dot (Fe3O4/Ag-ZIF8/GQD) NPs were prepared to realize the simultaneous quantification of Lac by surface-enhanced Raman scattering (SERS) and Fe3+ by fluorescence (FL). In the presence of targets, these dual-mode probes would be triggered by the recognition of aptamer and release GQDs to produce FL response. Meanwhile, the complementary DNA began to shrink and form a new hairpin structure on the surface of Fe3O4/Ag, which produced hot spots and generated a good SERS response. Thus, the proposed dual-mode analytical strategy possessed excellent selectivity, sensitivity, and accuracy due to the dual-mode switchable signals from "off" to "on" in SERS mode and from "on" to "off" in FL mode. Under the optimized conditions, a good linear range was obtained in the range of 0.5-100.0 μg/L for Lac and 0.01-5.0 μmol/L for Fe3+ and with detection limits of 0.14 μg/L and 3.8 nmol/L, respectively. Finally, the contractile hairpin DNA-mediated SERS-FL dual-mode probes were successfully applied in the simultaneous quantification of iron ion and Lac in human serum and milk samples.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Hanbing Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
33
|
Duan XH, Li HW, Wu Y. A smart ratiometric fluoresence and colorimetry dual-responsive sensor for morin determination based on the complex between carbon quantum dots and polyethyleneimine. Anal Chim Acta 2023; 1243:340814. [PMID: 36697177 DOI: 10.1016/j.aca.2023.340814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
As a representative flavonoid, morin exhibits multi-biological activities, but its abuse endangers human health. Developing advanced technology for morin determination is urgently needed. In this study, a dual-responsive approach was reported for morin based on the complexing of carbon quantum dots (CQDs) and polyethyleneimine (PEI). The CQDs were fabricated via an improved hydrothermal method employing tyrosine and malic acid. Binding with PEI induced an 8-fold emission enhancement and a slight red-shift to 445 nm of CQDs because of the complexing of PEI and CQDs. Further morin introduction led to the blue emission (445 nm) quenching of CQDs-PEI and a yellow emission (560 nm) generation, which contributed a ratiometric fluorescence approach for morin determination between 2.0 and 32 μM, with a limit of detection (LOD) of 45 nM. Meanwhile, under sunlight the color of CQDs-PEI became yellow upon morin addition, which developed a colorimetric method for morin determination in a wide range between 2.0 and 100 μM (LOD = 69 nM). The developed dual-responsive method either displayed accurate results for morin in diluted human and bovine serum, being potential for actual sample analysis. Finally, a visual detection based on the smartphone was constructed and applied for the real-time determination of morin.
Collapse
Affiliation(s)
- Xin-He Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China.
| |
Collapse
|
34
|
Yao J, Jin Z, Zhao Y. Electroactive and SERS-Active Ag@Cu 2O NP-Programed Aptasensor for Dual-Mode Detection of Tetrodotoxin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10240-10249. [PMID: 36749896 DOI: 10.1021/acsami.2c21424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dual-mode nanotags with noninterference sensing signals improved the detection accuracy and sensitivity for the applications of tetrodotoxin (TTX) monitoring. Electroactive and surface-enhanced Raman scattering (SERS)-active Ag@Cu2O nanoparticles (NPs) were fabricated and displayed two electrooxidation signals at -0.13 and 0.17 V, attributed to the oxidization process of Cu+ and Ag0, respectively. Ag@Cu2O NPs were also found to exhibit stronger SERS performances than individual Ag NPs. The dielectric Cu2O shell with a large dielectric constant inhibited the attenuation of electromagnetic (EM) waves of Ag NPs, which strengthened the EM fields for SERS enhancement. The electron transfer from Ag to Cu2O to 4-aminothiophenol (4-ATP) also contributed to the SERS performances. Ag@Cu2O NPs were modified by TTX aptamers and assembled with MXene nanosheets (NSs) due to the large surface, good conductivity, and inherent Raman properties. The assemblies showed two-peaked electrooxidation signals and prominent SERS activity. An electrochemical detection curve was established by using the total peak intensity at -0.13 and 0.17 V as detection signals, and a ratiometric SERS detection curve was developed by applying the intensity at 1078 cm-1 (4-ATP) as the detection signal and 730 cm-1 (MXene NSs) as the reference signal. An electrochemical and SERS signal-programed dual-mode aptasensor was proposed for accurate TTX detection, with the limits of detection of 31.6 pg/mL for the electrochemical signal and 38.3 pg/mL for the SERS signal. The rational design of plasmonic metal-semiconductor heterogeneous nanocomposites had important prospects in establishing a multimodal biosensing platform for the quantitative and accurate detection of analytes in complex systems.
Collapse
Affiliation(s)
- Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Chen S, Tang Q, Zeng Y, Yang Y, Zhu T, Wang H, Guo L, Li L, Qian Z. A novel fluorescence aptasensor based on PCN-223 as an efficient quencher for sensitive determination of prostate-specific antigen. Mikrochim Acta 2023; 190:70. [PMID: 36694049 DOI: 10.1007/s00604-023-05650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
A novel fluorescence aptasensor based on PCN-223 as an efficient quencher was developed to sensitively detect prostate-specific antigen (PSA). The 5-carboxytetramethylrhodamine (TAMRA)-labeled PSA aptamer was adsorbed on PCN-223 by π-π stacking and hydrogen-bonding interactions, which contributed to fluorescence quenching because of the photoinduced electron transfer from TAMRA to PCN-223. In addition, the amount of quenched fluorescence of the PSA-binding aptamer complex-PCN-223 was lower than that of TAMRA aptamer-PCN-223 without PSA (at excitation/emission peaks of 545/582 nm), which can be explained by the fact that the PSA-binding aptamer complexes contributed to the separation of the aptamer from PCN-223. ∆F value of fluorescence intensities for TAMRA aptamer-PCN-223 with and without PSA showed a good linear relationship with PSA concentration over a range of 0.1 to 24 ng mL-1, with a detection limit of 0.05 ng mL-1. Compared with three metal-organic frameworks (MOFs) of UiO-66-NH2, ZIF-67, and Ni3(HITP)2 as quenchers, PCN-223 as a Zr-MOF exhibited the highest ∆F value for PSA detection. The advantage of PCN-223 could be attributed to its carboxyl, benzene, and porphyrin groups, the large specific surface area and good biocompatibility. This proposed aptasensor can be successfully used to detect PSA in sera of prostate cancer patients. The PSA detection results of this aptasensor were consistent with those which were obtained from hospital by Archtecti2000sr automatic chemiluminescence immunoanalyzer. The proposed aptasensor has potential clinical detection application.
Collapse
Affiliation(s)
- Shijie Chen
- School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Qiukai Tang
- Clinical Laboratory of Zhejiang, Sian International Hospital, Jiaxing, 314000, People's Republic of China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Tianyi Zhu
- School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Zhaosheng Qian
- School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
36
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Li C, Song M, Wu S, Wang Z, Duan N. Selection of aptamer targeting levamisole and development of a colorimetric and SERS dual-mode aptasensor based on AuNPs/Cu-TCPP(Fe) nanosheets. Talanta 2023; 251:123739. [DOI: 10.1016/j.talanta.2022.123739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
|
38
|
Zahraee H, Mehrzad A, Abnous K, Chen CH, Khoshbin Z, Verdian A. Recent Advances in Aptasensing Strategies for Monitoring Phycotoxins: Promising for Food Safety. BIOSENSORS 2022; 13:56. [PMID: 36671891 PMCID: PMC9856083 DOI: 10.3390/bios13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Phycotoxins or marine toxins cause massive harm to humans, livestock, and pets. Current strategies based on ordinary methods are long time-wise and require expert operators, and are not reliable for on-site and real-time use. Therefore, it is urgent to exploit new detection methods for marine toxins with high sensitivity and specificity, low detection limits, convenience, and high efficiency. Conversely, biosensors can distinguish poisons with less response time and higher selectivity than the common strategies. Aptamer-based biosensors (aptasensors) are potent for environmental monitoring, especially for on-site and real-time determination of marine toxins and freshwater microorganisms, and with a degree of superiority over other biosensors, making them worth considering. This article reviews the designed aptasensors based on the different strategies for detecting the various phycotoxins.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| |
Collapse
|
39
|
Wang T, Liu S, Ren S, Liu B, Gao Z. Magnetic relaxation switch and fluorescence dual-mode biosensor for rapid and sensitive detection of ricin B toxin in edible oil and tap water. Anal Chim Acta 2022; 1232:340471. [DOI: 10.1016/j.aca.2022.340471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/01/2022]
|
40
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
41
|
Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. NANO RESEARCH 2022; 16:2968-2979. [PMID: 36090613 PMCID: PMC9440655 DOI: 10.1007/s12274-022-4914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Alexander A. Ganeev
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Yury V. Kistenev
- Tomsk State University, Lenina Av. 36, Tomsk, Tomsk, 634050 Russia
| | - Anna Gubal
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Victoria Chuchina
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| |
Collapse
|
42
|
Wang M, Shen Y, Hu X, Zhu Y, Wang J. Colorimetric/SERS dual-channel nanoprobe for reactive oxygen species monitoring in elucidating the mechanism of chemotherapeutic drugs action on cancer cells. Mikrochim Acta 2022; 189:351. [PMID: 36008738 DOI: 10.1007/s00604-022-05451-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species (ROS) are involved in drug-induced cytotoxicity by regulating cell signaling, inducing oxidative stress, and damaging the DNA and proteins. Examining ROS production in cells under the stimulation of chemotherapeutic drugs is of great importance for understanding the ROS roles and identifying the mechanism of drug-induced cytotoxicity. Here, a silver/gold (Ag/Au) nanoshell-based colorimetric and surface-enhanced Raman spectroscopy (SERS) dual-response nanoprobe was proposed for ROS sensing on the basis of Ag etching. In this study, as a kind of ROS, hydrogen peroxide (H2O2) was detected by the prepared nanoprobe. The linear ranges of 0.5-100 μM with a limit of detection (LOD) of 0.343 μM for the colorimetric determination and 1-50 μM with LOD of 0.294 μM for SERS determination were achieved. The detection of cellular ROS concentration after stimulation by cisplatin, paclitaxel, doxorubicin, and 5-fluorouracil was validated by the nanoprobe. The nanoprobe could also be used to detect the signal pathway of ROS production by cisplatin stimulation. This study provided a simple and novel dual-response nanoplatform for detecting and monitoring ROS in cells, which holds great potential for elucidating the mechanism of occurrence and treatment of ROS-involved diseases.
Collapse
Affiliation(s)
- Mi Wang
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050051, People's Republic of China
| | - Yanting Shen
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xiaoxiao Hu
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yanyan Zhu
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing Wang
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
43
|
Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2022; 1222:340178. [DOI: 10.1016/j.aca.2022.340178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
|
44
|
Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022; 11:foods11142097. [PMID: 35885344 PMCID: PMC9322305 DOI: 10.3390/foods11142097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Innovative application of surface-enhanced Raman scattering (SERS) for rapid and nondestructive analyses has been gaining increasing attention for food safety and quality. SERS is based on inelastic scattering enhancement from molecules located near nanostructured metallic surfaces and has many advantages, including ultrasensitive detection and simple protocols. Current SERS-based quality analysis contains composition and structural information that can be used to establish an electronic file of the food samples for subsequent reference and traceability. SERS is a promising technique for the detection of chemical, biological, and harmful metal contaminants, as well as for food poisoning, and allergen identification using label-free or label-based methods, based on metals and semiconductors as substrates. Recognition elements, including immunosensors, aptasensors, or molecularly imprinted polymers, can be linked to SERS tags to specifically identify targeted contaminants and perform authenticity analysis. Herein, we highlight recent studies on SERS-based quality and safety analysis for different foods categories spanning the whole food chain, ‘from farm to table’ and processing, genetically modified food, and novel foods. Moreover, SERS detection is a potential tool that ensures food safety in an easy, rapid, reliable, and nondestructive manner during the COVID-19 pandemic.
Collapse
|