1
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Merten OW. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024; 12:384. [PMID: 38399788 PMCID: PMC10892526 DOI: 10.3390/microorganisms12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Today, recombinant adeno-associated virus (rAAV) vectors represent the vector systems which are mostly used for in vivo gene therapy for the treatment of rare and less-rare diseases. Although most of the past developments have been performed by using a transfection-based method and more than half of the authorized rAAV-based treatments are based on transfection process, the tendency is towards the use of stable inducible packaging and producer cell lines because their use is much more straightforward and leads in parallel to reduction in the overall manufacturing costs. This article presents the development of HeLa cell-based packaging/producer cell lines up to their use for large-scale rAAV vector production, the more recent development of HEK293-based packaging and producer cell lines, as well as of packaging cell lines based on the use of Sf9 cells. The production features are presented in brief (where available), including vector titer, specific productivity, and full-to-empty particle ratio.
Collapse
|
3
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
4
|
Destro F, Joseph J, Srinivasan P, Kanter JM, Neufeld C, Wolfrum JM, Barone PW, Springs SL, Sinskey AJ, Cecchini S, Kotin RM, Braatz RD. Mechanistic modeling explains the production dynamics of recombinant adeno-associated virus with the baculovirus expression vector system. Mol Ther Methods Clin Dev 2023; 30:122-146. [PMID: 37746245 PMCID: PMC10512016 DOI: 10.1016/j.omtm.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/30/2023] [Indexed: 09/26/2023]
Abstract
Current manufacturing processes for recombinant adeno-associated viruses (rAAVs) have less-than-desired yields and produce significant amounts of empty capsids. The increasing demand and the high cost of goods for rAAV-based gene therapies motivate development of more efficient manufacturing processes. Recently, the US Food and Drug Administration (FDA) approved the first rAAV-based gene therapy product manufactured in the baculovirus expression vector system (BEVS), a technology that demonstrated production of high titers of full capsids. This work presents a first mechanistic model describing the key extracellular and intracellular phenomena occurring during baculovirus infection and rAAV maturation in the BEVS. The model predictions are successfully validated for in-house and literature experimental measurements of the vector genome and of structural and non-structural proteins collected during rAAV manufacturing in the BEVS with the TwoBac and ThreeBac constructs. A model-based analysis of the process is carried out to identify the bottlenecks that limit full capsid formation. Vector genome amplification is found to be the limiting step for rAAV production in Sf9 cells using either the TwoBac or ThreeBac system. In turn, vector genome amplification is hindered by limiting Rep78 levels. Transgene and non-essential baculovirus protein expression in the insect cell during rAAV manufacturing also negatively influences the rAAV production yields.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua M. Kanter
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline M. Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul W. Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stacy L. Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony J. Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvain Cecchini
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Robert M. Kotin
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Carbon Biosciences, Waltham, MA 02451, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
6
|
Bass-Stringer S, Tai CMK, McMullen JR. IGF1-PI3K-induced physiological cardiac hypertrophy: Implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:637-647. [PMID: 33246162 PMCID: PMC8724616 DOI: 10.1016/j.jshs.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 05/30/2023]
Abstract
Heart failure represents the end point of a variety of cardiovascular diseases. It is a growing health burden and a leading cause of death worldwide. To date, limited treatment options exist for the treatment of heart failure, but exercise has been well-established as one of the few safe and effective interventions, leading to improved outcomes in patients. However, a lack of patient adherence remains a significant barrier in the implementation of exercise-based therapy for the treatment of heart failure. The insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway has been recognized as perhaps the most critical pathway for mediating exercised-induced heart growth and protection. Here, we discuss how modulating activity of the IGF1-PI3K pathway may be a valuable approach for the development of therapies that mimic the protective effects of exercise on the heart. We outline some of the promising approaches being investigated that utilize PI3K-based therapy for the treatment of heart failure. We discuss the implications for cardiac pathology and cardiotoxicity that arise in a setting of reduced PI3K activity. Finally, we discuss the use of animal models of cardiac health and disease, and genetic mice with increased or decreased cardiac PI3K activity for the discovery of novel drug targets and biomarkers of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Bass-Stringer
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
7
|
Structurally Mapping Antigenic Epitopes of Adeno-Associated Virus 9: Development of Antibody Escape Variants. J Virol 2021; 96:e0125121. [PMID: 34757842 DOI: 10.1128/jvi.01251-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAV) serve as vectors for therapeutic gene delivery. AAV9 vectors have been FDA approved, as Zolgensma®, for the treatment of spinal muscular atrophy and is being evaluated in clinical trials for the treatment of neurotropic and musculotropic diseases. A major hurdle for AAV-mediated gene delivery is the presence of pre-existing neutralizing antibodies in 40 to 80% of the general population. These pre-existing antibodies can reduce therapeutic efficacy through viral neutralization, and the size of the patient cohort eligible for treatment. In this study, cryo-electron microscopy and image reconstruction was used to define the epitopes of five anti-AAV9 monoclonal antibodies (MAbs); ADK9, HL2368, HL2370, HL2372, and HL2374, on the capsid surface. Three of these, ADK9, HL2370, and HL2374, bound on or near the icosahedral 3-fold axes, HL2368 to the 2/5-fold wall, and HL2372 to the region surrounding the 5-fold axes. Pseudo-atomic modeling enabled the mapping and identification of antibody contact amino acids on the capsid, including S454 and P659. These epitopes overlap with previously defined parvovirus antigenic sites. Capsid amino acids critical for the interactions were confirmed by mutagenesis followed by biochemical assays testing recombinant AAV9 (rAAV9) variants capable of escaping recognition and neutralization by the parental MAbs. These variants retained parental tropism and had similar or improved transduction efficiency compared to AAV9. These engineered rAAV9 variants could expand the patient cohort eligible for AAV9-mediated gene delivery by avoiding pre-existing circulating neutralizing antibodies. IMPORTANCE The use of recombinant AAVs (rAAVs) as delivery vectors for therapeutic genes is becoming increasingly popular, especially following the FDA approval of Luxturna® and Zolgensma®, based on serotypes AAV2 and AAV9, respectively. However, high titer anti-AAV neutralizing antibodies in the general population, exempts patients from treatment. The goal of this study is to circumvent this issue by creating AAV variant vectors not recognized by pre-existing neutralizing antibodies. The mapping of the antigenic epitopes of five different monoclonal antibodies (MAbs) on AAV9, to recapitulate a polyclonal response, enabled the rational design of escape variants with minimal disruption to cell tropism and gene expression. This study, which included four newly developed and now commercially available MAbs, provides a platform for the engineering of rAAV9 vectors that can be used to deliver genes to patients with pre-exiting AAV antibodies.
Collapse
|
8
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
9
|
El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2020; 16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last two decades, gene therapy vectors based on wild-type Adeno-associated viruses (AAV) are safe and efficacious in numerous clinical trials and are translated into three approved gene therapy products. Concomitantly, a large body of preclinical work has illustrated the power and potential of engineered synthetic AAV capsids that often excel in terms of an organ or cell specificity, the efficiency of in vitro or in vivo gene transfer, and/or reactivity with anti-AAV immune responses. In turn, this has created a demand for new, scalable, easy-to-implement, and plug-and-play platform processes that are compatible with the rapidly increasing range of AAV capsid variants. Here, the focus is on recent advances in methodologies for downstream processing and characterization of natural or synthetic AAV vectors, comprising different chromatography techniques and thermostability measurements. To illustrate the breadth of this portfolio, two chimeric capsids are used as representative examples that are derived through forward- or backwards-directed molecular evolution, namely, AAV-DJ and Anc80. Collectively, this ever-expanding arsenal of technologies promises to facilitate the development of the next AAV vector generation derived from synthetic capsids and to accelerate their manufacturing, and to thus boost the field of human gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Strobel B, Zuckschwerdt K, Zimmermann G, Mayer C, Eytner R, Rechtsteiner P, Kreuz S, Lamla T. Standardized, Scalable, and Timely Flexible Adeno-Associated Virus Vector Production Using Frozen High-Density HEK-293 Cell Stocks and CELLdiscs. Hum Gene Ther Methods 2020; 30:23-33. [PMID: 30693792 PMCID: PMC6388714 DOI: 10.1089/hgtb.2018.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adeno-associated virus (AAV) vectors currently represent the most attractive platform for viral gene therapy and are also valuable research tools to study gene function or establish disease models. Consequently, many academic labs, core facilities, and biotech/pharma companies meanwhile produce AAVs for research and early clinical development. Whereas fast, universal protocols for vector purification (downstream processing) are available, AAV production using adherent HEK-293 cells still requires time-consuming passaging and extensive culture expansion before transfection. Moreover, most scalable culture platforms require special equipment or extensive method development. To tackle these limitations in upstream processing, this study evaluated frozen high-density cell stocks as a ready-to-seed source of producer cells, and further investigated the multilayered CELLdisc culture system for upscaling. The results demonstrate equal AAV productivity using frozen cell stock–derived cultures compared to conventionally cultured cells, as well as scalability using CELLdiscs. Thus, by directly seeding freshly thawed cells into CELLdiscs, AAV production can be easily upscaled and efficiently standardized to low-passage, high-viability cells in a timely flexible manner, potentially dismissing time-consuming routine cell culture work. In conjunction with a further optimized iodixanol protocol, this process enabled supply to a large-animal study with two high-yield AAV2 capsid variant batches (0.6–1.2 × 1015 vector genomes) in as little as 4 weeks.
Collapse
Affiliation(s)
- Benjamin Strobel
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gudrun Zimmermann
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christine Mayer
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ruth Eytner
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Philipp Rechtsteiner
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Kreuz
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thorsten Lamla
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
11
|
O'Connor DM, Lutomski C, Jarrold MF, Boulis NM, Donsante A. Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Hum Gene Ther Methods 2019; 30:214-225. [PMID: 31752530 PMCID: PMC6919242 DOI: 10.1089/hgtb.2019.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Viral vectors are complex drugs that pose a particular challenge for manufacturing. Previous studies have shown that, unlike small-molecule drugs, vector preparations do not yield a collection of identical particles. Instead, a mixture of particles that vary in capsid stoichiometry and impurities is created, which may differ from lot to lot. The consequences of this are unclear, but conflicting reports regarding the biological properties of vectors, including transduction patterns, suggest that this variability may have an effect. However, other variables, including differences in animal strains and techniques, make it difficult to identify a cause. Here, we report lot-to-lot variation in spinal cord gray matter transduction following intrathecal delivery of self-complementary adeno-associated virus serotype 9 vectors. Eleven lots of vector were evaluated from six vector cores, including one preclinical/Good Laboratory Practice lot. Eight of the lots, including the preclinical lot, failed to transduce the gray matter, whereas the other three provided robust transduction. The cause for this variation is unknown, but it did not correlate with vector titer, buffer, or purification method. These results highlight the need to identify the cause of this variation and to develop improved production and quality control methods to ensure lot-to-lot consistency of vector potency.
Collapse
Affiliation(s)
- Deirdre M. O'Connor
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony Donsante
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia;,Correspondence: Dr. Anthony Donsante, Department of Neurosurgery, Emory University School of Medicine, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322.
| |
Collapse
|
12
|
Krüger-Haag A, Lehmann C, Schmidt E, Sonntag F, Hörer M, Kochanek S. Evaluation of life cycle defective adenovirus mutants for production of adeno-associated virus vectors. J Gene Med 2019; 21:e3094. [PMID: 31037799 DOI: 10.1002/jgm.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adeno-associated virus-based vectors are efficient and safe drug candidates for different in vivo gene therapy applications. With increasing numbers of clinical studies based on AAV2 vectors that include not only rare, but also common diseases as a therapeutic target, there is an increased demand for the development of improved production technologies. METHODS In the present study, we compared two life cycle defective adenovirus mutants as helper viruses for AAV2 vector production. They had deletions either in the gene coding for the preterminal protein (pTP) that is expressed early in the viral life cycle and is essential for genome replication or in the gene coding for the 100K protein, a protein with many functions, one of which is involved in virus assembly. AAV2 vector production efficiencies were evaluated by analyzing genome-containing particles using a real-time polymerase chain reaction and functional units were investigated by transduction assays. RESULTS Somewhat contrary to our expectations, the ∆100K mutant virus showed only a moderate efficiency as a helper virus for AAV2 vector production, whereas the replication-deficient ∆pTP mutant supported AAV2 production almost as efficiently as adenovirus wild-type. We also showed that a temperature shift to 32°C together with extended incubation times improved AAV2 vector productivity. CONCLUSIONS The present study indicates the advantages of using a ∆pTP mutant adenovirus rather than adenovirus wild-type as a helper virus for AAV2 production and also indicates that temperature shifts to lower temperatures may improve AAV2 vector production rates.
Collapse
Affiliation(s)
| | - Caroline Lehmann
- Department of Gene Therapy, Ulm University, Ulm, Germany.,Sartorius Stedim Cellca GmbH, Laupheim, Germany
| | - Erika Schmidt
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | | | | | | |
Collapse
|
13
|
Penaud-Budloo M, Broucque F, Harrouet K, Bouzelha M, Saleun S, Douthe S, D’Costa S, Ogram S, Adjali O, Blouin V, Lock M, Snyder RO, Ayuso E. Stability of the adeno-associated virus 8 reference standard material. Gene Ther 2019; 26:211-215. [DOI: 10.1038/s41434-019-0072-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
|
14
|
Joshi PR, Cervera L, Ahmed I, Kondratov O, Zolotukhin S, Schrag J, Chahal PS, Kamen AA. Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors via Fedbatch in an Insect Cell-One Baculovirus System. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:279-289. [PMID: 30886878 PMCID: PMC6404649 DOI: 10.1016/j.omtm.2019.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022]
Abstract
Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (1016–1017 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based rep/cap stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus. The overall volumetric yields of genomic (VG) and bioactive particles (enhanced transducing units [ETUs]) in representative fedbatch bioreactor runs ranged from 2.5 to 3.5 × 1014 VG/L and from 1 to 2 × 1011 ETU/L. Analytical ultracentrifugation analyses of affinity-purified AAV vector samples from side-by-side batch and fedbatch production runs showed vector preparations with a full and empty particle distribution of 20%–30% genomic and 70%–80% empty particles. Moreover, the stoichiometric analysis of capsid proteins from fedbatch production in shake flask and bioreactor run samples demonstrated the incorporation of higher VP1 subunits, resulting in better functionality.
Collapse
Affiliation(s)
- Pranav R.H. Joshi
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Laura Cervera
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Ibrahim Ahmed
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Oleksandr Kondratov
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Joseph Schrag
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Parminder S. Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Amine A. Kamen
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Corresponding author: Amine Kamen, Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
15
|
Zhang XP, Zhang WT, Qiu Y, Ju MJ, Tu GW, Luo Z. Understanding Gene Therapy in Acute Respiratory Distress Syndrome. Curr Gene Ther 2019; 19:93-99. [PMID: 31267871 DOI: 10.2174/1566523219666190702154817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) and its complications remain lifethreatening conditions for critically ill patients. The present therapeutic strategies such as prone positioning ventilation strategies, nitric oxide inhalation, restrictive intravenous fluid management, and extracorporeal membrane oxygenation (ECMO) do not contribute much to improving the mortality of ARDS. The advanced understanding of the pathophysiology of acute respiratory distress syndrome suggests that gene-based therapy may be an innovative method for this disease. Many scientists have made beneficial attempts to regulate the immune response genes of ARDS, maintain the normal functions of alveolar epithelial cells and endothelial cells, and inhibit the fibrosis and proliferation of ARDS. Limitations to effective pulmonary gene therapy still exist, including the security of viral vectors and the pulmonary defense mechanisms against inhaled particles. Here, we summarize and review the mechanism of gene therapy for acute respiratory distress syndrome and its application.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wei-Tao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, No. 179 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jinghu Road, Huli District, Xiamen 361015, China
| |
Collapse
|
16
|
Alméciga-Díaz CJ, Montaño AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res 2018; 84:545-551. [PMID: 30323349 PMCID: PMC6266866 DOI: 10.1038/s41390-018-0095-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Targeting specific tissues remains a major challenge to the promise of gene therapy. For example, several strategies have failed to target adeno-associated virus 2 (AAV2) vectors, to bone. We have evaluated in vitro and in vivo the affinity of an AAV2 vector to bone matrix, hydroxyapatite (HA) to treat Mucopolysacccharidosis IVA. METHODS To increase vector affinity to HA, an aspartic acid octapeptide (D8) was inserted immediately after the N-terminal region of the VP2 capsid protein. The modified vector had physical titers and transduction efficiencies comparable to the unmodified vector. RESULTS The bone-targeting vector had significantly higher HA affinity and vector genome copies in bone than the unmodified vector. The modified vector was also released from HA, and its enzyme activity in bone, 3 months post infusion, was 4.7-fold higher than the unmodified vector. CONCLUSION Inserting a bone-targeting peptide into the vector capsid increases gene delivery and expression in the bone without decreasing enzyme expression. This approach could be a novel strategy to treat systemic bone diseases.
Collapse
Affiliation(s)
- Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| |
Collapse
|
17
|
Galli A, Della Latta V, Bologna C, Pucciarelli D, Cipriani F, Backovic A, Cervelli T. Strategies to optimize capsid protein expression and single-stranded DNA formation of adeno-associated virus in Saccharomyces cerevisiae. J Appl Microbiol 2017; 123:414-428. [PMID: 28609559 DOI: 10.1111/jam.13511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
AIMS Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. METHODS AND RESULTS Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. CONCLUSIONS This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. SIGNIFICANCE AND IMPACT OF THE STUDY New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production.
Collapse
Affiliation(s)
- A Galli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - V Della Latta
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - C Bologna
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - D Pucciarelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - F Cipriani
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - A Backovic
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - T Cervelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
18
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
19
|
Powers AD, Piras BA, Clark RK, Lockey TD, Meagher MM. Development and Optimization of AAV hFIX Particles by Transient Transfection in an iCELLis®Fixed-Bed Bioreactor. Hum Gene Ther Methods 2016; 27:112-21. [DOI: 10.1089/hgtb.2016.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alicia D. Powers
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bryan A. Piras
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert K. Clark
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy D. Lockey
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael M. Meagher
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
20
|
Abstract
The ability to make a large variety of virus-like particles (VLPs) has been successfully achieved in the baculovirus expression vector system (BEVS)/insect cell system. The production and scale-up of these particles, which are mostly sought as vaccine candidates, are currently being addressed. Furthermore, these VLPs are being investigated as delivery agents for use as therapeutics. The use of host insect cells allows mass production of VLPs in a proven scalable system.
Collapse
Affiliation(s)
- Christine M Thompson
- Department of Chemical Engineering, Ecole Polytechnique de Montreal, 2500, Chemin de Polytechnique, Montreal, QC, Canada
- National Research Council Canada, Montreal, QC, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada, N2L 3G1.
| | - Amine A Kamen
- National Research Council Canada, Montreal, QC, Canada
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Piedra J, Ontiveros M, Miravet S, Penalva C, Monfar M, Chillon M. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors. Hum Gene Ther Methods 2015; 26:35-42. [PMID: 25640021 DOI: 10.1089/hgtb.2014.120] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.
Collapse
Affiliation(s)
- Jose Piedra
- 1 Vector Production Unit, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona , Bellaterra 08193, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Grieger JC, Soltys SM, Samulski RJ. Production of Recombinant Adeno-associated Virus Vectors Using Suspension HEK293 Cells and Continuous Harvest of Vector From the Culture Media for GMP FIX and FLT1 Clinical Vector. Mol Ther 2015; 24:287-297. [PMID: 26437810 DOI: 10.1038/mt.2015.187] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/24/2015] [Indexed: 02/08/2023] Open
Abstract
Adeno-associated virus (AAV) has shown great promise as a gene therapy vector in multiple aspects of preclinical and clinical applications. Many developments including new serotypes as well as self-complementary vectors are now entering the clinic. With these ongoing vector developments, continued effort has been focused on scalable manufacturing processes that can efficiently generate high-titer, highly pure, and potent quantities of rAAV vectors. Utilizing the relatively simple and efficient transfection system of HEK293 cells as a starting point, we have successfully adapted an adherent HEK293 cell line from a qualified clinical master cell bank to grow in animal component-free suspension conditions in shaker flasks and WAVE bioreactors that allows for rapid and scalable rAAV production. Using the triple transfection method, the suspension HEK293 cell line generates greater than 1 × 10(5) vector genome containing particles (vg)/cell or greater than 1 × 10(14) vg/l of cell culture when harvested 48 hours post-transfection. To achieve these yields, a number of variables were optimized such as selection of a compatible serum-free suspension media that supports both growth and transfection, selection of a transfection reagent, transfection conditions and cell density. A universal purification strategy, based on ion exchange chromatography methods, was also developed that results in high-purity vector preps of AAV serotypes 1-6, 8, 9 and various chimeric capsids tested. This user-friendly process can be completed within 1 week, results in high full to empty particle ratios (>90% full particles), provides postpurification yields (>1 × 10(13) vg/l) and purity suitable for clinical applications and is universal with respect to all serotypes and chimeric particles. To date, this scalable manufacturing technology has been utilized to manufacture GMP phase 1 clinical AAV vectors for retinal neovascularization (AAV2), Hemophilia B (scAAV8), giant axonal neuropathy (scAAV9), and retinitis pigmentosa (AAV2), which have been administered into patients. In addition, we report a minimum of a fivefold increase in overall vector production by implementing a perfusion method that entails harvesting rAAV from the culture media at numerous time-points post-transfection.
Collapse
Affiliation(s)
- Joshua C Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA; Present address: Bamboo Therapeutics, Inc, Chapel Hill, North Carolina, USA
| | - Stephen M Soltys
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
23
|
Emmerling VV, Pegel A, Milian EG, Venereo-Sanchez A, Kunz M, Wegele J, Kamen AA, Kochanek S, Hoerer M. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells. Biotechnol J 2015; 11:290-7. [PMID: 26284700 DOI: 10.1002/biot.201500176] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 08/17/2015] [Indexed: 11/06/2022]
Abstract
Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing.
Collapse
Affiliation(s)
- Verena V Emmerling
- Department of Gene Therapy, University of Ulm, Ulm, Baden-Württemberg, Germany. .,Development, Rentschler Biotechnologie GmbH, Laupheim, Baden-Württemberg, Germany.
| | - Antje Pegel
- Development, Rentschler Biotechnologie GmbH, Laupheim, Baden-Württemberg, Germany
| | - Ernest G Milian
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC, Canada
| | - Alina Venereo-Sanchez
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC, Canada
| | - Marion Kunz
- Development, Rentschler Biotechnologie GmbH, Laupheim, Baden-Württemberg, Germany
| | - Jessica Wegele
- Development, Rentschler Biotechnologie GmbH, Laupheim, Baden-Württemberg, Germany
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Markus Hoerer
- Development, Rentschler Biotechnologie GmbH, Laupheim, Baden-Württemberg, Germany
| |
Collapse
|
24
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Kallel H, Kamen AA. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials. Biotechnol J 2015; 10:741-7. [PMID: 25914340 DOI: 10.1002/biot.201400390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates.
Collapse
Affiliation(s)
- Héla Kallel
- Laboratory of Molecular Microbiology Vaccinology and Biotechnology Development, Viral Vaccines R&D Unit. Institut Pasteur de Tunis, Tunis, Tunisia
| | | |
Collapse
|
26
|
Abstract
The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | |
Collapse
|
27
|
Abstract
Adeno-associated virus (AAV) is a small, nonenveloped virus that was adapted 30 years ago for use as a gene transfer vehicle. It is capable of transducing a wide range of species and tissues in vivo with no evidence of toxicity, and it generates relatively mild innate and adaptive immune responses. We review the basic biology of AAV, the history of progress in AAV vector technology, and some of the clinical and research applications where AAV has shown success.
Collapse
Affiliation(s)
- R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas Muzyczka
- Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
28
|
Xu Z, Shi C, Qian Q. Scalable manufacturing methodologies for improving adeno-associated virus-based pharmaprojects. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0197-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Emmerling VV, Holzmann K, Lanz K, Kochanek S, Hörer M. Novel approaches to render stable producer cell lines viable for the commercial manufacturing of rAAV-based gene therapy vectors. BMC Proc 2013. [PMCID: PMC3980429 DOI: 10.1186/1753-6561-7-s6-p12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Chahal PS, Schulze E, Tran R, Montes J, Kamen AA. Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 2013; 196:163-73. [PMID: 24239634 PMCID: PMC7113661 DOI: 10.1016/j.jviromet.2013.10.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 01/29/2023]
Abstract
Transient transfection of HEK293 suspension cells efficiently produce AAV vectors. Nine different AAV serotypes were produced with yields of 1E+13 Vg/L. AAV2 and AAV6 produced in 3-L bioreactors gave yields comparable to shake-flasks. The process is cGMP compatible using serum-free media and HEK293 master cell bank. Industrialization of the process is possible for manufacturing AAV serotypes.
Adeno-associated virus (AAV) is being used successfully in gene therapy. Different serotypes of AAV target specific organs and tissues with high efficiency. There exists an increasing demand to manufacture various AAV serotypes in large quantities for pre-clinical and clinical trials. A generic and scalable method has been described in this study to efficiently produce AAV serotypes (AAV1-9) by transfection of a fully characterized cGMP HEK293SF cell line grown in suspension and serum-free medium. First, the production parameters were evaluated using AAV2 as a model serotype. Second, all nine AAV serotypes were produced successfully with yields of 1013 Vg/L cell culture. Subsequently, AAV2 and AAV6 serotypes were produced in 3-L controlled bioreactors where productions yielded up to 1013 Vg/L similar to the yields obtained in shake-flasks. For example, for AAV2 1013 Vg/L cell culture (6.8 × 1011 IVP/L) were measured between 48 and 64 h post transfection (hpt). During this period, the average cell specific AAV2 yields of 6800 Vg per cell and 460 IVP per cell were obtained with a Vg to IVP ratio of less than 20. Successful operations in bioreactors demonstrated the potential for scale-up and industrialization of this generic process for manufacturing AAV serotypes efficiently.
Collapse
Affiliation(s)
- Parminder Singh Chahal
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Erica Schulze
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Rosa Tran
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Amine A Kamen
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2.
| |
Collapse
|
31
|
Wagner A, Röhrs V, Kedzierski R, Fechner H, Kurreck J. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard. Hum Gene Ther Methods 2013; 24:355-63. [PMID: 23987130 DOI: 10.1089/hgtb.2013.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.
Collapse
Affiliation(s)
- Anke Wagner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin 13355, Germany
| | | | | | | | | |
Collapse
|
32
|
Gutiérrez-Granados S, Cervera L, Gòdia F, Carrillo J, Segura MM. Development and validation of a quantitation assay for fluorescently tagged HIV-1 virus-like particles. J Virol Methods 2013; 193:85-95. [DOI: 10.1016/j.jviromet.2013.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/24/2013] [Accepted: 05/08/2013] [Indexed: 02/03/2023]
|
33
|
Capsid protein expression and adeno-associated virus like particles assembly in Saccharomyces cerevisiae. Microb Cell Fact 2012; 11:124. [PMID: 22966759 PMCID: PMC3539887 DOI: 10.1186/1475-2859-11-124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022] Open
Abstract
Background The budding yeast Saccharomyces cerevisiae supports replication of many different RNA or DNA viruses (e.g. Tombusviruses or Papillomaviruses) and has provided means for up-scalable, cost- and time-effective production of various virus-like particles (e.g. Human Parvovirus B19 or Rotavirus). We have recently demonstrated that S. cerevisiae can form single stranded DNA AAV2 genomes starting from a circular plasmid. In this work, we have investigated the possibility to assemble AAV capsids in yeast. Results To do this, at least two out of three AAV structural proteins, VP1 and VP3, have to be simultaneously expressed in yeast cells and their intracellular stoichiometry has to resemble the one found in the particles derived from mammalian or insect cells. This was achieved by stable co-transformation of yeast cells with two plasmids, one expressing VP3 from its natural p40 promoter and the other one primarily expressing VP1 from a modified AAV2 Cap gene under the control of the inducible yeast promoter Gal1. Among various induction strategies we tested, the best one to yield the appropriate VP1:VP3 ratio was 4.5 hour induction in the medium containing 0.5% glucose and 5% galactose. Following such induction, AAV virus like particles (VLPs) were isolated from yeast by two step ultracentrifugation procedure. The transmission electron microscopy analysis revealed that their morphology is similar to the empty capsids produced in human cells. Conclusions Taken together, the results show for the first time that yeast can be used to assemble AAV capsid and, therefore, as a genetic system to identify novel cellular factors involved in AAV biology.
Collapse
|
34
|
Shao W, Paul A, Abbasi S, Chahal PS, Mena JA, Montes J, Kamen A, Prakash S. A novel polyethyleneimine-coated adeno-associated virus-like particle formulation for efficient siRNA delivery in breast cancer therapy: preparation and in vitro analysis. Int J Nanomedicine 2012; 7:1575-86. [PMID: 22619514 PMCID: PMC3356177 DOI: 10.2147/ijn.s26891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Systemic delivery of small interfering RNA (siRNA) is limited by its poor stability and limited cell-penetrating properties. To overcome these limitations, we designed an efficient siRNA delivery system using polyethyleneimine-coated virus-like particles derived from adeno-associated virus type 2 (PEI-AAV2-VLPs). Methods AAV2-VLPs were produced in insect cells by infection with a baculovirus vector containing three AAV2 capsid genes. Using this method, we generated well dispersed AAV2-VLPs with an average diameter of 20 nm, similar to that of the wild-type AAV2 capsid. The nanoparticles were subsequently purified by chromatography and three viral capsid proteins were confirmed by Western blot. The negatively charged AAV2-VLPs were surface-coated with PEI to develop cationic nanoparticles, and the formulation was used for efficient siRNA delivery under optimized transfection conditions. Results PEI-AAV2-VLPs were able to condense siRNA and to protect it from degradation by nucleases, as confirmed by gel electrophoresis. siRNA delivery mediated by PEI-AAV2-VLPs resulted in a high transfection rate in MCF-7 breast cancer cells with no significant cytotoxicity. A cell death assay also confirmed the efficacy and functionality of this novel siRNA formulation towards MCF-7 cancer cells, in which more than 60% of cell death was induced within 72 hours of transfection. Conclusion The present study explores the potential of virus-like particles as a new approach for gene delivery and confirms its potential for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Shao
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The use of recombinant adeno-associated virus (rAAV) vectors in gene therapy for preclinical studies in animal models and human clinical trials is increasing, as these vectors have been shown to be safe and to mediate persistent transgene expression in vivo. Constant improvement in rAAV manufacturing processes (upstream production and downstream purification) has paralleled this evolution to meet the needs for larger vector batches, higher vector titer, and improved vector quality and safety. This chapter provides an overview of existing production and purification systems used for adeno-associated virus (AAV) vectors, and the advantages and disadvantages of each system are outlined. Regulatory guidelines that apply to the use of these systems for clinical trials are also presented. The methods described are examples of protocols that have been utilized for establishing rAAV packaging cell lines, production of rAAV vectors using recombinant HSV infection, and for chromatographic purification of various AAV vector serotypes. A protocol for the production of clinical-grade rAAV type 2 vectors using transient transfection and centrifugation-based purification is also described.
Collapse
|
36
|
Abstract
Adeno-associated virus (AAV) has emerged as an attractive vector for gene therapy. The benefits of using AAV for gene therapy include long-term gene expression, the inability to autonomously replicate without a helper virus, transduction of dividing and nondividing cells, and the lack of pathogenicity from wild-type infections. A number of Phase I and Phase II clinical trials utilizing AAV have been carried out worldwide (Aucoin et al., 2008; Mueller and Flotte, 2008). A number of challenges have been identified based upon data generated from these clinical trials. These challenges include (1) large scale manufacturing technologies in accordance with current Good Manufacturing Practices (cGMP), (2) tissue specific tropism of AAV vectors, (3) high-quality/high potency recombinant AAV vectors (rAAV), and (4) immune response to AAV capsids and transgene. In this chapter, we will provide an overview of AAV biology, AAV vectorology, rAAV manufacturing, and the current status on the latest rAAV clinical trials.
Collapse
|
37
|
Kamen AA, Aucoin MG, Merten OW, Alves P, Hashimoto Y, Airenne K, Hu YC, Mezzina M, van Oers MM. An initiative to manufacture and characterize baculovirus reference material. J Invertebr Pathol 2011; 107 Suppl:S113-7. [PMID: 21784226 DOI: 10.1016/j.jip.2011.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/07/2011] [Indexed: 01/25/2023]
Abstract
This letter to the editor brings to the attention of researchers an initiative to develop a baculovirus reference material repository. To be successful this initiative needs the support of a broad panel of researchers working with baculovirus vectors for recombinant protein production and gene delivery for either therapy or vaccination. First there is a need to reach a consensus on the nature of the reference material, the production protocols and the baculovirus characterization methods. It will also be important to define repository and distribution procedures so that the reference material is available to any researcher for calibrating experimental data and to compare experiments performed in the various laboratories. As more and more baculovirus-based products are licensed or in the final stages of development, the development of a repository of baculovirus reference material is timely. This letter describes the requirements for the reference material and for the project as a whole to be successful and calls for a partnership that would involve academic, industrial laboratories and governmental organizations to support this international initiative.
Collapse
|
38
|
Ussher JE, Taylor JA. Optimized transduction of human monocyte-derived dendritic cells by recombinant adeno-associated virus serotype 6. Hum Gene Ther 2011; 21:1675-86. [PMID: 20578847 DOI: 10.1089/hum.2010.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells are the key antigen-presenting cells involved in the initiation of the adaptive immune response. Recombinant adeno-associated viruses (rAAVs) can transduce dendritic cells and have gained attention as potential vaccines capable of stimulating T cell immunity. Here we show that rAAV2 pseudotyped with type 6 capsid (rAAV2/6) exhibits significantly higher tropism for human monocyte-derived dendritic cells (MoDCs) than other serotypes and variants. Transduction was abolished by a single lysine-to-alanine mutation within the AAV6 capsid previously shown to inhibit binding to heparin. However, unlike rAAV2, soluble heparin did not inhibit rAAV2/6 transduction of MoDCs. Further enhancement of MoDC transduction was observed after mutation of Tyr-731 in the capsid of AAV6 consistent with a report that tyrosine residues are phosphorylated, leading to ubiquitination of capsids during uptake. Pseudotyped rAAV2/6 vectors containing a Y731F mutation minimally altered the immunophenotype of MoDCs, which retained their immunostimulatory ability and were able to stimulate an antigen-specific CD8(+) T cell clone. These findings should assist in the development of rAAV2/6 as a vaccine vector.
Collapse
|
39
|
Abstract
Since recombinant adeno-associated virus (rAAV) was first described as a potential mammalian cell transducing system, frequent reports purportedly solving the problems of scalable production have appeared. Yet few of these processes have enabled the development of robust and economical rAAV production. Two production platforms have emerged that have gained broad support for producing both research and clinical grade vectors. These processes differ fundamentally in several aspects. One approach is based on adherent mammalian cells and uses optimized chemical transient transfection for introducing the essential genetic components into the cells. The other approach utilizes suspension cultures of invertebrate cells. Baculovirus expression vectors are used for introducing the AAV genes into the cells. In addition, the baculovirus provides the helper functions necessary for efficient AAV DNA replication. The use of suspension cell culture provides an intrinsically more scalable platform system than using adherent cells. The upstream processes for suspension cultures are amenable for automation and are easily monitored and regulated to maintain optimum conditions that produce consistent yields of rAAV. Issues relating to developing new and improving existing rAAV production methods are discussed.
Collapse
Affiliation(s)
- Robert M Kotin
- Laboratory of Molecular Virology and Gene Therapy, Center for Developmental Biology and Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Pulicherla N, Asokan A. Peptide affinity reagents for AAV capsid recognition and purification. Gene Ther 2011; 18:1020-4. [PMID: 21490687 DOI: 10.1038/gt.2011.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the discovery of AAV capsid-binding peptides identified through phage panning. The heptapeptide motif GYVSRHP selectively recognized AAV serotype 8 capsids and blocked transduction in vitro. Recombinant AAV8 vectors were purified directly from crude cell lysate and supernatant through sequential application of peptide affinity and anion exchange chromatography. Peptide affinity reagents may serve as useful alternatives to monoclonal antibodies in AAV capsid recognition, and offer readily scalable solutions for purification of clinical grade AAV vectors.
Collapse
Affiliation(s)
- N Pulicherla
- Gene Therapy Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
41
|
Gallo-Ramírez LE, Ramírez OT, Palomares LA. Intracellular localization of adeno-associated viral proteins expressed in insect cells. Biotechnol Prog 2011; 27:483-93. [PMID: 21425251 DOI: 10.1002/btpr.565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/16/2010] [Indexed: 12/13/2022]
Abstract
Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells.
Collapse
Affiliation(s)
- Lilí E Gallo-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal. 510-3, Cuernavaca Morelos CP. 62250, México
| | | | | |
Collapse
|
42
|
|
43
|
Abstract
Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.
Collapse
Affiliation(s)
- John T Gray
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | |
Collapse
|
44
|
Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and Virus-Like Particles in Biotechnology. COMPREHENSIVE BIOTECHNOLOGY 2011. [PMCID: PMC7151966 DOI: 10.1016/b978-0-08-088504-9.00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this article, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitorization, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
45
|
Mitchell DAJ, Lerch TF, Hare JT, Chapman MS. A pseudo-plaque method for infectious particle assay and clonal isolation of adeno-associated virus. J Virol Methods 2010; 170:9-15. [PMID: 20708035 DOI: 10.1016/j.jviromet.2010.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/16/2022]
Abstract
A colorimetric method has been developed for the detection of adeno-associated virus (AAV) infectious centers in cell culture monolayers. Due to its non-cytopathic nature, AAV has not been amenable to the traditional plaque assay, involving an agar overlay and cellular stains. As a result, an alternate method was required. The pseudo-plaque assay is based on enzyme-catalyzed color development after a fixed cell monolayer is probed with anti-AAV monoclonal antibodies. In spite of chemical fixation, expected to damage the viral genomes and particles, infectious particles can be recovered and amplified for the propagation of viral clones.
Collapse
Affiliation(s)
- Daniel A J Mitchell
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | |
Collapse
|
46
|
Landgren H, Curtis MA. Locating and labeling neural stem cells in the brain. J Cell Physiol 2010; 226:1-7. [DOI: 10.1002/jcp.22319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
|
48
|
Mena JA, Aucoin MG, Montes J, Chahal PS, Kamen AA. Improving adeno-associated vector yield in high density insect cell cultures. J Gene Med 2010; 12:157-67. [DOI: 10.1002/jgm.1420] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
49
|
Clément N, Knop DR, Byrne BJ. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 2009; 20:796-806. [PMID: 19569968 DOI: 10.1089/hum.2009.094] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability of recombinant adeno-associated viral (rAAV) vectors to exhibit minimal immunogenicity and little to no toxicity or inflammation while eliciting robust, multiyear gene expression in vivo are only a few of the salient features that make them ideally suited for many gene therapy applications. A major hurdle for the use of rAAV in sizeable research and clinical applications is the lack of efficient and versatile large-scale production systems. Continued progression toward flexible, scalable production techniques is a prerequisite to support human clinical evaluation of these novel biotherapeutics. This review examines the current state of large-scale production methods that employ the herpes simplex virus type 1 (HSV) platform to produce rAAV vectors for gene delivery. Improvements have substantially advanced the HSV/AAV hybrid method for large-scale rAAV manufacture, facilitating the generation of highly potent, clinical-grade purity rAAV vector stocks. At least one human clinical trial employing rAAV generated via rHSV helper-assisted replication is poised to commence, highlighting the advances and relevance of this production method.
Collapse
Affiliation(s)
- Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
50
|
Thomas DL, Wang L, Niamke J, Liu J, Kang W, Scotti MM, Ye GJ, Veres G, Knop DR. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther 2009; 20:861-70. [PMID: 19419276 DOI: 10.1089/hum.2009.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.
Collapse
Affiliation(s)
- Darby L Thomas
- Applied Genetic Technologies Corporation, Alachua, FL 32615, USA
| | | | | | | | | | | | | | | | | |
Collapse
|