1
|
Wang Y, Shu D, Li Z, Luo D, Yang J, Chen D, Li T, Hou X, Yang Q, Tan H. Engineering strategies for enhanced 1', 4'-trans-ABA diol production by Botrytis cinerea. Microb Cell Fact 2024; 23:185. [PMID: 38926702 PMCID: PMC11210036 DOI: 10.1186/s12934-024-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Currently, industrial fermentation of Botrytis cinerea is a significant source of abscisic acid (ABA). The crucial role of ABA in plants and its wide range of applications in agricultural production have resulted in the constant discovery of new derivatives and analogues. While modifying the ABA synthesis pathway of existing strains to produce ABA derivatives is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS In this study, we knocked out the bcaba4 gene of B. cinerea TB-31 to obtain the 1',4'-trans-ABA-diol producing strain ZX2. We then studied the fermentation broth of the batch-fed fermentation of the ZX2 strain using metabolomic analysis. The results showed significant accumulation of 3-hydroxy-3-methylglutaric acid, mevalonic acid, and mevalonolactone during the fermentation process, indicating potential rate-limiting steps in the 1',4'-trans-ABA-diol synthesis pathway. This may be hindering the flow of the synthetic pathway. Additionally, analysis of the transcript levels of terpene synthesis pathway genes in this strain revealed a correlation between the bchmgr, bcerg12, and bcaba1-3 genes and 1',4'-trans-ABA-diol synthesis. To further increase the yield of 1',4'-trans-ABA-diol, we constructed a pCBg418 plasmid suitable for the Agrobacterium tumefaciens-mediated transformation (ATMT) system and transformed it to obtain a single-gene overexpression strain. We found that overexpression of bchmgr, bcerg12, bcaba1, bcaba2, and bcaba3 genes increased the yield of 1',4'-trans-ABA-diol. The highest yielding ZX2 A3 strain was eventually screened, which produced a 1',4'-trans-ABA-diol concentration of 7.96 mg/g DCW (54.4 mg/L) in 144 h of shake flask fermentation. This represents a 2.1-fold increase compared to the ZX2 strain. CONCLUSIONS We utilized metabolic engineering techniques to alter the ABA-synthesizing strain B. cinerea, resulting in the creation of the mutant strain ZX2, which has the ability to produce 1',4'-trans-ABA-diol. By overexpressing the crucial genes involved in the 1',4'-trans-ABA-diol synthesis pathway in ZX2, we observed a substantial increase in the production of 1',4'-trans-ABA-diol.
Collapse
Affiliation(s)
- Yifan Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Shu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| | - Zhemin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Di Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Dongbo Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Tianfu Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaonan Hou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
2
|
de Assis MA, da Silva JJB, de Carvalho LM, Parreiras LS, Cairo JPLF, Marone MP, Gonçalves TA, Silva DS, Dantzger M, de Figueiredo FL, Carazzolle MF, Pereira GAG, Damasio A. A Multiomics Perspective on Plant Cell Wall-Degrading Enzyme Production: Insights from the Unexploited Fungus Trichoderma erinaceum. J Fungi (Basel) 2024; 10:407. [PMID: 38921393 PMCID: PMC11205114 DOI: 10.3390/jof10060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a β-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.
Collapse
Affiliation(s)
- Michelle A. de Assis
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Jovanderson J. B. da Silva
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas M. de Carvalho
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas S. Parreiras
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - João Paulo L. F. Cairo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
- York Structural Biology Laboratory (YSBL), Department of Chemistry, University of York, York YO10 5DD, UK
| | - Marina P. Marone
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Thiago A. Gonçalves
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Desireé S. Silva
- SENAI Institute for Biomass Innovation, Três Lagoas 79640-250, Brazil;
| | - Miriam Dantzger
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Fernanda L. de Figueiredo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Marcelo F. Carazzolle
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Gonçalo A. G. Pereira
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| |
Collapse
|
3
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Hernando AV, Sun W, Abitbol T. "You Are What You Eat": How Fungal Adaptation Can Be Leveraged toward Myco-Material Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300140. [PMID: 38486929 PMCID: PMC10935908 DOI: 10.1002/gch2.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/01/2023] [Indexed: 03/17/2024]
Abstract
Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research.
Collapse
Affiliation(s)
- Alicia Vivas Hernando
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Wenjing Sun
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Tiffany Abitbol
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
5
|
Azi F, Wang Z, Chen W, Lin D, Xu P. Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals. Trends Biotechnol 2024; 42:197-211. [PMID: 37659953 DOI: 10.1016/j.tibtech.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
Ganoderma lucidum holds a colossal reservoir of hydrolytic enzymes and therapeutic compounds and can be a sustainable source of proteins and bioactive compounds. Its metabolic versatility, propelled by its rich genome content, provides excellent biosynthetic machinery for innovation-driven pathway engineering. However, robust regulatory networks and low frequency of homologous recombination are critical bottlenecks that limit the development of molecular tools and precise genetic markers for biomanufacturing innovations in this organism. Modern synthetic biology provides tools that could help to accelerate precise multiple gene targeting and editing and untangling the biosynthetic machinery of G. lucidum. This review provides insight into molecular strategies to unwind the regulatory bottlenecks and transform G. lucidum into efficient cell factories for food and nutraceuticals.
Collapse
Affiliation(s)
- Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenhao Chen
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Dewei Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, GTIIT, Shantou, Guangdong 515063, China.
| |
Collapse
|
6
|
Wang J, Liu M, Mao C, Li S, Zhou J, Fan Y, Guo L, Yu H, Yang X. Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in Tolypocladium inflatum affected by different carbon sources. Front Microbiol 2023; 14:1259101. [PMID: 38163081 PMCID: PMC10757567 DOI: 10.3389/fmicb.2023.1259101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Cyclosporine A (CsA) is a secondary cyclopeptide metabolite produced by Tolypocladium inflatum that is widely used clinically as an immunosuppressant. CsA production and mycelial growth differed when T. inflatum was cultured in different carbon source media. During early fermentation, CsA was preferred to be produced in fructose medium, while the mycelium preferred to accumulate in sucrose medium. On the sixth day, the difference was most pronounced. In this study, high-throughput comparative proteomics methods were applied to analyze differences in protein expression of mycelial samples on day 6, revealing the proteins and mechanisms that positively regulate CsA production related to carbon metabolism. The differences included small molecule acid metabolism, lipid metabolism, organic catabolism, exocrine secretion, CsA substrate Bmt synthesis, and transcriptional regulation processes. The proteins involved in the regulation of mycelial growth related to carbon metabolism were also revealed and were associated with waste reoxidation processes or coenzyme metabolism, small molecule synthesis or metabolism, the stress response, genetic information or epigenetic changes, cell component assembly, cell wall integrity, membrane metabolism, vesicle transport, intramembrane localization, and the regulation of filamentous growth. This study provides a reliable reference for CsA production from high-efficiency fermentation. This study provides key information for obtaining more CsA high-yielding strains through metabolic engineering strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuqing Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
7
|
Dai Z. Novel genetic tools improve Penicillium expansum patulin synthase production in Aspergillus niger. FEBS J 2023; 290:5094-5097. [PMID: 37794568 DOI: 10.1111/febs.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Since the first CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system was developed for creating double-stranded DNA breaks, it has been adapted and improved for different biotechnological applications. In this issue of The FEBS Journal, Arentshorst et al. developed a novel approach to enhance transgene expression of a specific protein, patulin synthase (PatE) from Penicillium expansum, in the important industrial filamentous fungus Aspergillus niger. Their technique involved the disruption of selected genes with counter-effects on targeted protein production and simultaneous integration of glucoamylase landing sites into the disrupted gene locus such as protease regulator (prtT) in an ATP-dependent DNA helicase II subunit 1 (kusA or ku70)-deletion strain. Multiple copies of the PatE transgene expression cassette were introduced by CRISPR-Cas9-mediated insertion. The purified PatE was further used for structural and functional studies, and the technique laid the foundation for elevating the overall production of various proteins or chemicals in those industrially important fungi.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, WA, Richland, USA
- Joint Bioenergy Institute, Emeryville, CA, United States
| |
Collapse
|
8
|
Tanaka M, Zhang S, Sato S, Yokota JI, Sugiyama Y, Kawarasaki Y, Yamagata Y, Gomi K, Shintani T. Physiological ER stress caused by amylase production induces regulated Ire1-dependent mRNA decay in Aspergillus oryzae. Commun Biol 2023; 6:1009. [PMID: 37794162 PMCID: PMC10551036 DOI: 10.1038/s42003-023-05386-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Regulated Ire1-dependent decay (RIDD) is a feedback mechanism in which the endoribonuclease Ire1 cleaves endoplasmic reticulum (ER)-localized mRNAs encoding secretory and membrane proteins in eukaryotic cells under ER stress. RIDD is artificially induced by chemicals that generate ER stress; however, its importance under physiological conditions remains unclear. Here, we demonstrate the occurrence of RIDD in filamentous fungus using Aspergillus oryzae as a model, which secretes copious amounts of amylases. α-Amylase mRNA was rapidly degraded by IreA, an Ire1 ortholog, depending on its ER-associated translation when mycelia were treated with dithiothreitol, an ER-stress inducer. The mRNA encoding maltose permease MalP, a prerequisite for the induction of amylolytic genes, was also identified as an RIDD target. Importantly, RIDD of malP mRNA is triggered by inducing amylase production without any artificial ER stress inducer. Our data provide the evidence that RIDD occurs in eukaryotic microorganisms under physiological ER stress.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| | - Silai Zhang
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Shun Sato
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Jun-Ichi Yokota
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Yuko Sugiyama
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Yasuaki Kawarasaki
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Youhei Yamagata
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Katsuya Gomi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Laboratory of Fermentation Microbiology, Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| | - Takahiro Shintani
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| |
Collapse
|
9
|
Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: characterization process and agricultural applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4727-4741. [PMID: 36781932 DOI: 10.1002/jsfa.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnology, the use of biologically active products from fungi for the reduction and synthesis of nanoparticles as an alternative to toxic chemicals has received extensive attention, due to their production of large quantities of proteins, high yields, easy handling, and the low toxicity of the residues. Fungi have become valuable tools for the manufacture of nanoparticles in comparison with other biological systems because of their enhanced growth control and diversity of metabolites, including enzymes, proteins, peptides, polysaccharides, and other macro-molecules. The ability to use different species of fungi and to perform the synthesis under different conditions enables the production of nanoparticles with different physicochemical characteristics. Fungal nanotechnology has been used to develop and offer products and services in the agricultural, medicinal, and industrial sectors. Agriculturally, it has found applications in plant disease management, crop improvement, biosensing, and the production of environmentally friendly, non-toxic pesticides and fertilizers to enhance agricultural production in general. The subject of this review is the application of fungi in the synthesis of inorganic nanoparticles, characterization, and possible applications of fungal nanoparticles in the diverse agricultural sector. The literature shows potential uses of fungi in biogenic synthesis, enabling the production of nanoparticles with different physiognomies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahnaz Anjum
- Department of Botany, Lovely Professional University, Phagwara, India
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Ashish Vyas
- Department of Microbiology and Biochemistry, Lovely Professional University, Phagwara, India
| | - Tariq Sofi
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| |
Collapse
|
10
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra YCA. Mycosynthesis of silver nanoparticles: a review. Biometals 2023; 36:745-776. [PMID: 36482125 DOI: 10.1007/s10534-022-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles currently show multiple applications in the industrial, clinical and environmental fields due to their particular physicochemical characteristics. Conventional approaches for the synthesis of silver nanoparticles (AgNPs) are based on physicochemical processes which, although they show advantages such as high productivity and good monodispersity of the nanoparticles obtained, have disadvantages such as the high energy cost of the process and the use of harmful radiation or toxic chemical reagents that can generate highly polluting residues. Given the current concern about the environment and the potential cytotoxic effects of AgNPs, once they are released into the environment, a new green chemistry approach to obtain these nanoparticles called biosynthesis has emerged. This new alternative process counteracts some limitations of conventional synthesis methods, using the metabolic capabilities of living beings to manufacture nanomaterials, which have proven to be more biocompatible than their counterparts obtained by traditional methods. Among the organisms used, fungi are outstanding and are therefore being explored as potential nanofactories in an area of research known as mycosynthesis. For all the above, this paper aims to illustrate the advances in state of the art in the mycosynthesis of AgNPs, outlining the two possible mechanisms involved in the process, as well as the AgNPs stabilizing substances produced by fungi, the variables that can affect mycosynthesis at the in vitro level, the applications of AgNPs obtained by mycosynthesis, the patents generated to date in this field, and the limitations encountered by researchers in the area.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Universidad Nacional de Colombia- Doctorado en Biotecnología- Grupo de Investigación en Macromoléculas UN- Grupo de Investigación Biología Ambiental UPTC. Grupo de Investigación Gestión Ambiental Universidad de Boyacá, Tunja, Colombia.
| | - Luz Marina Lizarazo Forero
- Universidad Pedagógica y Tecnológica de Colombia- Grupo de Investigación Biología Ambiental, Tunja, Colombia
| | - Y Cesar A Sierra
- Universidad Nacional de Colombia. Grupo de Investigación en Macromoléculas, Bogotá, Colombia
| |
Collapse
|
11
|
Tiwari P, Dufossé L. Focus and Insights into the Synthetic Biology-Mediated Chassis of Economically Important Fungi for the Production of High-Value Metabolites. Microorganisms 2023; 11:1141. [PMID: 37317115 PMCID: PMC10222946 DOI: 10.3390/microorganisms11051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Substantial progress has been achieved and knowledge gaps addressed in synthetic biology-mediated engineering of biological organisms to produce high-value metabolites. Bio-based products from fungi are extensively explored in the present era, attributed to their emerging importance in the industrial sector, healthcare, and food applications. The edible group of fungi and multiple fungal strains defines attractive biological resources for high-value metabolites comprising food additives, pigments, dyes, industrial chemicals, and antibiotics, including other compounds. In this direction, synthetic biology-mediated genetic chassis of fungal strains to enhance/add value to novel chemical entities of biological origin is opening new avenues in fungal biotechnology. While substantial success has been achieved in the genetic manipulation of economically viable fungi (including Saccharomyces cerevisiae) in the production of metabolites of socio-economic relevance, knowledge gaps/obstacles in fungal biology and engineering need to be remedied for complete exploitation of valuable fungal strains. Herein, the thematic article discusses the novel attributes of bio-based products from fungi and the creation of high-value engineered fungal strains to promote yield, bio-functionality, and value-addition of the metabolites of socio-economic value. Efforts have been made to discuss the existing limitations in fungal chassis and how the advances in synthetic biology provide a plausible solution.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, F-97490 Saint-Denis, France
| |
Collapse
|
12
|
Dinius A, Kozanecka ZJ, Hoffmann KP, Krull R. Intensification of bioprocesses with filamentous microorganisms. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Many industrial biotechnological processes use filamentous microorganisms to produce platform chemicals, proteins, enzymes and natural products. Product formation is directly linked to their cellular morphology ranging from dispersed mycelia over loose clumps to compact pellets. Therefore, the adjustment and control of the filamentous cellular morphology pose major challenges for bioprocess engineering. Depending on the filamentous strain and desired product, optimal morphological shapes for achieving high product concentrations vary. However, there are currently no overarching strain- or product-related correlations to improve process understanding of filamentous production systems. The present book chapter summarizes the extensive work conducted in recent years in the field of improving product formation and thus intensifying biotechnological processes with filamentous microorganisms. The goal is to provide prospective scientists with an extensive overview of this scientifically diverse, highly interesting field of study. In the course of this, multiple examples and ideas shall facilitate the combination of their acquired expertise with promising areas of future research. Therefore, this overview describes the interdependence between filamentous cellular morphology and product formation. Moreover, the currently most frequently used experimental techniques for morphological structure elucidation will be discussed in detail. Developed strategies of morphology engineering to increase product formation by tailoring and controlling cellular morphology and thus to intensify processes with filamentous microorganisms will be comprehensively presented and discussed.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Zuzanna J. Kozanecka
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Kevin P. Hoffmann
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Rainer Krull
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| |
Collapse
|
13
|
Kosalková K, Barreiro C, Sánchez-Orejas IC, Cueto L, García-Estrada C. Biotechnological Fungal Platforms for the Production of Biosynthetic Cannabinoids. J Fungi (Basel) 2023; 9:jof9020234. [PMID: 36836348 PMCID: PMC9963667 DOI: 10.3390/jof9020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cannabinoids are bioactive meroterpenoids comprising prenylated polyketide molecules that can modulate a wide range of physiological processes. Cannabinoids have been shown to possess various medical/therapeutic effects, such as anti-convulsive, anti-anxiety, anti-psychotic, antinausea, and anti-microbial properties. The increasing interest in their beneficial effects and application as clinically useful drugs has promoted the development of heterologous biosynthetic platforms for the industrial production of these compounds. This approach can help circumvent the drawbacks associated with extraction from naturally occurring plants or chemical synthesis. In this review, we provide an overview of the fungal platforms developed by genetic engineering for the biosynthetic production of cannabinoids. Different yeast species, such as Komagataella phaffii (formerly P. pastoris) and Saccharomyces cerevisiae, have been genetically modified to include the cannabinoid biosynthetic pathway and to improve metabolic fluxes in order to increase cannabinoid titers. In addition, we engineered the filamentous fungus Penicillium chrysogenum for the first time as a host microorganism for the production of Δ9-tetrahydrocannabinolic acid from intermediates (cannabigerolic acid and olivetolic acid), thereby showing the potential of filamentous fungi as alternative platforms for cannabinoid biosynthesis upon optimization.
Collapse
Affiliation(s)
- Katarina Kosalková
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Campus de Vegazana, Universidad de León, 24007 León, Spain
| | | | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Departamento de Ciencias Biomédicas, Campus de Vegazana, Universidad de León, 24007 León, Spain
- Correspondence: ; Tel.: +34-987-293-693
| |
Collapse
|
14
|
Favilla LD, Herman TS, Goersch CDS, de Andrade RV, Felipe MSS, Bocca AL, Fernandes L. Expanding the Toolbox for Functional Genomics in Fonsecaea pedrosoi: The Use of Split-Marker and Biolistic Transformation for Inactivation of Tryptophan Synthase ( trpB) Gene. J Fungi (Basel) 2023; 9:jof9020224. [PMID: 36836338 PMCID: PMC9963410 DOI: 10.3390/jof9020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.
Collapse
Affiliation(s)
- Luísa Dan Favilla
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Tatiana Sobianski Herman
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Camila da Silva Goersch
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Maria Sueli Soares Felipe
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Centro Metropolitano, Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Federal District, Brasilia 72220-275, Brazil
- Correspondence:
| |
Collapse
|
15
|
Wang HN, Ke X, Jia R, Huang LG, Liu ZQ, Zheng YG. Multivariate modular metabolic engineering for enhanced gibberellic acid biosynthesis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2022; 364:128033. [PMID: 36174897 DOI: 10.1016/j.biortech.2022.128033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Gibberellic acid (GA3) is one of natural phytohormones, widely used in agriculture and downstream fields. Qualified for the nature productivity, Fusarium fujikuroi was currently employed for the industrial biotransformation from agriculture residues into GA3. Herein, Multivariate modular metabolic engineering (MMME) was assigned to reconstitute the metabolic balance in F. fujikuroi for enhancing GA3 production. Three modules including precursor pool, cluster-specific channel and P450-mediated oxidation in GA3 biosynthetic pathway were defined and optimized separately. The enhancement of both precursor pool and cluster-specific channel pushed metabolic flux transfer into the GA3-specific pathway. Moreover, both introduction of Vitreoscilla hemoglobin and reinforcement of NADPH-dependent cytochrome P450 reductase facilitated oxidation cofactor transfer and subsequently boosted mycelium growth and GA3 biosynthesis. Integration of three modules in the engineered strain accumulated 2.89 g/L GA3 in shake flask via submerged fermentation, presenting a promising modular metabolic engineering model for efficient microbial transformation in agro-industrial application.
Collapse
Affiliation(s)
- Hao-Nan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Jia
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
16
|
Liu D, Liu Q, Guo W, Liu Y, Wu M, Zhang Y, Li J, Sun W, Wang X, He Q, Tian C. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. BIOLOGY 2022; 11:biology11101396. [PMID: 36290301 PMCID: PMC9599018 DOI: 10.3390/biology11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glucoamylase is one of the most needed industrial enzymes in the food and biofuel industries. Aspergillus niger is a commonly used cell factory for the production of commercial glucoamylase. For decades, genetic manipulation has promoted significant progress in industrial fungi for strain engineering and in obtaining deep insights into their genetic features. However, genetic engineering is more laborious in the glucoamylase-producing industrial strains A. niger N1 and O1 because their fungal features of having few conidia (N1) or of being aconidial (O1) make them difficult to perform transformation on. In this study, we targeted A. niger N1 and O1 and successfully developed high-efficiency transformation tools. We also constructed a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 editing marker-free system using an autonomously replicating plasmid to express Cas9 protein and to guide RNA and the selectable marker. By using the genetic tools developed here, we generated nine albino deletion mutants. After three rounds of sub-culturing under nonselective conditions, the albino deletions lost the autonomously replicating plasmid. Together, the tools and optimization process above provided a good reference to manipulate the tough working industrial strain, not only for the further engineering these two glucoamylase-hyperproducing strains, but also for other industrial strains. Abstract The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes, particularly glucoamylase. Although a variety of genetic techniques have been successfully used in wild-type A. niger, the transformation of industrially used strains with few conidia (e.g., A. niger N1) or that are even aconidial (e.g., A. niger O1) remains laborious. Herein, we developed genetic tools, including the protoplast-mediated transformation and Agrobacterium tumefaciens-mediated transformation of the A. niger strains N1 and O1 using green fluorescent protein as a reporter marker. Following the optimization of various factors for protoplast release from mycelium, the protoplast-mediated transformation efficiency reached 89.3% (25/28) for N1 and 82.1% (32/39) for O1. The A. tumefaciens-mediated transformation efficiency was 98.2% (55/56) for N1 and 43.8% (28/64) for O1. We also developed a marker-free CRISPR/Cas9 genome editing system using an AMA1-based plasmid to express the Cas9 protein and sgRNA. Out of 22 transformants, 9 albA deletion mutants were constructed in the A. niger N1 background using the protoplast-mediated transformation method and the marker-free CRISPR/Cas9 system developed here. The genome editing methods improved here will accelerate the elucidation of the mechanism of glucoamylase hyperproduction in these industrial fungi and will contribute to the use of efficient targeted mutation in other industrial strains of A. niger.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Min Wu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc., Linyi 276400, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| |
Collapse
|
17
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
18
|
Zheng X, Cairns TC, Ni X, Zhang L, Zhai H, Meyer V, Zheng P, Sun J. Comprehensively dissecting the hub regulation of PkaC on high-productivity and pellet macromorphology in citric acid producing Aspergillus niger. Microb Biotechnol 2022; 15:1867-1882. [PMID: 35213792 PMCID: PMC9151341 DOI: 10.1111/1751-7915.14020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Aspergillus niger, an important industrial workhorse for citric acid production, is characterized by polar hyphal growth with complex pelleted, clumped or dispersed macromorphologies in submerged culture. Although organic acid titres are dramatically impacted by these growth types, studies that assess productivity and macromorphological changes are limited. Herein, we functionally analysed the role of the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) signalling cascade during fermentation by disrupting and conditionally expressing the pkaC gene. pkaC played multiple roles during hyphal, colony and conidiophore growth. By overexpressing pkaC, we could concomitantly modify hyphal growth at the pellet surface and improve citric acid titres up to 1.87‐fold. By quantitatively analysing hundreds of pellets during pilot fermentation experiments, we provide the first comprehensive correlation between A. niger pellet surface morphology and citric acid production. Finally, by intracellular metabolomics analysis and weighted gene coexpression network analysis (WGCNA) following titration of pkaC expression, we unveil the metabolomic and transcriptomic basis underpin hyperproductivity and pellet growth. Taken together, this study confirms pkaC as hub regulator linking submerged macromorphology and citric acid production and provides high‐priority genetic leads for future strain engineering programmes.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Timothy C Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Xiaomei Ni
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Lihui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huanhuan Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Vera Meyer
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
19
|
Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022; 10:microorganisms10020360. [PMID: 35208814 PMCID: PMC8876476 DOI: 10.3390/microorganisms10020360] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Plant-associated endophytes define an important symbiotic association in nature and are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal tissues of a plant without causing any disease symptoms or apparent changes. Recently, there has been a growing interest in endophytes because of their beneficial effects on the production of novel metabolites of pharmacological significance. Studies have highlighted the socio-economic implications of endophytic fungi in agriculture, medicine, and the environment, with considerable success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol was a landmark in endophyte biology/research and established new paradigms for the metabolic potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively studied as a “production platform” of novel pharmacological metabolites, the molecular mechanisms of plant–endophyte dynamics remain less understood/explored for their efficient utilization in drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery forms the underlying theme of this article.
Collapse
|
20
|
Moon S, An JY, Choi YJ, Oh YL, Ro HS, Ryu H. Construction of a CRISPR/Cas9-Mediated Genome Editing System in Lentinula edodes. MYCOBIOLOGY 2021; 49:599-603. [PMID: 35035251 PMCID: PMC8725921 DOI: 10.1080/12298093.2021.2006401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.
Collapse
Affiliation(s)
- Suyun Moon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | | | - Yeon-Jae Choi
- Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
21
|
Qin Y, Zhou C, Jin W, Yao H, Chen H, Wan Y, Xiao Y, Tang Z, Shan Z, Bu T, Chen H. Construction of Aspergillus Oryzae food-grade expression system based on auxotrophic markers. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1979580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Caixia Zhou
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Weiqiong Jin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya’an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Zhi Shan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Hong Chen
- College of Food Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
22
|
Men P, Wang M, Li J, Geng C, Huang X, Lu X. Establishing an Efficient Genetic Manipulation System for Sulfated Echinocandin Producing Fungus Coleophoma empetri. Front Microbiol 2021; 12:734780. [PMID: 34489920 PMCID: PMC8417879 DOI: 10.3389/fmicb.2021.734780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Micafungin is an important echinocandin antifungal agent for the treatment of invasive fungal infections. In industry, micafungin is derived from the natural product FR901379, which is a non-ribosomal cyclic hexapeptide produced by the filamentous fungus Coleophoma empetri. The difficulty of genetic manipulation in C. empetri restricts the clarification of FR901379 biosynthetic mechanism. In this work, we developed an efficient genetic manipulation system in the industrial FR901379-producing strain C. empetri MEFC009. Firstly, a convenient protoplast-mediated transformation (PMT) method was developed. Secondly, with this transformation method, the essential genetic elements were verified. Selectable markers hph, neo, and nat can be used for the transformation, and promotors Ppgk, PgpdA, and PgpdAt are functional in C. empetri MEFC009. Thirdly, the frequency of homologous recombination was improved from 4 to 100% by deleting the ku80 gene, resulting in an excellent chassis cell for gene-targeting. Additionally, the advantage of this genetic manipulation system was demonstrated in the identification of the polyketide synthase (PKS) responsible for the biosynthesis of dihydroxynapthalene (DHN)-melanin. This genetic manipulation system will be a useful platform for the research of FR901379 and further genome mining of secondary metabolites in C. empetri.
Collapse
Affiliation(s)
- Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Jinda Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
23
|
Nabi A, Banoo A, Rasool RS, Dar MS, Mubashir SS, Masoodi KZ, Shah MD, Khan AA, Khan I, Padder BA. Optimizing the Agrobacterium tumifaciens mediated transformation conditions in Colletotrichum lindemuthianum: A step forward to unravel the functions of pathogenicity arsenals. Lett Appl Microbiol 2021; 75:293-307. [PMID: 34398478 DOI: 10.1111/lam.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes bean anthracnose and it is rated among the top 10 important diseases infecting beans. Currently our knowledge on molecular mechanisms underlying C. lindemuthianum pathogenesis is limited. About five pathogenicity genes have been identified in C. lindemuthianum using Restricted Enzyme Mediated Integration (REMI) and the transformation using Agroinfection has not been optimized. In this study, a series of experiments were conducted to optimize the key parameters affecting the Agrobacterium tumefaciens- mediated transformation (ATMT) for C. lindemuthianum. The transformation efficiency increased with increase in spore concentration and co-cultivation time. However, the optimum conditions that yielded significant number of transformants were 106 ml-1 spore concentration, co-cultivation time of 72 h, incubation at 25ºC and using a cellulose membrane filter for the co-cultivation. The optimized protocol resulted in establishment of large mutant library (2400). A few mutants were melanin deficient and a few were unable to produce conidia. To determine the altered pathogenicity, two new approaches such as detached leaf and twig techniques proved reliable and require fewer resources to screen the large mutant libraries in a short time. Among the 1200 transformants tested for virulence, 90% transformants were pathogenically similar to wild type (race 2047), 96 and 24 were reduced and impaired, respectively. The altered avirulent transformants can prove vital for understanding the missing link between growth and developmental stages of pathogen with virulence. This platform will help to develop strategies to determine the potential pathogenicity genes and to decipher molecular mechanisms of host-pathogen interactions in more detail.
Collapse
Affiliation(s)
- Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Rovidha S Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - M S Dar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Syed Shoaib Mubashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Khalid Z Masoodi
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - M D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Akhtar A Khan
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Imran Khan
- Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| |
Collapse
|
24
|
Li CQ, Lei HM, Hu QY, Li GH, Zhao PJ. Recent Advances in the Synthetic Biology of Natural Drugs. Front Bioeng Biotechnol 2021; 9:691152. [PMID: 34395399 PMCID: PMC8358299 DOI: 10.3389/fbioe.2021.691152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Natural drugs have been transformed and optimized during the long process of evolution. These compounds play a very important role in the protection of human health and treatment of human diseases. Sustainable approaches to the generation of raw materials for pharmaceutical products have been extensively investigated in drug research and development because chemical synthesis is costly and generates pollution. The present review provides an overview of the recent advances in the synthetic biology of natural drugs. Particular attention is paid to the investigations of drugs that may be mass-produced by the pharmaceutical industry after optimization of the corresponding synthetic systems. The present review describes the reconstruction and optimization of biosynthetic pathways for nine drugs, including seven drugs from plant sources and two drugs from microbial sources, suggesting a new strategy for the large-scale preparation of some rare natural plant metabolites and highly bioactive microbial compounds. Some of the suggested synthetic methods remain in a preliminary exploration stage; however, a number of these methods demonstrated considerable application potential. The authors also discuss the advantages and disadvantages of the application of synthetic biology and various expression systems for heterologous expression of natural drugs. Thus, the present review provides a useful perspective for researchers attempting to use synthetic biology to produce natural drugs.
Collapse
Affiliation(s)
| | | | | | | | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
25
|
Fang H, Li C, Zhao J, Zhao C. Biotechnological Advances and Trends in Engineering Trichoderma reesei towards Cellulase Hyperproducer. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0243-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Staerck C, Yaakoub H, Vandeputte P, Tabiasco J, Godon C, Gastebois A, Giraud S, Guillemette T, Calenda A, Delneste Y, Fleury M, Bouchara JP. The Glycosylphosphatidylinositol-Anchored Superoxide Dismutase of Scedosporium apiospermum Protects the Conidia from Oxidative Stress. J Fungi (Basel) 2021; 7:575. [PMID: 34356954 PMCID: PMC8304446 DOI: 10.3390/jof7070575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Scedosporium species are common fungal pathogens in patients with cystic fibrosis (CF). To colonize the CF lungs, fungi must cope with the host immune response, especially the reactive oxygen species (ROS) released by phagocytic cells. To this aim, pathogens have developed various antioxidant systems, including superoxide dismutases (SODs) which constitute the first-line protection against oxidative stress. Interestingly, one of the S. apiospermum SOD-encoding genes (SODD gene) exhibits a glycosylphosphatidylinositol (GPI) anchor-binding site and encodes a conidial-specific surface SOD. In this study, a SODDΔ mutant was engineered from a non-homologous end joining-deficient strain (KU70Δ) of S. apiospermum. Compared to its parent strain, the double mutant KU70Δ/SODDΔ exhibited increased susceptibility to various oxidizing agents and triazole antifungals. In addition, the loss of SodD resulted in an increased intracellular killing of the conidia by M1 macrophages derived from human blood monocytes, suggesting the involvement of this superoxide dismutase in the evasion to the host defenses. Nevertheless, one cannot disregard an indirect role of the enzyme in the synthesis or assembly of the cell wall components since transmission electron microscopic analysis revealed a thickening of the inner cell wall layer of the conidia. Further studies are needed to confirm the role of this enzyme in the pathogenesis of Scedosporium infections, including the production of a recombinant protein and study of its protective effect against the infection in a mouse model of scedosporiosis.
Collapse
Affiliation(s)
- Cindy Staerck
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Hajar Yaakoub
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Patrick Vandeputte
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Julie Tabiasco
- Université d’Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; (J.T.); (Y.D.)
| | - Charlotte Godon
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Amandine Gastebois
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Sandrine Giraud
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Thomas Guillemette
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Alphonse Calenda
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Yves Delneste
- Université d’Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; (J.T.); (Y.D.)
| | - Maxime Fleury
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| | - Jean-Philippe Bouchara
- Université d’Angers, Université de Bretagne Occidentale, CHU Angers, Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA3142), SFR ICAT, F-49000 Angers, France; (C.S.); (H.Y.); (P.V.); (C.G.); (A.G.); (S.G.); (A.C.); (M.F.)
| |
Collapse
|
27
|
|
28
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Rozhkova AM, Kislitsin VY. CRISPR/Cas Genome Editing in Filamentous Fungi. BIOCHEMISTRY (MOSCOW) 2021; 86:S120-S139. [PMID: 33827404 DOI: 10.1134/s0006297921140091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.
Collapse
Affiliation(s)
- Aleksandra M Rozhkova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Valeriy Yu Kislitsin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
30
|
Genetic barcodes allow traceability of CRISPR/Cas9-derived Aspergillus niger strains without affecting their fitness. Curr Genet 2021; 67:673-684. [PMID: 33723654 PMCID: PMC8254718 DOI: 10.1007/s00294-021-01164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
Safe use of genetically modified organisms (GMOs) in biotechnology requires the ability to track the presence of these strains in any environment in which they are applied. For this, introduction of genetic barcodes within the editing site represents a valuable tool for the identification of microbial strains that have undergone genetic modifications. However, it is not known whether these barcodes would have any unexpected effect in the resulting strains or affect the efficiency of the genetic modification. CRISPR/Cas9 has become one of the fastest-growing technologies for genome editing in a range of organisms, including fungi. However, this technology enables the generation of scarless GMOs that are very difficult to distinguish from naturally occurring mutants or other modified organisms. In this study, we address this issue using the industrial workhorse Aspergillus niger as a test case. We applied CRISPR/Cas9 technology to delete the genes encoding the transcriptional regulators XlnR and AraR, involved in the production of plant biomass-degrading enzymes. We generated 20-bp barcoded and non-barcoded ΔxlnR and ΔaraR mutants and analyzed the traceability and fitness of the resulting strains, as well as the efficiency of the genetic modification. Results showed that both barcoded and non-barcoded mutants can be traced by routine PCR reactions when the specific CRISPR/Cas9 modification is known. Additionally, barcodes neither affected the efficiency of the genetic modification nor the growth or protein production of the resulting strains. These results confirm the suitability of genetic barcodes to trace CRISPR-derived GMOs without affecting the performance of the resulting strains.
Collapse
|
31
|
Böl M, Schrinner K, Tesche S, Krull R. Challenges of influencing cellular morphology by morphology engineering techniques and mechanical induced stress on filamentous pellet systems-A critical review. Eng Life Sci 2021; 21:51-67. [PMID: 33716605 PMCID: PMC7923580 DOI: 10.1002/elsc.202000060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Filamentous microorganisms are main producers of organic acids, enzymes, and pharmaceutical agents such as antibiotics and other active pharmaceutical ingredients. With their complex cell morphology, ranging from dispersed mycelia to dense pellets, the cultivation is challenging. In recent years, various techniques for tailor-made cell morphologies of filamentous microorganisms have been developed to increase product formation and have been summarised under the term morphology engineering. These techniques, namely microparticle-enhanced cultivation, macroparticle-enhanced cultivation, and alteration of the osmolality of the culture medium by addition of inorganic salts, the salt-enhanced cultivation, are presented and discussed in this review. These techniques have already proven to be useful and now await further proof-of-concept. Furthermore, the mechanical behaviour of individual pellets is of special interest for a general understanding of pellet mechanics and the productivity of biotechnological processes with filamentous microorganisms. Correlating them with substrate uptake and finally with productivity would be a breakthrough not to be underestimated for the comprehensive characterisation of filamentous systems. So far, this research field is under-represented. First results on filamentous pellet mechanics are discussed and important future aspects, which the filamentous expert community should deal with, will be presented and critically discussed.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and AdaptronicsTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
| | - Kathrin Schrinner
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Sebastian Tesche
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
32
|
Ebrahimi N, Amirmahani F, Sadeghi B, Ghanaatian M. Trichoderma longibrachiatum derived metabolite as a potential source of anti‐breast‐cancer agent. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00705-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Abdulrachman D, Eurwilaichitr L, Champreda V, Chantasingh D, Pootanakit K. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277. BMC Biotechnol 2021; 21:15. [PMID: 33573639 PMCID: PMC7879532 DOI: 10.1186/s12896-021-00669-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. RESULTS In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. CONCLUSIONS The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
Collapse
Affiliation(s)
- Dede Abdulrachman
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Lily Eurwilaichitr
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathumthani, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathumthani, Thailand
| | - Duriya Chantasingh
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathumthani, Thailand.
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
34
|
|
35
|
Yang L, Henriksen MM, Hansen RS, Lübeck M, Vang J, Andersen JE, Bille S, Lübeck PS. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:206. [PMID: 33317620 PMCID: PMC7737382 DOI: 10.1186/s13068-020-01850-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. RESULTS With a ribonucleoprotein (RNP)-based CRISPR-Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. CONCLUSIONS In this study, we have successfully applied the RNP-based CRISPR-Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark.
| | - Mikkel Møller Henriksen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Rasmus Syrach Hansen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Jesper Vang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
- Disease Data Intelligence, Department of Health Technology Bioinformatics, Technical University of Denmark, Bldg. 208, 2800, KemitorvetKgs. Lyngby, Denmark
| | - Julie Egelund Andersen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Signe Bille
- Section of Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| |
Collapse
|
36
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Romsdahl J, Schultzhaus Z, Chen A, Liu J, Ewing A, Hervey J, Wang Z. Adaptive evolution of a melanized fungus reveals robust augmentation of radiation resistance by abrogating non-homologous end-joining. Environ Microbiol 2020; 23:3627-3645. [PMID: 33078510 DOI: 10.1111/1462-2920.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Fungi have been observed to exhibit resistance to high levels of ionizing radiation despite sharing most DNA repair mechanisms with other eukaryotes. Radioresistance, in fact, is such a common feature in fungi that it is difficult to identify species that exhibit widely different radiosensitivities, which in turn has hampered the identification of genetic elements responsible for this resistance phenotype. Due to the inherent mutagenic properties of radiation exposure, however, this can be addressed through adaptive laboratory evolution for increased ionizing radiation resistance. Here, using the black yeast Exophiala dermatitidis, we demonstrate that resistance to γ-radiation can be greatly increased through repeated rounds of irradiation and outgrowth. Moreover, we find that the small genome size of fungi situates them as a relatively simple functional genomics platform for identification of mutations associated with ionizing radiation resistance. This enabled the identification of genetic mutations in genes encoding proteins with a broad range of functions from 10 evolved strains. Specifically, we find that greatly increased resistance to γ-radiation is achieved in E. dermatitidis through disruption of the non-homologous end-joining pathway, with three individual evolutionary paths converging to abolish this DNA repair process. This result suggests that non-homologous end-joining, even in haploid cells where homologous chromosomes are not present during much of the cell cycle, is an impediment to repair of radiation-induced lesions in this organism, and that the relative levels of homologous and non-homologous repair in a given fungal species may play a major role in its radiation resistance.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Jing Liu
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | | | - Judson Hervey
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
38
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
39
|
Le Govic Y, Havlíček V, Capilla J, Luptáková D, Dumas D, Papon N, Le Gal S, Bouchara JP, Vandeputte P. Synthesis of the Hydroxamate Siderophore N α-Methylcoprogen B in Scedosporium apiospermum Is Mediated by sidD Ortholog and Is Required for Virulence. Front Cell Infect Microbiol 2020; 10:587909. [PMID: 33194829 PMCID: PMC7655970 DOI: 10.3389/fcimb.2020.587909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Scedosporium species rank second among the filamentous fungi capable to colonize chronically the respiratory tract of patients with cystic fibrosis (CF). Nevertheless, there is little information on the mechanisms underpinning their virulence. Iron acquisition is critical for the growth and pathogenesis of many bacterial and fungal genera that chronically inhabit the CF lungs. In a previous study, we showed the presence in the genome of Scedosporium apiospermum of several genes relevant for iron uptake, notably SAPIO_CDS2806, an ortholog of sidD, which drives the synthesis of the extracellular hydroxamate-type siderophore fusarinine C (FsC) and its derivative triacetylfusarinine C (TAFC) in Aspergillus fumigatus. Here, we demonstrate that Scedosporium apiospermum sidD gene is required for production of an excreted siderophore, namely, Nα-methylcoprogen B, which also belongs to the hydroxamate family. Blockage of the synthesis of Nα-methylcoprogen B by disruption of the sidD gene resulted in the lack of fungal growth under iron limiting conditions. Still, growth of ΔsidD mutants could be restored by supplementation of the culture medium with a culture filtrate from the parent strain, but not from the mutants. Furthermore, the use of xenosiderophores as the sole source of iron revealed that S. apiospermum can acquire the iron using the hydroxamate siderophores ferrichrome or ferrioxamine, i.e., independently of Nα-methylcoprogen B production. Conversely, Nα-methylcoprogen B is mandatory for iron acquisition from pyoverdine, a mixed catecholate-hydroxamate siderophore. Finally, the deletion of sidD resulted in the loss of virulence in a murine model of scedosporiosis. Our findings demonstrate that S. apiospermum sidD gene drives the synthesis of a unique extracellular, hydroxamate-type iron chelator, which is essential for fungal growth and virulence. This compound scavenges iron from pyoverdine, which might explain why S. apiospermum and Pseudomonas aeruginosa are rarely found simultaneously in the CF lungs.
Collapse
Affiliation(s)
- Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université Angers, Université Brest, Angers, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Vladimir Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Dayana Dumas
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université Angers, Université Brest, Angers, France
| | - Solène Le Gal
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université Angers, Université Brest, Angers, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Brest, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université Angers, Université Brest, Angers, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrick Vandeputte
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université Angers, Université Brest, Angers, France.,Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
40
|
A Novel Secreted Cysteine-Rich Anionic (Sca) Protein from the Citrus Postharvest Pathogen Penicillium digitatum Enhances Virulence and Modulates the Activity of the Antifungal Protein B (AfpB). J Fungi (Basel) 2020; 6:jof6040203. [PMID: 33023232 PMCID: PMC7711571 DOI: 10.3390/jof6040203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Antifungal proteins (AFPs) from ascomycete fungi could help the development of antimycotics. However, little is known about their biological role or functional interactions with other fungal biomolecules. We previously reported that AfpB from the postharvest pathogen Penicillium digitatum cannot be detected in the parental fungus yet is abundantly produced biotechnologically. While aiming to detect AfpB, we identified a conserved and novel small Secreted Cysteine-rich Anionic (Sca) protein, encoded by the gene PDIG_23520 from P. digitatum CECT 20796. The sca gene is expressed during culture and early during citrus fruit infection. Both null mutant (Δsca) and Sca overproducer (Scaop) strains show no phenotypic differences from the wild type. Sca is not antimicrobial but potentiates P. digitatum growth when added in high amounts and enhances the in vitro antifungal activity of AfpB. The Scaop strain shows increased incidence of infection in citrus fruit, similar to the addition of purified Sca to the wild-type inoculum. Sca compensates and overcomes the protective effect of AfpB and the antifungal protein PeAfpA from the apple pathogen Penicillium expansum in fruit inoculations. Our study shows that Sca is a novel protein that enhances the growth and virulence of its parental fungus and modulates the activity of AFPs.
Collapse
|
41
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
42
|
Kutyła M, Fiedurek J, Gromada A, Jędrzejewski K, Trytek M. Mutagenesis and Adaptation of the Psychrotrophic Fungus Chrysosporium pannorum A-1 as a Method for Improving β-pinene Bioconversion. Molecules 2020; 25:E2589. [PMID: 32498456 PMCID: PMC7321369 DOI: 10.3390/molecules25112589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
Mutagenesis and adaptation of the psychrotrophic fungus Chrysosporium pannorum A-1 to the toxic substrate β-pinene were used to obtain a biocatalyst with increased resistance to this terpene and improved bioconversion properties. Mutants of the parental strain were induced with UV light and N-methyl-N'-nitro-N-nitrosoguanidine. Mutants resistant to β-pinene were isolated using agar plates with a linear gradient of substrate concentrations. Active mutants were selected based on their general metabolic activity (GMA) expressed as oxygen consumption rate. Compared to the parental strain, the most active mutant showed an enhanced biotransformation ability to convert β-pinene to trans-pinocarveol (315 mg per g of dry mycelium), a 4.3-fold greater biocatalytic activity, and a higher resistance to H2O2-induced oxidative stress. Biotransformation using adapted mutants yielded twice as much trans-pinocarveol as the reaction catalyzed by non-adapted mutants. The results indicate that mutagenesis and adaptation of C. pannorum A-1 is an effective method of enhancing β-bioconversion of terpenes.
Collapse
Affiliation(s)
| | | | | | | | - Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (J.F.); (A.G.); (K.J.)
| |
Collapse
|
43
|
Rahmat E, Kang Y. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Appl Microbiol Biotechnol 2020; 104:4659-4674. [DOI: 10.1007/s00253-020-10587-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022]
|
44
|
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, de Vries RP, Endy D, Frisvad JC, Gunde-Cimerman N, Haarmann T, Hadar Y, Hansen K, Johnson RI, Keller NP, Kraševec N, Mortensen UH, Perez R, Ram AFJ, Record E, Ross P, Shapaval V, Steiniger C, van den Brink H, van Munster J, Yarden O, Wösten HAB. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol 2020; 7:5. [PMID: 32280481 PMCID: PMC7140391 DOI: 10.1186/s40694-020-00095-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Fungi have the ability to transform organic materials into a rich and diverse set of useful products and provide distinct opportunities for tackling the urgent challenges before all humans. Fungal biotechnology can advance the transition from our petroleum-based economy into a bio-based circular economy and has the ability to sustainably produce resilient sources of food, feed, chemicals, fuels, textiles, and materials for construction, automotive and transportation industries, for furniture and beyond. Fungal biotechnology offers solutions for securing, stabilizing and enhancing the food supply for a growing human population, while simultaneously lowering greenhouse gas emissions. Fungal biotechnology has, thus, the potential to make a significant contribution to climate change mitigation and meeting the United Nation’s sustainable development goals through the rational improvement of new and established fungal cell factories. The White Paper presented here is the result of the 2nd Think Tank meeting held by the EUROFUNG consortium in Berlin in October 2019. This paper highlights discussions on current opportunities and research challenges in fungal biotechnology and aims to inform scientists, educators, the general public, industrial stakeholders and policymakers about the current fungal biotech revolution.
Collapse
Affiliation(s)
- Vera Meyer
- 1Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Evelina Y Basenko
- 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - J Philipp Benz
- 3TUM School of Life Sciences Weihenstephan, Technical University of Munich, Holzforschung München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Gerhard H Braus
- 4Department of Molecular Microbiology & Genetics, Institute of Microbiology & Genetics, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Mark X Caddick
- 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - Michael Csukai
- 5Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Ronald P de Vries
- 6Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Drew Endy
- 7Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA USA
| | - Jens C Frisvad
- 8Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nina Gunde-Cimerman
- 9Department Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | - Yitzhak Hadar
- 11Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Kim Hansen
- 12Biotechnology Research, Production Strain Technology, Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Robert I Johnson
- 13Quorn Foods, Station Road, Stokesley, North Yorkshire TS9 7AB UK
| | - Nancy P Keller
- 14Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nada Kraševec
- 15Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Uffe H Mortensen
- 8Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rolando Perez
- 7Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA USA
| | - Arthur F J Ram
- 16Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Eric Record
- 17French National Institute for Agriculture, Food and the Environment, INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, Marseille, France
| | - Phil Ross
- MycoWorks, Inc, 669 Grand View Avenue, San Francisco, USA
| | - Volha Shapaval
- 19Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien, 31 1430 Aas, Norway
| | - Charlotte Steiniger
- 1Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Jolanda van Munster
- 21The University of Manchester, Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, 131 Princess Street, Manchester, M1 7DN UK
| | - Oded Yarden
- 11Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Han A B Wösten
- 22Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
45
|
Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Bacteria and Root-Knot Nematode. Microorganisms 2020; 8:microorganisms8030401. [PMID: 32182971 PMCID: PMC7143365 DOI: 10.3390/microorganisms8030401] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/03/2022] Open
Abstract
Losses in crops caused by plant pathogenic bacteria and parasitic nematode are increasing because of a decrease in efficacy of traditional management measures. There is an urgent need to develop nonchemical and ecofriendly based management to control plant diseases. A potential approach of controlling plant disease in the crops is the use of biocontrol agents and their secondary metabolites (SMs). Luckily fungi and especially the genus Trichoderma comprise a great number of fungal strains that are the potential producer of bioactive secondary metabolites. In this study secondary metabolites from ten Trichoderma spp. were evaluated for their antibacterial and nematicidal potential against phytopathogenic bacteria Ralstonia solanacearum, Xanthomonas compestris and plant parasitic nematode Meloidogyne incognita. Five different growth media were evaluated for the production of SMs. It was shown that SMs of different Trichoderma spp. obtained on different growth media were different in the degree of their bioactivity. Comparison of five growth media showed that SMs produced on solid wheat and STP media gave higher antibacterial activity. SMs of T. pseudoharzianum (T113) obtained on solid wheat media were more effective against the studied bacteria followed by SMs from T. asperelloides (T136), T. pseudoharzianum (T129) and T. pseudoharzianum (T160). Scanning electron microscopy (SEM) was further conducted to observe the effect of SMs on bacterial cell morphology. As evident from the SEM, SMs produced severe morphological changes, such as rupturing of the bacterial cell walls, disintegration of cell membrane and cell content leaking out. SMs from T. viridae obtained on liquid STP and solid wheat media showed the highest percent of M. incognita juveniles (J2s) mortality and inhibition in egg hatching of M. incognita. The results of our study suggest that T. pseudoharzianum (T113) and T. viridae could be selected as an effective candidate for SMs source against phytopathogenic bacteria and M. incognita respectively.
Collapse
|
46
|
Deckers M, Deforce D, Fraiture MA, Roosens NHC. Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods 2020; 9:E326. [PMID: 32168815 PMCID: PMC7143438 DOI: 10.3390/foods9030326] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The use of food enzymes (FE) by the industrial food industry is continuously increasing. These FE are mainly obtained by microbial fermentation, for which both wild-type (WT) and genetically modified (GM) strains are used. The FE production yield can be increased by optimizing the fermentation process, either by using genetically modified micro-organism (GMM) strains or by producing recombinant enzymes. This review provides a general overview of the different methods used to produce FE preparations and how the use of GMM can increase the production yield. Additionally, information regarding the construction of these GMM strains is provided. Thereafter, an overview of the different European regulations concerning the authorization of FE preparations on the European market and the use of GMM strains is given. Potential issues related to the authorization and control of FE preparations sold on the European market are then identified and illustrated by a case study. This process highlighted the importance for control of FE preparations and the consequent need for appropriate detection methods targeting the presence of GMM, which is used in fermentation products.
Collapse
Affiliation(s)
- Marie Deckers
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Marie-Alice Fraiture
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
47
|
CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzyme Microb Technol 2020; 133:109463. [DOI: 10.1016/j.enzmictec.2019.109463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
|
48
|
Gopalakrishnan RM, Manavalan T, Ramesh J, Thangavelu KP, Heese K. Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering. Microorganisms 2020; 8:microorganisms8020159. [PMID: 31979278 PMCID: PMC7074786 DOI: 10.3390/microorganisms8020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei produces various saccharification enzymes required for biomass degradation. However, the lack of an effective lignin-degrading enzyme system reduces the species’ efficiency in producing fermentable sugars and increases the pre-treatment costs for biofuel production. In this study, we heterologously expressed the Ganoderma lucidum RMK1 versatile peroxidase gene (vp1) in the Rut-C30 strain of T. reesei. The expression of purified 6×His-tag–containing recombinant G. lucidum-derived protein (rVP1) was confirmed through western blot, which exhibited a single band with a relative molecular weight of 39 kDa. In saccharification and delignification studies using rice straw, the transformant (tVP7, T. reesei Rut-C30 expressing G. lucidum-derived rVP1) showed significant improvement in the yield of total reducing sugar and delignification, compared with that of the parent T. reesei Rut-C30 strain. Scanning electron microscopy (SEM) of tVP7-treated paddy straw showed extensive degradation of several layers of its surface compared with the parent strain due to the presence of G. lucidum-derived rVP1. Our results suggest that the expression of ligninolytic enzymes in cellulase hyperproducing systems helps to integrate the pre-treatment and saccharification steps that may ultimately reduce the costs of bioethanol production.
Collapse
Affiliation(s)
- Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Tamilvendan Manavalan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu 600 113, India;
| | - Kalaichelvan Puthupalayam Thangavelu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
- Correspondence: (K.P.T.); (K.H.)
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
- Correspondence: (K.P.T.); (K.H.)
| |
Collapse
|
49
|
Villena GK, Kitazono AA, Hernández-Macedo M L. Bioengineering Fungi and Yeast for the Production of Enzymes, Metabolites, and Value-Added Compounds. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Gabriel R, Prinz J, Jecmenica M, Romero-Vazquez C, Chou P, Harth S, Floerl L, Curran L, Oostlander A, Matz L, Fritsche S, Gorman J, Schuerg T, Fleißner A, Singer SW. Development of genetic tools for the thermophilic filamentous fungus Thermoascus aurantiacus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:167. [PMID: 33062053 PMCID: PMC7547499 DOI: 10.1186/s13068-020-01804-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/20/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus Thermoascus aurantiacus produces large amounts of highly thermostable plant cell wall-degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve the enzyme production. RESULTS Here, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of T. aurantiacus using the hph marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator xlnR, which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the pyrG orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluoroorotic acid-resistant parent strain. Crossing and isolation of progeny on selective media were completed in a week. CONCLUSION The genetic tools developed for T. aurantiacus can now be used individually or in combination to further improve thermostable enzyme production by this fungus.
Collapse
Affiliation(s)
- Raphael Gabriel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Julia Prinz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marina Jecmenica
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Carlos Romero-Vazquez
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- College of Natural Sciences, University of Puerto-Rico, Rio Pedras, 17 Ave. Universidad STE 1701, San Juan, 00925 Puerto Rico USA
| | - Pallas Chou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- American High School, 36300 Fremont Blvd, Fremont, CA 94536 USA
| | - Simon Harth
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Frankfurt Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Lena Floerl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Laure Curran
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- École Polytechnique Fédérale de Lausanne, Lausanne, Vaud 1015 Switzerland
| | - Anne Oostlander
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Linda Matz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Susanne Fritsche
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jennifer Gorman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| | - Timo Schuerg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Steven W. Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| |
Collapse
|