1
|
Wang D, Fei Y, Niu C, Lu S, Chen X, Wu Y, He P, Zhang X, Chen H, Wang H, Gao Y. Proficiency testing for event-specific quantification of genetically modified maize MON87427: Performance assessment based on the metrologically traceable reference values as assigned values. Food Chem 2024; 453:139668. [PMID: 38805943 DOI: 10.1016/j.foodchem.2024.139668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The Asia Pacific Metrology Program and the Accreditation Cooperation joint Proficiency Testing (PT) program for the quantification of genetically modified maize MON87427 was organized by the National Institute of Metrology, China, to enhance the measurement accuracy and metrological traceability in the region. Certified reference materials were employed as test samples; metrologically traceable certified reference values served as PT reference values (PTRVs) for evaluating the participants results. The consensus values obtained from the participants were higher than the assigned values, potentially due to the systematic effects of DNA extraction process. The participants' relatively poor overall performance by the ζ-score compared with z-score demonstrates their need to thoroughly investigate quantification bias to elevate the measurement capability of genetically modified (GM) content and deepen their understanding of uncertainty estimation. This program confirmed the importance of using metrologically traceable reference values instead of consensus values as PTRV for reliable performance assessment.
Collapse
Affiliation(s)
- Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yue Fei
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xian Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ping He
- Specialized Standards Accreditation Department (SSAD), China National Accreditation Service for Conformity Assessment (CNAS), Beijing 100062, China
| | - Xiujie Zhang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs (MARA), Beijing 100176, China
| | - Hong Chen
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs (MARA), Beijing 100176, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs (MARA), Beijing 100176, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
2
|
Liu H, Hu X, Zeng H, He C, Cheng F, Tang X, Wang J. A rapid and high-throughput system for the detection of transgenic products based on LAMP-CRISPR-Cas12a. Curr Res Food Sci 2023; 7:100605. [PMID: 37868002 PMCID: PMC10589767 DOI: 10.1016/j.crfs.2023.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
With the increasing acreage of genetically modified crops worldwide, rapid and efficient detection technologies have become very important for the regulation and screening of GM organisms. We constructed a method based on loop-mediated isothermal amplification (LAMP), CRISPR-Cas12a and lateral flow assay (LAMP-CRISPR-Cas12a-LFA). It is an intuitive, sensitive and specific fluorescence detection and test strip system to detect CP4-EPSPS and Cry1Ab/Ac genes in field screening. The LAMP-CRISPR-Cas12a-LFA method has a limit of detection (LOD) of 100 copies based on lateral flow test strips after optimization of the conditions with screened specific primers, and the entire detection process can be completed within 1 h at 61 °C. The system was used to evaluate field test samples and showed high reproducibility after testing products containing CP4-EPSPS and Cry1Ab/Ac genes, and both were detectable. The LAMP-CRISPR-Cas12a-LFA method established in this paper functions as a rapid field detection method. It requires only one portable thermostatic instrument, which renders it compatible with the rapid detection of field samples and useable at experimental workstations, in law enforcement field work, and in local inspection and quarantine departments.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Xiuwen Hu
- College of Food Sciences and Technology, Shanghai Ocean University, 999 Huancheng Road Shanghai, 200120, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Chuan He
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fang Cheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| |
Collapse
|
3
|
Xing R, Liu H, Qi X, Pan L. Measuring the process and rate of exogenous DNA degradation during digestion in mice. Sci Rep 2022; 12:6463. [PMID: 35440601 PMCID: PMC9018913 DOI: 10.1038/s41598-022-10340-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to perform qualitative and quantitative examination of DNA degradation during the digestion process in the mouse gut through PCR, qPCR and short tandem repeat (STR) analysis. Human blood leukocytes were gavaged into the digestive tract in mice. GAPDH, TH01, TPOX and D7S820 genes in the contents of the stomach and small intestine were analyzed with PCR and qPCR at various times pre- and post-gavage. Through STR analysis, 21 human genomic DNA loci were analyzed. The half-life of DNA degradation, and the relationship between the average peak area and digestion time were determined. The PCR results showed bands of amplified genes at pre-gavage (0 min) and post-gavage (40, 80 and 120 min) from the mouse stomach contents, whereas no DNA bands from small intestinal chyme were observed after gavage. The qPCR results revealed a significant decrease in DNA concentrations during 40–120 min in the mouse stomach after gavage. At 120 min, 85.62 ± 8.10% of the DNA was degraded, and the half-life of exogenous DNA degradation in the mouse stomach was 70.50 ± 5.46 min. At various digestion times, almost no target genes were detected in the mouse small intestinal chyme. STR analysis showed a decrease in allele numbers with bowel advancement in the small intestine in mice. The degradation of exogenous DNA was higher in the mouse stomach during the first 2 h, and almost complete degradation was observed within 40 min after entering the small intestine in mice.
Collapse
Affiliation(s)
- Ruiqi Xing
- Second Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Xia Qi
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | | |
Collapse
|
4
|
Zhou E, Song N, Xiao Q, Farooq Z, Jia Z, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. Construction of transgenic detection system of Brassica napus L. based on single nucleotide polymorphism chip. 3 Biotech 2022; 12:11. [PMID: 34966634 PMCID: PMC8655060 DOI: 10.1007/s13205-021-03062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Brassica napus L. is a vital oil crop in China. As auxiliary tools for rapeseed breeding, transgenic technologies play a considerable role in heterosis, variety improvement, and pest resistance. Research on transgenic detection technologies is of great significance for the introduction, supervision, and development of transgenic rapeseed in China. However, the transgenic detection methods currently in use are complex and time-consuming, with low output. A single nucleotide polymorphism (SNP) chip can effectively overcome such limitations. In the present study, we collected 40 transgenic elements and designed 291 probes. The probe sequences were submitted to Illumina Company, and the Infinium chip technology was used to prepare SNP chips. In the present Brassica napus transgenic detection experiment, 84 high-quality probes of 17 transgenic elements were preliminarily screened, and genotyping effect was optimised for the probe signal value. Ultimately, a transgenic detection system for B. napus was developed. The developed system has the advantages of simple operation, minimal technical errors, and stable detection outcomes. A transgenic detection sensitivity test revealed that the probe designed could accurately detect 1% of transgenic samples and had high detection sensitivity. In addition, in repeatability tests, the CaMV35S promoter coefficient of variation was approximately 3.58%. Therefore, the SNP chip had suitable repeatability in transgene detection. The SNP chip developed could be used to construct transgenic detection systems for B. napus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03062-6.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Nuan Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Qing Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| |
Collapse
|
5
|
Chu X, Zhu D, Liu M, Kong L, Ai S. Moderate stability of a scissor double fluorescent triple helix molecular switch for the ultrasensitive biosensing of crop transgene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the ultrasensitive biosensing of special genes. (I: traditional molecular beacon detection method; II: scissor DFTHMS; III: three cases of BHQ-1-TFO).
Collapse
Affiliation(s)
- Xiuling Chu
- Shandong Taian Ecological Environment Monitoring Center, Taian 271000, P. R. China
| | - Desong Zhu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| | - Min Liu
- Shandong Qingdao Ecological Environment Monitoring Center, Qingdao 266000, P. R. China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
6
|
Li J, Gao H, Li Y, Xiao F, Zhai S, Wu G, Wu Y. Event-specific PCR methods to quantify the genetically modified DBN9936 maize. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
A New Reference Plasmid “pGMT27” Provides an Efficient Transgenic Detection Method for Flue-Cured Tobacco. J FOOD QUALITY 2021. [DOI: 10.1155/2021/3220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Owing to the economic value of its foliage, tobacco (Nicotiana tabacum) is cultivated all across the world. For the detection of genetically modified (GM) tobacco, there is a lack of universal standard material which ultimately limits the detection methods because the accuracy and comparability of the results cannot be ensured. Here, we prepared a reference plasmid “pGMT27” for the detection of GM tobacco, which was 18,296 bp in length harboring two of the tobacco endogenous and seven exogenous genes. By using qualitative PCR test for the nine genes, 10 copies were used for plasmid sensitivity. In the quantitative real-time PCR (qPCR) assays with pGMT27 as a calibrator, the reaction efficiencies for P-35S and NR were 101.427% and 98.036%, respectively, whereas the limit of detection (LOD) and limit of quantification (LOQ) were 5 copies and 10 copies per reaction. For standard deviation (SD) and relative standard deviation (RSD) of the Ct values, the repeatability values were from 0.04 to 0.42 and from 0.18% to 1.29%, respectively; and the reproducibility values were from 0.04 to 0.39 and from 0.18% to 1.14%, respectively. For the unknown sample test, the average conversion factor (Cf) was 0.39, and the accuracy bias was from −15.55% to 1.93%; for precision, the SD values ranged from 0.02 to 0.62, while RSD values were from 1.34% to 10.6%. We concluded that using the pGMT27 plasmid as a calibrator provided a highly efficient transgenic detection method for flue-cured tobacco.
Collapse
|
8
|
An N, Li K, Zhang Y, Wen T, Liu W, Liu G, Li L, Jin W. A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms. Talanta 2021; 231:122361. [PMID: 33965027 DOI: 10.1016/j.talanta.2021.122361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/14/2021] [Accepted: 03/21/2021] [Indexed: 11/29/2022]
Abstract
The continuous advancement of analytical technology has provided methods with increasing sensitivity and precision to detect genetically modified organisms (GMOs). Novel analytical strategy-based detection methods are alternatives to conventional polymerase chain reaction (PCR)-mediated assays, which are still the gold standard in this field. However, PCR primers and probes cannot be reused, which makes the technique uneconomical. Surface plasmon resonance (SPR) is an optical and label-free technique for studying ligand-analyte interactions, especially for DNA hybridization, and several SPR biosensors have been described for the detection of nucleic acids. Here, a multiplexed, regenerable and real-time SPR biosensor for the detection of GMOs is described. A biosensor was constructed for qualitative detection of T-nos, CaMV35S and cry1A and had good specificity and sensitivity. The limit of detection (LOD) of this biosensor was 0.1 nM without any signal amplification. Furthermore, our biosensor could be stably regenerated more than 100 times over at least 20 days and showed good reproducibility. This nucleic acid SPR biosensor has potential for application in other types of biological detection.
Collapse
Affiliation(s)
- Na An
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yukun Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weixiao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, China.
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Shanmughanandhan J, Shanmughanandhan D, Ragupathy S, Henry TA, Newmaster SG. Validation and Optimization of qPCR Method for Identification of Actaea racemosa (Black Cohosh) NHPs. J AOAC Int 2021; 104:836-846. [PMID: 33346838 DOI: 10.1093/jaoacint/qsaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Actaea racemosa (black cohosh) herbal dietary supplements are commonly used to treat menopausal symptoms in women. However, there is a considerable risk of contamination of A. racemosa herbal products in the natural health product (NHP) industry, impacting potential efficacy. Authentication of A. racemosa products is challenging because of the standard, multi-part analytical chemistry methods that may be too costly and not appropriate for both raw and finished products. OBJECTIVE In this paper, we discuss developing and validating quick alternative biotechnology methods to authenticate A. racemosa herbal dietary supplements, based on the use of a species-specific hydrolysis PCR probe assay. METHODS A qPCR-based species-specific hydrolysis probe assay was designed, validated, and optimized for precisely identifying the species of interest using the following analytical validation criteria: (1) specificity (accuracy) in determining the target species ingredient, while not identifying other non-target species; (2) sensitivity in detecting the smallest amount of the target material; and (3) reliability (repeatability and reproducibility) in detecting the target species in raw materials on a real-time PCR platform. RESULTS The results show that the species-specific hydrolysis probe assay was successfully developed for the raw materials and powders of A. racemosa. The specificity of the test was 100% to the target species. The efficiency of the assay was observed to be 99%, and the reliability of the assay was 100% for the raw/starting and powder materials. CONCLUSION The method developed in this study can be used to authenticate and perform qualitative analysis of A. racemosa supplements.
Collapse
Affiliation(s)
- Jeevitha Shanmughanandhan
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Dhivya Shanmughanandhan
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Subramanyam Ragupathy
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Thomas A Henry
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Steven G Newmaster
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Parker MT, Kunjapur AM. Deployment of Engineered Microbes: Contributions to the Bioeconomy and Considerations for Biosecurity. Health Secur 2021; 18:278-296. [PMID: 32816583 DOI: 10.1089/hs.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.
Collapse
Affiliation(s)
- Michael T Parker
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Aditya M Kunjapur
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
11
|
Duan L, Zhang S, Yang Y, Wang Q, Lan Q, Wang Y, Xu W, Jin W, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Construction, Expression, and Identification of Double Light Chain (VL-VL) Antibody from a Unique Bt Cry1-Specific Monoclonal Antibody. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01754-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Wang X, Chen Y, Chen X, Peng C, Wang L, Xu X, Wu J, Wei W, Xu J. A highly integrated system with rapid DNA extraction, recombinase polymerase amplification, and lateral flow biosensor for on-site detection of genetically modified crops. Anal Chim Acta 2020; 1109:158-168. [PMID: 32252899 DOI: 10.1016/j.aca.2020.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/29/2023]
Abstract
With the large-scale planting of genetically modified (GM) crops, the development of a rapid and convenient method for on-site monitoring GM crops is needed. In this study, a duplex recombinase polymerase amplification (DRPA)-based, quick and simple detection system is presented for on-site detection of GM crops. In this system, a rapid DNA extraction method, a DRPA, and a lateral flow biosensor (LFB) are integrated to allow for rapid DNA extraction and amplification, and fast visualization of the detection results. Using the rapid DNA extraction method, high-quality DNA suitable for RPA and polymerase chain reaction (PCR) was quickly isolated from various crops within 5 min. Utilizing the optimal DRPA assay, the universal screening sequences (Cauliflower mosaic virus 35S promoter [35S] and Agrobacterium tumefaciens NOS terminator [NOS]) were rapidly and simultaneously amplified with high selectivity and sensitivity. The sensitivity threshold of the DRPA assay was ∼10 copies for GM soybean genomic DNA and 100 ng DNA of 0.1% GM soybean. In combination with the LFB in an enclosed cassette, the entire detection process was performed in approximately 20-30 min and eliminated the carryover contamination. No special or expensive equipment was needed for the detection process. The system was successfully applied and validated for on-site detection of GM rice, demonstrating its suitability for on-site testing of GM crops and high potential for application to other fields, especially in low-resource regions that require rapid detection of DNA targets.
Collapse
Affiliation(s)
- Xiaofu Wang
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, China
| | - Yu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Chemistry and Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Xiaoyun Chen
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, China
| | - Liu Wang
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, China
| | - Junfeng Xu
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
14
|
Farías ME, Marani MM, Ramírez D, Niebylski AM, Correa NM, Molina PG. Polyclonal antibody production anti Pc_312-324 peptide. Its potential use in electrochemical immunosensors for transgenic soybean detection. Bioelectrochemistry 2020; 131:107397. [PMID: 31706117 PMCID: PMC11521756 DOI: 10.1016/j.bioelechem.2019.107397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
A new polyclonal antibody that recognizes the CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS), which provides resistance to glyphosate in soybean (Roundup Ready®, RR soybean), was produced. New Zealand rabbits were injected with a synthetic peptide (Pc_312-324, (PEP)) present in the soybean CP4-EPSPS protein. The anti-PEP antibodies production was evaluated by electrophoresis (SDS-PAGE) and an enzyme-linked immunosorbent assay (ELISA) was developed in order to study their specificity. The ELISA showed that the polyclonal antibody was specific to PEP. In addition, the anti- PEP was immobilized onto a gold disk electrode and the antigen-antibody interaction was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Moreover, the EIS showed that the electron transfer resistance of the modified electrode increased after incubation with solutions containing CP4-EPSPS protein from RR transgenic soybean, while no changes were detected after incubation with no-RR soybean proteins. These results suggest that the CP4-EPSPS was immobilized onto the electrode, due to the specific interaction with the anti-PEP. These results show that this antigen-antibody interaction can be detected by electrochemical techniques, suggesting that the anti-PEP produced can be used in electrochemical immunosensors development to quantify transgenic soybean.
Collapse
Affiliation(s)
- Marcos E Farías
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), CONICET, CP U9120ACD Puerto Madryn, Argentina
| | - Darío Ramírez
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET-Universidad Nacional de San Luis, Fac. de Quím., Bioquím. y Farmacia, C.P. 5700 San Luis, Argentina
| | - Ana M Niebylski
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS) UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - Patricia G Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina.
| |
Collapse
|
15
|
Boutigny AL, Dohin N, Pornin D, Rolland M. Overview and detectability of the genetic modifications in ornamental plants. HORTICULTURE RESEARCH 2020; 7:11. [PMID: 32025314 PMCID: PMC6994484 DOI: 10.1038/s41438-019-0232-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
The market of ornamental plants is extremely competitive, and for many species genetic engineering can be used to introduce original traits of high commercial interest. However, very few genetically modified (GM) ornamental varieties have reached the market so far. Indeed, the authorization process required for such plants has a strong impact on the profitability of the development of such products. Considering the numerous scientific studies using genetic modification on ornamental species of interest, a lot of transformed material has been produced, could be of commercial interest and could therefore be unintentionally released on the market. The unintentional use of GM petunia in breeding programs has indeed recently been observed. This review lists scientific publications using GM ornamental plants and tries to identify whether these plants could be detected by molecular biology tools commonly used by control laboratories.
Collapse
Affiliation(s)
- Anne-Laure Boutigny
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Nicolas Dohin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - David Pornin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Mathieu Rolland
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| |
Collapse
|
16
|
Pearson MD, Nguyen L, Zhao Y, McKenna WL, Morin TJ, Dunbar WB. Fast and accurate quantification of insertion-site specific transgene levels from raw seed samples using solid-state nanopore technology. PLoS One 2019; 14:e0226719. [PMID: 31881056 PMCID: PMC6934305 DOI: 10.1371/journal.pone.0226719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022] Open
Abstract
Many modern crop varieties contain patented biotechnology traits, and an increasing number of these crops have multiple (stacked) traits. Fast and accurate determination of transgene levels is advantageous for a variety of use cases across the food, feed and fuel value chain. With the growing number of new transgenic crops, any technology used to quantify them should have robust assays that are simple to design and optimize, thereby facilitating the addition of new traits to an assay. Here we describe a PCR-based method that is simple to design, starts from whole seeds, and can be run to end-point in less than 5 minutes. Subsequent relative quantification (trait vs. non-trait) using capillary electrophoresis performed in 5% increments across the 0-100% range showed a mean absolute error of 1.9% (s.d. = 1.1%). We also show that the PCR assay can be coupled to non-optical solid-state nanopore sensors to give seed-to-trait quantification results with a mean absolute error of 2.3% (s.d. = 1.6%). In concert, the fast PCR and nanopore sensing stages demonstrated here can be fully integrated to produce seed-to-trait quantification results in less than 10 minutes, with high accuracy across the full dynamic range.
Collapse
Affiliation(s)
| | - Leslee Nguyen
- Ontera, Inc., Santa Cruz, California, United States of America
| | - Yanan Zhao
- Ontera, Inc., Santa Cruz, California, United States of America
| | | | - Trevor J. Morin
- Ontera, Inc., Santa Cruz, California, United States of America
| | | |
Collapse
|
17
|
Grześkowiak BF, Tuśnio K, Woźniak A, Szalata M, Lipiński D, Jurga S, Słomski R. Transgenic Plant Detection Using an AuNPs Based SPR Biosensor. BIOSENSORS-BASEL 2019; 9:bios9040116. [PMID: 31574896 PMCID: PMC6955715 DOI: 10.3390/bios9040116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/04/2022]
Abstract
The intensive development and commercialization of genetically modified plants observed over the last decade has led to the development of transgenic detection methods that are rapid and sensitive. Among the strategies used for the detection/monitoring of genetically modified organisms (GMOs), surface plasmon resonance (SPR) meets the necessary criteria. This optical technique measures the changes in the refractive index in the vicinity of thin metal layers (i.e., gold) in response to biomolecular interactions occurring at a flat metal‒solution interface. Additionally, it allows the application of functionalized gold nanoparticles (AuNPs) in SPR research to enhance the signal intensity. In the present study, an SPR method, enhanced by the application of AuNPs, was developed to detect transgenic tobacco plants carrying a Streptococcus mutans antigen. The basis for the detection of the target DNA was the hybridization between the genomic DNA isolated from the leaves, stems, and roots of the transgenic tobacco and the biotinylated oligonucleotide probes immobilized onto a streptavidin (SA) sensor chip. SA-functionalized AuNPs coated with a second type of biotinylated probe were applied to increase the sensitivity of the detection method. Analysis of the results indicated that the constructed SPR-based sensor chip can potentially recognize complementary standard fragments (nonamplified genomic DNA) at concentrations as low as 1 pM. Thus, nonamplified transgenic DNA was detected using a label-free and real-time AuNPs-enhanced SPR biosensing method. This unique approach could be used to detect GMOs with high efficiency, even at a low detection limit, high repeatability, and with less time and a lower cost needed for each analysis.
Collapse
Affiliation(s)
- Bartosz F Grześkowiak
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
| | - Karol Tuśnio
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| | - Anna Woźniak
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| | - Stefan Jurga
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
| | - Ryszard Słomski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| |
Collapse
|
18
|
Wu Y, Li J, Li X, Zhai S, Gao H, Li Y, Zhang X, Wu G. Development and strategy of reference materials for the DNA-based detection of genetically modified organisms. Anal Bioanal Chem 2019; 411:1729-1744. [DOI: 10.1007/s00216-019-01576-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
|
19
|
Optimised LAMP allows single copy detection of 35Sp and NOSt in transgenic maize using Bioluminescent Assay in Real Time (BART). Sci Rep 2018; 8:17590. [PMID: 30514874 PMCID: PMC6279926 DOI: 10.1038/s41598-018-36207-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Loop-mediated amplification (LAMP) has been widely used to amplify and hence detect nucleic acid target sequences from various pathogens, viruses and genetic modifications. Two distinct types of primer are required for LAMP; hairpin-forming LAMP and displacement. High specificity arises from this use of multiple primers, but without optimal conditions for LAMP, sensitivity can be poor. We confirm here the importance of LAMP primer design, concentrations and ratios for efficient LAMP amplification. We further show that displacement primers are non-essential to the LAMP reaction at certain concentrations providing accelerating loop primers are present. We investigate various methods to quantify DNA extracts from GM maize certified reference materials to calculate the target copy numbers of template presented to the LAMP reaction, and show that LAMP can amplify transgenic promoter/terminator sequences in DNA extracted from various maize GM events using primers designed to target the 35S promoter (35Sp) or NOS terminator (NOSt) sequences, detection with both bioluminescence in real-time (BART) and fluorescent methods. With prior denaturation and HPLC grade LAMP primers single copy detection was achieved, showing that optimised LAMP conditions can be combined with BART for single copy targets, with simple and cost efficient light detection electronics over fluorescent alternatives.
Collapse
|
20
|
Gene synthesis allows biologists to source genes from farther away in the tree of life. Nat Commun 2018; 9:4425. [PMID: 30356044 PMCID: PMC6200774 DOI: 10.1038/s41467-018-06798-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Gene synthesis enables creation and modification of genetic sequences at an unprecedented pace, offering enormous potential for new biological functionality but also increasing the need for biosurveillance. In this paper, we introduce a bioinformatics technique for determining whether a gene is natural or synthetic based solely on nucleotide sequence. This technique, grounded in codon theory and machine learning, can correctly classify genes with 97.7% accuracy on a novel data set. We then classify ∼19,000 unique genes from the Addgene non-profit plasmid repository to investigate whether natural and synthetic genes have differential use in heterologous expression. Phylogenetic analysis of distance between source and expression organisms reveals that researchers are using synthesis to source genes from more genetically-distant organisms, particularly for longer genes. We provide empirical evidence that gene synthesis is leading biologists to sample more broadly across the diversity of life, and we provide a foundational tool for the biosurveillance community.
Collapse
|
21
|
Dobnik D, Gruden K, Žel J, Bertheau Y, Holst-Jensen A, Bohanec M. Decision Support for the Comparative Evaluation and Selection of Analytical Methods: Detection of Genetically Modified Organisms as an Example. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1194-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Rocha-Munive MG, Soberón M, Castañeda S, Niaves E, Scheinvar E, Eguiarte LE, Mota-Sánchez D, Rosales-Robles E, Nava-Camberos U, Martínez-Carrillo JL, Blanco CA, Bravo A, Souza V. Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico. Front Bioeng Biotechnol 2018; 6:82. [PMID: 29988354 PMCID: PMC6023983 DOI: 10.3389/fbioe.2018.00082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
For more than 20 years cotton has been the most widely sown genetically modified (GM) crop in Mexico. Its cultivation has fulfilled all requirements and has gone through the different regulatory stages. During the last 20 years, both research-institutions and biotech-companies have generated scientific and technical information regarding GM cotton cultivation in Mexico. In this work, we collected data in order to analyze the environmental and agronomic effects of the use of GM cotton in Mexico. In 1996, the introduction of Bt cotton made it possible to reactivate this crop, which in previous years was greatly reduced due to pest problems, production costs and environmental concerns. Bt cotton is a widely accepted tool for cotton producers and has proven to be efficient for the control of lepidopteran pests. The economic benefits of its use are variable, and depend on factors such as the international cotton-prices and other costs associated with its inputs. So far, the management strategies used to prevent development of insect resistance to GM cotton has been successful, and there are no reports of insect resistance development to Bt cotton in Mexico. In addition, no effects have been observed on non-target organisms. For herbicide tolerant cotton, the prevention of herbicide resistance has also been successful since unlike other countries, the onset of resistance weeds is still slow, apparently due to cultural practices and rotation of different herbicides. Environmental benefits have been achieved with a reduction in chemical insecticide applications and the subsequent decrease in primary pest populations, so that the inclusion of other technologies—e.g., use of non-Bt cotton- can be explored. Nevertheless, control measures need to be implemented during transport of the bolls and fiber to prevent dispersal of volunteer plants and subsequent gene flow to wild relatives distributed outside the GM cotton growing areas. It is still necessary to implement national research programs, so that biotechnology and plant breeding advances can be used in the development of cotton varieties adapted to the Mexican particular environmental conditions and to control insect pests of regional importance.
Collapse
Affiliation(s)
- Martha G Rocha-Munive
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Saúl Castañeda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Esteban Niaves
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Enrique Scheinvar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Mota-Sánchez
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| | | | - Urbano Nava-Camberos
- Facultad de Agricultura y Zootecnia/Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Mexico
| | | | - Carlos A Blanco
- Biology Department, University of New Mexico, Albuquerque, NM, United States
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
23
|
Demeke T, Dobnik D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal Bioanal Chem 2018; 410:4039-4050. [PMID: 29574561 PMCID: PMC6010488 DOI: 10.1007/s00216-018-1010-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
The number of genetically modified organisms (GMOs) on the market is steadily increasing. Because of regulation of cultivation and trade of GMOs in several countries, there is pressure for their accurate detection and quantification. Today, DNA-based approaches are more popular for this purpose than protein-based methods, and real-time quantitative PCR (qPCR) is still the gold standard in GMO analytics. However, digital PCR (dPCR) offers several advantages over qPCR, making this new technique appealing also for GMO analysis. This critical review focuses on the use of dPCR for the purpose of GMO quantification and addresses parameters which are important for achieving accurate and reliable results, such as the quality and purity of DNA and reaction optimization. Three critical factors are explored and discussed in more depth: correct classification of partitions as positive, correctly determined partition volume, and dilution factor. This review could serve as a guide for all laboratories implementing dPCR. Most of the parameters discussed are applicable to fields other than purely GMO testing. Graphical abstract There are generally three different options for absolute quantification of genetically modified organisms (GMOs) using digital PCR: droplet- or chamber-based and droplets in chambers. All have in common the distribution of reaction mixture into several partitions, which are all subjected to PCR and scored at the end-point as positive or negative. Based on these results GMO content can be calculated.
Collapse
Affiliation(s)
- Tigst Demeke
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB, R3C3G8, Canada
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
International collaborative ring trial of four gene-specific loop-mediated isothermal amplification assays in GMO analysis. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Castro C, Amorim M, Moreira F, Pereira F. A method to assemble DNA fragments mimicking junctions of transgenic elements: Application to the AquAdvantage salmon. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Salisu IB, Shahid AA, Yaqoob A, Ali Q, Bajwa KS, Rao AQ, Husnain T. Molecular Approaches for High Throughput Detection and Quantification of Genetically Modified Crops: A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1670. [PMID: 29085378 PMCID: PMC5650622 DOI: 10.3389/fpls.2017.01670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/11/2017] [Indexed: 06/01/2023]
Abstract
As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1) DNA and (2) proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction) and enzyme-linked immunosorbent assay (ELISA) were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA) are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection and the quantification of GM event as the production of more complex GMO is increasing day by day. Therefore, recent approaches like microarray, capillary gel electrophoresis, digital PCR and next generation sequencing are more promising due to their accuracy and precise detection of transgenic contents. The present article is a brief comparative study of all such detection techniques on the basis of their advent, feasibility, accuracy, and cost effectiveness. However, these emerging technologies have a lot to do with detection of a specific event, contamination of different events and determination of fusion as well as stacked gene protein are the critical issues to be addressed in future.
Collapse
Affiliation(s)
- Ibrahim B. Salisu
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Jigawa, Nigeria
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad A. Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Kamran S. Bajwa
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Q. Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
27
|
Arenas M, Pereira F, Oliveira M, Pinto N, Lopes AM, Gomes V, Carracedo A, Amorim A. Forensic genetics and genomics: Much more than just a human affair. PLoS Genet 2017; 13:e1006960. [PMID: 28934201 PMCID: PMC5608170 DOI: 10.1371/journal.pgen.1006960] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While traditional forensic genetics has been oriented towards using human DNA in criminal investigation and civil court cases, it currently presents a much wider application range, including not only legal situations sensu stricto but also and, increasingly often, to preemptively avoid judicial processes. Despite some difficulties, current forensic genetics is progressively incorporating the analysis of nonhuman genetic material to a greater extent. The analysis of this material-including other animal species, plants, or microorganisms-is now broadly used, providing ancillary evidence in criminalistics in cases such as animal attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent food composition, among many others. Here, we explore how nonhuman forensic genetics is being revolutionized by the increasing variety of genetic markers, the establishment of faster, less error-burdened and cheaper sequencing technologies, and the emergence and improvement of models, methods, and bioinformatics facilities.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipe Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nadia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Veronica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Angel Carracedo
- Institute of Forensic Sciences Luis Concheiro, University of Santiago de Compostela, Santiago de Compostela, Spain
- Genomics Medicine Group, CIBERER, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Nadal A, De Giacomo M, Einspanier R, Kleter G, Kok E, McFarland S, Onori R, Paris A, Toldrà M, van Dijk J, Wal JM, Pla M. Exposure of livestock to GM feeds: Detectability and measurement. Food Chem Toxicol 2017; 117:13-35. [PMID: 28847764 DOI: 10.1016/j.fct.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
This review explores the possibilities to determine livestock consumption of genetically modified (GM) feeds/ingredients including detection of genetically modified organism (GMO)-related DNA or proteins in animal samples, and the documentary system that is in place for GM feeds under EU legislation. The presence and level of GMO-related DNA and proteins can generally be readily measured in feeds, using established analytical methods such as polymerase chain reaction and immuno-assays, respectively. Various technical challenges remain, such as the simultaneous detection of multiple GMOs and the identification of unauthorized GMOs for which incomplete data on the inserted DNA may exist. Given that transfer of specific GMO-related DNA or protein from consumed feed to the animal had seldom been observed, this cannot serve as an indicator of the individual animal's prior exposure to GM feeds. To explore whether common practices, information exchange and the specific GM feed traceability system in the EU would allow to record GM feed consumption, the dairy chain in Catalonia, where GM maize is widely grown, was taken as an example. It was thus found that this system would neither enable determination of an animal's consumption of specific GM crops, nor would it allow for quantitation of the exposure.
Collapse
Affiliation(s)
- Anna Nadal
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain.
| | - Marzia De Giacomo
- Department of Veterinary Public Health and Food Safety, GMO and Mycotoxins Unit, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Gijs Kleter
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Esther Kok
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Sarah McFarland
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Roberta Onori
- Department of Veterinary Public Health and Food Safety, GMO and Mycotoxins Unit, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alain Paris
- Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, UMR7245 MCAM, Paris, France
| | - Mònica Toldrà
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| | - Jeroen van Dijk
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Jean-Michel Wal
- AgroParisTech, Institut National de la Recherche Agronomique (INRA), Paris, France
| | - Maria Pla
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| |
Collapse
|
29
|
Košir AB, Spilsberg B, Holst-Jensen A, Žel J, Dobnik D. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Sci Rep 2017; 7:8601. [PMID: 28819142 PMCID: PMC5561262 DOI: 10.1038/s41598-017-09377-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/25/2017] [Indexed: 11/30/2022] Open
Abstract
Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.
Collapse
Affiliation(s)
- Alexandra Bogožalec Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia.
- Josef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | - Bjørn Spilsberg
- Norwegian Veterinary Institute, P.O. box 750 Sentrum, 0106, Oslo, Norway
| | - Arne Holst-Jensen
- Norwegian Veterinary Institute, P.O. box 750 Sentrum, 0106, Oslo, Norway
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
30
|
Van Eenennaam AL, Young AE. Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs. J Anim Sci 2017; 95:3247-3269. [PMID: 28727079 DOI: 10.2527/jas.2016.1346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Products such as meat, milk, and eggs from animals that have consumed genetically engineered (GE) feed are not currently subject to mandatory GE labeling requirements. Some voluntary "non-genetically modified organism" labeling has been associated with such products, indicating that the animals were not fed GE crops, as there are no commercialized GE food animals. This review summarizes the available scientific literature on the detection of dietary DNA and protein in animal products and briefly discusses the implications of mandatory GE labeling for products from animals that have consumed GE feed. Because glyphosate is used on some GE crops, the available studies on glyphosate residues in animal products are also reviewed. In GE crops, recombinant DNA (rDNA) makes up a small percentage of the plant's total DNA. The final amount of DNA in food/feed depends on many factors including the variable number and density of cells in the edible parts, the DNA-containing matrix, environmental conditions, and the specific transgenic event. Processing treatments and animals' digestive systems degrade DNA into small fragments. Available reports conclude that endogenous DNA and rDNA are processed in exactly the same way in the gastrointestinal tract and that they account for a very small proportion of food intake by weight. Small pieces of high copy number endogenous plant genes have occasionally been detected in meat and milk. Similarly sized pieces of rDNA have also been identified in meat, primarily fish, although detection is inconsistent. Dietary rDNA fragments have not been detected in chicken or quail eggs or in fresh milk from cows or goats. Collectively, studies have failed to identify full-length endogenous or rDNA transcripts or recombinant proteins in meat, milk, or eggs. Similarly, because mammals do not bioaccumulate glyphosate and it is rapidly excreted, negligible levels of glyphosate in cattle, pig and poultry meat, milk, and eggs have been reported. Despite consumer concern about the presence of trace concentrations of glyphosate that might have been applied to feed crops and/or the presence of rDNA or recombinant proteins in meat, milk, and eggs, the available data do not provide evidence to suggest that products from animals that have consumed approved GE feed crops differ in any distinguishable way from those derived from animals fed conventional feed or that products from animals fed GE feedstuffs pose novel health risks.
Collapse
|
31
|
Cheng N, Shang Y, Xu Y, Zhang L, Luo Y, Huang K, Xu W. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens Bioelectron 2017; 91:408-416. [PMID: 28064126 DOI: 10.1016/j.bios.2016.12.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 11/26/2022]
Abstract
Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods.
Collapse
Affiliation(s)
- Nan Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ying Shang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuancong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Li Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
32
|
Inter-laboratory studies for the validation of two singleplex (tE9 and pea lectin) and one duplex (pat/bar) real-time PCR methods for GMO detection. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Bohanec M, Boshkoska BM, Prins TW, Kok EJ. SIGMO: A decision support System for Identification of genetically modified food or feed products. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Droplet digital PCR for routine analysis of genetically modified foods (GMO) – A comparison with real-time quantitative PCR. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Tung HY, Wang SH, Chiang YC, Tsai MS. Rapid screening of roundup ready soybean in food samples by a hand-held PCR device. Food Sci Biotechnol 2016; 25:1101-1107. [PMID: 30263381 DOI: 10.1007/s10068-016-0177-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/10/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023] Open
Abstract
Insulated isothermal PCR (iiPCR) method was recently available for rapid on-site detection of roundup ready soybean (RRS; event GTS40-3-2) in food materials and products. Performance of this method was evaluated in this study. The 100% detection endpoint for the RRS by iiPCR was found in samples containing 0.1% RRS, equivalent to the results of the reference real-time PCR (rtPCR). Analysis of nucleic acids of soybean-based processed food products indicated 95% agreement between the iiPCR and rtPCR for RRS detection. By testing soybean milk and tofu samples using simple pretreatment methods, we found that the agreements between iiPCR and rtPCR methods of the aforementioned samples were 80% and 90%, respectively. Replicated tests of all discrepant samples implied that these samples had trace amounts of RRS, suggesting that the iiPCR system is more sensitive than the rtPCR method. In conclusion, the iiPCR technology can be a useful point-of-need tool to help make a timely decision in the consumption of genetically modified organisms.
Collapse
Affiliation(s)
- Hsiang-Yun Tung
- 1College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan, 51591 China
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan, 402 China
| | - Yu-Cheng Chiang
- Department of Food Science and Technology, Hung Kuang University, Taichung, Taiwan, 43302 China
| | - Ming-Shiun Tsai
- 1College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan, 51591 China
- 4Department of BioIndustry Technology, Da-Yeh University, Changhua, Taiwan, 51591 China
| |
Collapse
|
36
|
Li Y, Sun L, Liu Q, Han E, Hao N, Zhang L, Wang S, Cai J, Wang K. Photoelectrochemical CaMV35S biosensor for discriminating transgenic from non-transgenic soybean based on SiO 2@CdTe quantum dots core-shell nanoparticles as signal indicators. Talanta 2016; 161:211-218. [PMID: 27769398 DOI: 10.1016/j.talanta.2016.08.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 01/18/2023]
Abstract
A methodology for detection of the Cauliflower Mosaic Virus 35S(CaMV35S) promoter was developed to distinguish transgenic from non-transgenic soybean samples by using photoelectrochemical (PEC) biosensor. In this PEC biosensing system, the as-prepared gold nanoparticles-reduced graphene oxide acted as a nanocarrier to immobilize the thiol-functional probe (probe1), and the SiO2@CdTe quantum dots (QDs) core-shell nanoparticles tagged with the amino-functional probe (probe2) acted as signal indicators, respectively. In the presence of target DNA (tDNA) of CaMV35S, the binding of tDNA with probe1 and probe2 through the high specific DNA hybridization led to the fabrication of sandwich structure, and thus the high loading of the signal indicators SiO2@CdTe QDs at the electrode surface, which increased the PEC signal. The increased PEC signal depended on the concentration of tDNA, and a wide linear range from 0.1pM to 0.5nM with low detection limit of 0.05pM was obtained. In addition, the PEC biosensor has been successfully used for discriminating transgenic soybean from non-transgenic samples, which was consistent with the polymerase chain reaction (PCR) results, suggesting the proposed PEC biosensor is a feasible tool for the further daily genetically modified organism detection.
Collapse
Affiliation(s)
- Yaqi Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Li Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Liuping Zhang
- Sinograin Zhenjiang Grains & Oils Quality Testing Center Co. Ltd., Zhenjiang, 212000 PR China
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| |
Collapse
|
37
|
Dong S, Zhang C, Zhang X, Liu Y, Zhong J, Xie Y, Xu C, Ding Y, Zhang L, Liu X. Production and Characterization of Monoclonal Antibody Broadly Recognizing Cry1 Toxins by Use of Designed Polypeptide as Hapten. Anal Chem 2016; 88:7023-32. [DOI: 10.1021/acs.analchem.6b00429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sa Dong
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Cunzheng Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Xiao Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Yuan Liu
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Jianfeng Zhong
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Yajing Xie
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Chongxin Xu
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Ying Ding
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Liuquan Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Xianjin Liu
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
38
|
Turkec A, Lucas SJ, Karacanli B, Baykut A, Yuksel H. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms (GMOs). Food Chem 2016; 194:399-409. [PMID: 26471572 DOI: 10.1016/j.foodchem.2015.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022]
Abstract
Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration.
Collapse
Affiliation(s)
- Aydin Turkec
- Uludag University Plant and Animal Production Department, Mustafa Kemalpasa Vocational School, 16500 Bursa, Turkey.
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre, Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey.
| | - Burçin Karacanli
- Elips Health Products Ltd., Ataturk mh. Namık Kemal Cd no: 17, Tan Plaza, Atasehir, Istanbul, Turkey
| | - Aykut Baykut
- Elips Health Products Ltd., Ataturk mh. Namık Kemal Cd no: 17, Tan Plaza, Atasehir, Istanbul, Turkey
| | - Hakki Yuksel
- Elips Health Products Ltd., Ataturk mh. Namık Kemal Cd no: 17, Tan Plaza, Atasehir, Istanbul, Turkey
| |
Collapse
|
39
|
Analysis of Genetically Modified Organisms by Pyrosequencing on a Portable Photodiode-Based Bioluminescence Sequencer. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3308-2_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Wan J, Song L, Wu Y, Brzoska P, Keys D, Chen C, Valliyodan B, Shannon JG, Nguyen HT. Application of Digital PCR in the Analysis of Transgenic Soybean Plants. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abb.2016.710039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Developing a matrix reference material for screening of transgenic rice. Anal Bioanal Chem 2015; 407:9153-63. [PMID: 26462921 DOI: 10.1007/s00216-015-9081-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
Certified reference materials (CRMs) that are compatible with detection methods are needed to detect genetically modified organisms (GMOs). Screening is the first detection step in determining the possible presence of GMO ingredients in food or feed; however, screening has been hindered by the lack of GMO CRMs. In this study, transgenic rice materials were developed via the transformation of a construct harboring 11 commonly used screening elements. Digital PCR was utilized to identify a homozygous single-copy line termed SDrice. The qualitative detections of 11 elements in 21 transgenic materials demonstrated that the genomic DNA of the SDrice was suitable for use as a positive control in the screening of GMO ingredients. The suitability of SDrice as reference material was further checked by testing the sensitivity of 11 known conventional PCR assays, ranging from 10 to 50 copies of the SDrice genome. The standard curves that were created using SDrice DNA series as calibrators all exhibited good linearities in the relationships of the Ct values with the template copy numbers in these 11 real-time PCR assays. The LODs of the real-time PCR assays were estimated to be two to five copies of the SDrice genome. Comparisons of the SDrice with other GM rice revealed that significant differences existed in both the intercepts of the standard curves and the ΔCt values of the exogenous and reference genes for the P-35S, T-nos, HPT, T-35S, and Bar assays; the SDrice was not fit for quantification of other GM rice events. This study provided a matrix reference material (RM) that was suitable for screening GM rice, determination of sensitivity and a LOD of PCR assays, and overcame some of the drawbacks of plasmid DNA as reference material.
Collapse
|
42
|
Pauwels K, De Keersmaecker SC, De Schrijver A, du Jardin P, Roosens NH, Herman P. Next-generation sequencing as a tool for the molecular characterisation and risk assessment of genetically modified plants: Added value or not? Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Evaluation of Systems for Nopaline Synthase Terminator in Fast and Standard Real-Time PCR to Screen Genetically Modified Organisms. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0283-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Wang X, Chen X, Xu J, Dai C, Shen W. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes. Food Chem Toxicol 2015; 84:89-98. [PMID: 26277627 DOI: 10.1016/j.fct.2015.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/20/2015] [Accepted: 08/11/2015] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed.
Collapse
Affiliation(s)
- Xiaofu Wang
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyun Chen
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junfeng Xu
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chen Dai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Multiplex PCR system to track authorized and unauthorized genetically modified soybean events in food and feed. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Lievens A, Petrillo M, Querci M, Patak A. Genetically modified animals: Options and issues for traceability and enforcement. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Datukishvili N, Kutateladze T, Gabriadze I, Bitskinashvili K, Vishnepolsky B. New multiplex PCR methods for rapid screening of genetically modified organisms in foods. Front Microbiol 2015; 6:757. [PMID: 26257724 PMCID: PMC4513241 DOI: 10.3389/fmicb.2015.00757] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.
Collapse
Affiliation(s)
- Nelly Datukishvili
- Ivane Beritashvili Center of Experimental Biomedicine Tbilisi, Georgia ; Faculty of Natural Sciences and Engineering, Ilia State University Tbilisi, Georgia
| | | | - Inga Gabriadze
- Ivane Beritashvili Center of Experimental Biomedicine Tbilisi, Georgia
| | - Kakha Bitskinashvili
- Faculty of Natural Sciences and Engineering, Ilia State University Tbilisi, Georgia
| | | |
Collapse
|
48
|
Manzanares-Palenzuela CL, de-Los-Santos-Álvarez N, Lobo-Castañón MJ, López-Ruiz B. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean. Biosens Bioelectron 2015; 68:259-265. [PMID: 25590971 DOI: 10.1016/j.bios.2015.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 11/26/2022]
Abstract
Current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) with a minimum content of 0.9% would benefit from the availability of reliable and rapid methods to detect and quantify DNA sequences specific for GMOs. Different genosensors have been developed to this aim, mainly intended for GMO screening. A remaining challenge, however, is the development of genosensing platforms for GMO quantification, which should be expressed as the number of event-specific DNA sequences per taxon-specific sequences. Here we report a simple and sensitive multiplexed electrochemical approach for the quantification of Roundup-Ready Soybean (RRS). Two DNA sequences, taxon (lectin) and event-specific (RR), are targeted via hybridization onto magnetic beads. Both sequences are simultaneously detected by performing the immobilization, hybridization and labeling steps in a single tube and parallel electrochemical readout. Hybridization is performed in a sandwich format using signaling probes labeled with fluorescein isothiocyanate (FITC) or digoxigenin (Dig), followed by dual enzymatic labeling using Fab fragments of anti-Dig and anti-FITC conjugated to peroxidase or alkaline phosphatase, respectively. Electrochemical measurement of the enzyme activity is finally performed on screen-printed carbon electrodes. The assay gave a linear range of 2-250 pM for both targets, with LOD values of 650 fM (160 amol) and 190 fM (50 amol) for the event-specific and the taxon-specific targets, respectively. Results indicate that the method could be applied for GMO quantification below the European labeling threshold level (0.9%), offering a general approach for the rapid quantification of specific GMO events in foods.
Collapse
Affiliation(s)
- C Lorena Manzanares-Palenzuela
- Sección Departamental de Química Analítica, Universidad Complutense de Madrid, Pz Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Beatriz López-Ruiz
- Sección Departamental de Química Analítica, Universidad Complutense de Madrid, Pz Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
49
|
Electrochemical genosensors as innovative tools for detection of genetically modified organisms. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Turkec A, Kazan H, Baykut A, Lucas SJ. Evalution of DNA extraction methods in order to monitor genetically modified materials in soy foodstuffs and feeds commercialised in Turkey by multiplex real-time PCR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:386-92. [PMID: 24816675 DOI: 10.1002/jsfa.6731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Soybean is one of the most important biotech crops, widely used as an ingredient in both foodstuffs and feed. DNA extraction methods have been evaluated to detect the presence of genetically modified (GM) materials in soya-containing food and feed products commercialised in Turkey. RESULTS All extraction methods performed well for the majority of soya foods and feed products analysed. However, the most successful method varied between different products; the Foodproof, Genespin and the cetyltrimethylammonium bromide (CTAB) methods each produced the highest DNA yield and purity for different soya foodstuffs and feeds. Of the samples tested, 20% were positive for the presence of at least two GM elements (35S/NOS) while 11% contained an additional GM element (35S/NOS/FMV). Of the tested products, animal feeds showed a larger prevalence of GM material (50%) than the soya-containing foodstuffs (13%). CONCLUSION The best performing extraction methods proved to be the Foodproof, Genespin and CTAB methods for soya-containing food and feed products. The results obtained herein clearly demonstrate the presence of GM soybean in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of soy-containing food and feed products.
Collapse
Affiliation(s)
- Aydin Turkec
- Department of Plant and Animal Production, Vocational School of Mustafakemalpasa, University of Uludag, 16500, Bursa, Turkey
| | | | | | | |
Collapse
|