1
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
2
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Liu Y, Lao X, Wong M, Song M, Lai H, Wang P, Ma Y, Li L, Yang M, Chen H, Hao J. Microfluidic Chip-Assisted Upconversion Luminescence Biosensing Platform for Point-of-Care Virus Diagnostics. Adv Healthc Mater 2024; 13:e2303897. [PMID: 38452274 PMCID: PMC11468664 DOI: 10.1002/adhm.202303897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Epidemics caused by multiple viruses continue to emerge, which have brought a terrible impact on human society. Identification of viral infections with high sensitivity and portability is of significant importance for the screening and management of diseases caused by viruses. Herein, a microfluidic chip (MFC)-assisted upconversion luminescence biosensing platform is designed and fabricated for point-of-care virus detection. Upconversion nanoparticles with excellent stability are successfully synthesized as luminescent agents for optical signal generation in the portable virus diagnostic platform. The relevant investigation results illustrate that the MFC-assisted virus diagnostic platform possesses outstanding performance such as good integration, high sensitivity (1.12 pg mL-1), ease of use, and portability. In addition, clinical sample test result verifies its more prominent virus diagnostic properties than commercially available rapid test strips. All of these thrilling capabilities imply that the designed portable virus diagnostic platform has great potential for future virus detection applications.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Xinyue Lao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Man‐Chung Wong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Menglin Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious DiseasesDepartment of MicrobiologyLKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
| | - Yingjin Ma
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Lihua Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Nanoscience and NanotechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious DiseasesDepartment of MicrobiologyLKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Nanoscience and NanotechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| |
Collapse
|
4
|
Chen J, Ho WKH, Yin B, Zhang Q, Li C, Yan J, Huang Y, Hao J, Yi C, Zhang Y, Wong SHD, Yang M. Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein. Biosens Bioelectron 2024; 248:115969. [PMID: 38154329 DOI: 10.1016/j.bios.2023.115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Upconversion nanoparticles (UCNPs) are ideal donors for luminescence resonance energy transfer (LRET)-based biosensors due to their excellent upconversion luminescence properties. However, the relatively large size of antibodies and proteins limits the application of UCNPs-based LRET biosensors in protein detection because the large steric hindrance of proteins leads to low energy transfer efficiency between UCNPs and receptors. Herein, we developed a magnetic responsive UCNPs-based LRET biosensor to control the coupling distance between antibody-functionalized UCNPs (Ab-UCNPs) as donors and antibody-PEG linker-magnetic gold nanoparticles (Ab-PEG-MGNs) as acceptors for ultrasensitive and highly selective detection of SARS-CoV-2 spike proteins. Our results showed that this platform reversibly shortened the coupling distance between UCNPs and MGNs and enhanced the LRET signal with a 10-fold increase in the limit of detection (LOD) from 20.6 pg/mL without magnetic modulation to 2.1 pg/mL with magnetic modulation within 1 h. The finite-difference time-domain (FDTD) simulation with cyclic distance change confirmed the distance-dependent LRET efficiency under magnetic modulation, which supported the experimental results. Moreover, the applications of this magnetic-responsive UCNP-based LRET biosensor could be extended to other large-size biomolecule detection.
Collapse
Affiliation(s)
- Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments Guangdong, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC, 3000, Australia
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
| |
Collapse
|
5
|
Jeon E, Koo B, Kim S, Kim J, Yu Y, Jang H, Lee M, Kim SH, Kang T, Kim SK, Kwak R, Shin Y, Lee J. Biporous silica nanostructure-induced nanovortex in microfluidics for nucleic acid enrichment, isolation, and PCR-free detection. Nat Commun 2024; 15:1366. [PMID: 38355558 PMCID: PMC10866868 DOI: 10.1038/s41467-024-45467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.
Collapse
Affiliation(s)
- Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jieun Kim
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sang Kyung Kim
- Center for Augmented Safety Systems with Intelligence, Sensing and Tracking (ASSIST), Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
7
|
Lee J, Lee T, Lee HN, Kim H, Kang YK, Ryu S, Chung HJ. Simple and Multiplexed Detection of Nucleic Acid Targets Based on Fluorescent Ring Patterns and Deep Learning Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54335-54345. [PMID: 37970793 DOI: 10.1021/acsami.3c14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Simple diagnostic tests for nucleic acid targets can provide great advantages for applications such as rapid pathogen detection. Here, we developed a membrane assay for multiplexed detection of nucleic acid targets based on the visualization of two-dimensional fluorescent ring patterns. A droplet of the assay solution is applied to a cellulose nitrate membrane, and upon radial chromatographic flow and evaporation of the solvent, fluorescent patterns appear under UV irradiation. The target nucleic acid is isothermally amplified and is immediately hybridized with fluorescent oligonucleotide probes in a one-pot reaction. We established the fluorescent ring assay integrated with isothermal amplification (iFluor-RFA = isothermal fluorescent ring-based radial flow assay), and feasibility was tested using nucleic acid targets of the receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) genes of SARS-CoV-2. We demonstrate that the iFluor-RFA method is capable of specific and sensitive detection in the subpicomole range, as well as multiplexed detection even in complex solutions. Furthermore, we applied deep learning analysis of the fluorescence images, showing that patterns could be classified as positive or negative and that quantitative amounts of the target could be predicted. The current technique, which is a membrane pattern-based nucleic acid assay combined with deep learning analysis, provides a novel approach in diagnostic platform development that can be versatilely applied for the rapid detection of infectious pathogens.
Collapse
Affiliation(s)
- Juhee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Taegu Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ha Neul Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoo Kyung Kang
- College of Pharmacy, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Ma Y, Song M, Li L, Lao X, Liu Y, Wong MC, Yang M, Chen H, Hao J. Attomolar-level detection of respiratory virus long-chain oligonucleotides based on FRET biosensor with upconversion nanoparticles and Au-Au dimer. Biosens Bioelectron 2023; 243:115778. [PMID: 39492185 DOI: 10.1016/j.bios.2023.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Upconversion nanoparticles (UCNPs) are promising nanoprobes in DNA/RNA detection, such as respiratory viral RNAs, and siRNA in cancer. However, recent studies have indicated that the sensitivity of UCNP-based biosensors is restricted, ranging from picomolar to femtomolar level. Moreover, most of existing UCNP-based probes are only able to detect short-chain oligonucleotides, which are not suitable for detection of long-chain oligonucleotides in many real applications. In this work, we introduced a new UCNP-based fluorescence resonance energy transfer (FRET) nanoprobe design composed of NaGdF4:Yb3+, Er3+@NaGdF4 core-shell UCNPs (csUCNPs) linking with Au-Au dimer to detect long-chain oligonucleotides of SARS-CoV-2 N-gene. Compared with typical single gold nanoparticles (AuNPs) in FRET biosensors, our theoretical investigation shows that a stronger electromagnetic field is generated in the Au-Au dimer where the plasmon resonance can enhance FRET efficiency and increase the working distance. Thus, the synergetic effect of plasmonic resonance and FRET enables a greater quenching efficiency (QE) of Au-Au dimer to UCNPs, which leads to more remarkable upconversion luminescence (UCL) recovery for each target gene recognition. Importantly, our design significantly improved the limit of detection (LOD) to attomolar level, with a linear response ranging from 2 aM to 2 fM. Moreover, the clinical detection with inactivated SARS-CoV-2 samples was successfully performed with excellent specificity within 30 min using the developed UCNPs biosensors incorporated with Au-Au dimer. This UCNP biosensor based on Au-Au dimer strategy with ultra-sensitivity and good selectivity opens a new path for clinical diagnosis without target amplification and plays an instructive role in other virus diagnosis.
Collapse
Affiliation(s)
- Yingjin Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Yuan Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
9
|
Calorenni P, Leonardi AA, Sciuto EL, Rizzo MG, Faro MJL, Fazio B, Irrera A, Conoci S. PCR-Free Innovative Strategies for SARS-CoV-2 Detection. Adv Healthc Mater 2023; 12:e2300512. [PMID: 37435997 PMCID: PMC11469253 DOI: 10.1002/adhm.202300512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 07/13/2023]
Abstract
The pandemic outbreak caused by SARS-CoV-2 coronavirus brought a crucial issue in public health causing up to now more than 600 million infected people and 6.5 million deaths. Conventional diagnostic methods are based on quantitative reverse transcription polymerase chain reaction (RT-qPCR assay) and immuno-detection (ELISA assay). However, despite these techniques have the advantages of being standardized and consolidated, they keep some main limitations in terms of accuracy (immunoassays), time/cost consumption of analysis, the need for qualified personnel, and lab constrain (molecular assays). There is crucial the need to develop new diagnostic approaches for accurate, fast and portable viral detection and quantification. Among these, PCR-free biosensors represent the most appealing solution since they can allow molecular detection without the complexity of the PCR. This will enable the possibility to be integrated in portable and low-cost systems for massive and decentralized screening of SARS-CoV-2 in a point-of-care (PoC) format, pointing to achieve a performant identification and control of infection. In this review, the most recent approaches for the SARS-CoV-2 PCR-free detection are reported, describing both the instrumental and methodological features, and highlighting their suitability for a PoC application.
Collapse
Affiliation(s)
- Paolo Calorenni
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Antonio A. Leonardi
- Department of Physics and AstronomyUniversity of CataniaVia Santa Sofia 64Catania95123Italy
| | - Emanuele L. Sciuto
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Maria G. Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Maria J. Lo Faro
- Department of Physics and AstronomyUniversity of CataniaVia Santa Sofia 64Catania95123Italy
| | - Barbara Fazio
- URT Lab Sens Beyond NanoCNR‐DSFTMViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Alessia Irrera
- URT Lab Sens Beyond NanoCNR‐DSFTMViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
- URT Lab Sens Beyond NanoCNR‐DSFTMViale F. Stagno D'Alcontres 37Messina98158Italy
- Department of Chemistry ‘‘Giacomo Ciamician’’University of BolognaVia Selmi 2Bologna40126Italy
- CNR‐IMMInstitute for Microelectronics and MicrosystemsOttava Strada n.5CataniaI‐95121Italy
| |
Collapse
|
10
|
Borah Slater K, Ahmad M, Poirier A, Stott A, Siedler BS, Brownsword M, Mehat J, Urbaniec J, Locker N, Zhao Y, La Ragione R, Silva SRP, McFadden J. Development of a loop-mediated isothermal amplification (LAMP)-based electrochemical test for rapid detection of SARS-CoV-2. iScience 2023; 26:107570. [PMID: 37664622 PMCID: PMC10470312 DOI: 10.1016/j.isci.2023.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Rapid, reliable, sensitive, portable, and accurate diagnostics are required to control disease outbreaks such as COVID-19 that pose an immense burden on human health and the global economy. Here we developed a loop-mediated isothermal amplification (LAMP)-based electrochemical test for the detection of SARS-CoV-2 that causes COVID-19. The test is based on the oxidation-reduction reaction between pyrophosphates (generated from positive LAMP reaction) and molybdate that is detected by cyclic voltammetry using inexpensive and disposable carbon screen printed electrodes. Our test showed higher sensitivity (detecting as low as 5.29 RNA copies/μL) compared to the conventional fluorescent reverse transcriptase (RT)-LAMP. We validated our tests using human serum and saliva spiked with SARS-CoV-2 RNA and clinical (saliva and nasal-pharyngeal) swab samples demonstrating 100% specificity and 93.33% sensitivity. Our assay provides a rapid, specific, and sensitive test with an electrochemical readout in less than 45 min that could be adapted for point-of-care settings.
Collapse
Affiliation(s)
- Khushboo Borah Slater
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Muhammad Ahmad
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Aurore Poirier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Ash Stott
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Bianca Sica Siedler
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Matthew Brownsword
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Joanna Urbaniec
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Nicolas Locker
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yunlong Zhao
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto La Ragione
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - S. Ravi P. Silva
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Johnjoe McFadden
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
11
|
Zayed BA, Ali AN, Elgebaly AA, Talaia NM, Hamed M, Mansour FR. Smartphone-based point-of-care testing of the SARS-CoV-2: A systematic review. SCIENTIFIC AFRICAN 2023; 21:e01757. [PMID: 37351482 PMCID: PMC10256629 DOI: 10.1016/j.sciaf.2023.e01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus's worldwide pandemic has highlighted the urgent need for reliable, quick, and affordable diagnostic tests for comprehending and controlling the epidemic by tracking the world population. Given how crucial it is to monitor and manage the pandemic, researchers have recently concentrated on creating quick detection techniques. Although PCR is still the preferred clinical diagnostic test, there is a pressing need for substitutes that are sufficiently rapid and cost-effective to provide a diagnosis at the time of use. The creation of a quick and simple POC equipment is necessary for home testing. Our review's goal is to provide an overview of the many methods utilized to identify SARS-CoV 2 in various samples utilizing portable devices, as well as any potential applications for smartphones in epidemiological research and detection. The point of care (POC) employs a range of microfluidic biosensors based on smartphones, including molecular sensors, immunological biosensors, hybrid biosensors, and imaging biosensors. For example, a number of tools have been created for the diagnosis of COVID-19, based on various theories. Integrated portable devices can be created using loop-mediated isothermal amplification, which combines isothermal amplification methods with colorimetric detection. Electrochemical approaches have been regarded as a potential substitute for optical sensing techniques that utilize fluorescence for detection and as being more beneficial to the Minimizing and simplicity of the tools used for detection, together with techniques that can amplify DNA or RNA under constant temperature conditions, without the need for repeated heating and cooling cycles. Many research have used smartphones for virus detection and data visualization, making these techniques more user-friendly and broadly distributed throughout nations. Overall, our research provides a review of different novel, non-invasive, affordable, and efficient methods for identifying COVID-19 contagious infected people and halting the disease's transmission.
Collapse
Affiliation(s)
- Berlanty A Zayed
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Ahmed N Ali
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Alaa A Elgebaly
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Nourhan M Talaia
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Mahmoud Hamed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, The Medical Campus of Tanta University, Tanta 31111, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, The Medical Campus of Tanta University, Tanta 31111, Egypt
| |
Collapse
|
12
|
Li S, Zhang H, Huang Z, Jia Q. Spatially confining copper nanoclusters in porous ZrO2 for fluorescence/colorimetry/smartphone triple-mode detection of metoprolol tartrate. Biosens Bioelectron 2023; 231:115290. [PMID: 37031506 DOI: 10.1016/j.bios.2023.115290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Sensitive detection of metoprolol tartrate (MPT) is extremely urgent in the therapy of cardiovascular diseases to guarantee the curative effectiveness. Herein, porous ZrO2 was first employed as a matrix to spatially confine CuNCs (ZrO2@CuNCs), which simultaneously ameliorated the emission intensity and stability of CuNCs. Benefiting from the inner filter effect (IFE) and dynamic quenching effect (DQE) between ZrO2@CuNCs and AuNPs and the color fading of AuNPs induced by MPT, fluorometric and colorimetric methods for simple and sensitive determination of MPT were proposed. Besides, to meet the demand of convenient detection of MPT, a portable sensing platform was constructed including a dark box produced by a 3D printer and a smartphone. This method was further employed to determine MPT in human serum and urine samples with satisfactory results with the triple mode. This work is the first attempt to fabricate a multi-mode optical and portable sensor for MPT detection, which provides a novel approach for point-of-care monitoring of drugs in the treatment of diseases.
Collapse
|