• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4670600)   Today's Articles (98)
For: Flohé L. The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases. Biotechnol Adv 2011;30:294-301. [PMID: 21620942 DOI: 10.1016/j.biotechadv.2011.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Number Cited by Other Article(s)
1
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024;29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]  Open
2
Castro H, Rocha MI, Duarte M, Vilurbina J, Gomes-Alves AG, Leao T, Dias F, Morgan B, Deponte M, Tomás AM. The cytosolic hyperoxidation-sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biol 2024;71:103122. [PMID: 38490068 PMCID: PMC10955670 DOI: 10.1016/j.redox.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]  Open
3
Zaman N, Azam SS. Quantum Dynamics and Bi Metal Force Field Parameterization Yielding Significant Antileishmanial Targets. J Chem Inf Model 2023;63:1371-1385. [PMID: 36730993 DOI: 10.1021/acs.jcim.2c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
4
Lobo-Rojas Á, Quintero-Troconis E, Rondón-Mercado R, Pérez-Aguilar. MC, Concepción JL, Cáceres AJ. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022;11:1174. [PMID: 36297231 PMCID: PMC9611177 DOI: 10.3390/pathogens11101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]  Open
5
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022;117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
6
Saccoliti F, Di Santo R, Costi R. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem 2020;15:2420-2435. [PMID: 32805075 DOI: 10.1002/cmdc.202000325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Indexed: 01/28/2023]
7
González-Chávez Z, Vázquez C, Moreno-Sánchez R, Saavedra E. Metabolic Control Analysis for Drug Target Prioritization in Trypanosomatids. Methods Mol Biol 2020;2116:689-718. [PMID: 32221950 DOI: 10.1007/978-1-0716-0294-2_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
8
Saavedra E, González-Chávez Z, Moreno-Sánchez R, Michels PA. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling. Curr Med Chem 2019;26:6652-6671. [DOI: 10.2174/0929867325666180917104242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
9
Oligomerization dynamics and functionality of Trypanosoma cruzi cytosolic tryparedoxin peroxidase as peroxidase and molecular chaperone. Biochim Biophys Acta Gen Subj 2019;1863:1583-1594. [DOI: 10.1016/j.bbagen.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022]
10
Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity. Redox Biol 2019;26:101231. [PMID: 31203195 PMCID: PMC6581782 DOI: 10.1016/j.redox.2019.101231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]  Open
11
Kumar A, Chauhan N, Singh S. Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach. Front Cell Infect Microbiol 2019;9:15. [PMID: 30778378 PMCID: PMC6369582 DOI: 10.3389/fcimb.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022]  Open
12
Tiwari N, Tanwar N, Munde M. Molecular insights into trypanothione reductase-inhibitor interaction: A structure-based review. Arch Pharm (Weinheim) 2018;351:e1700373. [DOI: 10.1002/ardp.201700373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 11/06/2022]
13
Biochemistry and Physiology of Reactive Oxygen Species in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017;979:47-64. [PMID: 28429317 DOI: 10.1007/978-3-319-54910-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
14
Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei. PLoS Pathog 2017;13:e1006477. [PMID: 28742144 PMCID: PMC5542689 DOI: 10.1371/journal.ppat.1006477] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 06/17/2017] [Indexed: 12/21/2022]  Open
15
Singh K, Ali V, Pratap Singh K, Gupta P, Suman SS, Ghosh AK, Bimal S, Pandey K, Das P. Deciphering the interplay between cysteine synthase and thiol cascade proteins in modulating Amphotericin B resistance and survival of Leishmania donovani under oxidative stress. Redox Biol 2017;12:350-366. [PMID: 28288415 PMCID: PMC5349463 DOI: 10.1016/j.redox.2017.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022]  Open
16
da Rosa R, de Moraes MH, Zimmermann LA, Schenkel EP, Steindel M, Bernardes LSC. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur J Med Chem 2017;128:25-35. [PMID: 28152426 DOI: 10.1016/j.ejmech.2017.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/18/2016] [Accepted: 01/21/2017] [Indexed: 12/23/2022]
17
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016;95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 542] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
18
Leroux AE, Krauth-Siegel RL. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol 2016;206:67-74. [DOI: 10.1016/j.molbiopara.2015.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023]
19
Netto LES, de Oliveira MA, Tairum CA, da Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res 2016;50:206-45. [DOI: 10.3109/10715762.2015.1120864] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
20
Beig M, Oellien F, Garoff L, Noack S, Krauth-Siegel RL, Selzer PM. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl Trop Dis 2015;9:e0003773. [PMID: 26042772 PMCID: PMC4456413 DOI: 10.1371/journal.pntd.0003773] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/21/2015] [Indexed: 12/04/2022]  Open
21
O’Sullivan MC, Durham TB, Valdes HE, Dauer KL, Karney NJ, Forrestel AC, Bacchi CJ, Baker JF. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg Med Chem 2015;23:996-1010. [DOI: 10.1016/j.bmc.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/04/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
22
González-Chávez Z, Olin-Sandoval V, Rodíguez-Zavala JS, Moreno-Sánchez R, Saavedra E. Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target. Biochim Biophys Acta Gen Subj 2015;1850:263-73. [DOI: 10.1016/j.bbagen.2014.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
23
Sousa AF, Gomes-Alves AG, Benítez D, Comini MA, Flohé L, Jaeger T, Passos J, Stuhlmann F, Tomás AM, Castro H. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Free Radic Biol Med 2014;73:229-38. [PMID: 24853758 DOI: 10.1016/j.freeradbiomed.2014.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
24
Maiwald F, Benítez D, Charquero D, Dar MA, Erdmann H, Preu L, Koch O, Hölscher C, Loaëc N, Meijer L, Comini MA, Kunick C. 9- and 11-Substituted 4-azapaullones are potent and selective inhibitors of African trypanosoma. Eur J Med Chem 2014;83:274-83. [PMID: 24973661 DOI: 10.1016/j.ejmech.2014.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
25
Equbal A, Suman SS, Anwar S, Singh KP, Zaidi A, Sardar AH, Das P, Ali V. Stage-dependent expression and up-regulation of trypanothione synthetase in amphotericin B resistant Leishmania donovani. PLoS One 2014;9:e97600. [PMID: 24901644 PMCID: PMC4046939 DOI: 10.1371/journal.pone.0097600] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/22/2014] [Indexed: 11/27/2022]  Open
26
Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Future Med Chem 2014;5:1861-75. [PMID: 24144416 DOI: 10.4155/fmc.13.146] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]  Open
27
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014;74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
28
Leroux AE, Haanstra JR, Bakker BM, Krauth-Siegel RL. Dissecting the catalytic mechanism of Trypanosoma brucei trypanothione synthetase by kinetic analysis and computational modeling. J Biol Chem 2013;288:23751-64. [PMID: 23814051 PMCID: PMC3745322 DOI: 10.1074/jbc.m113.483289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
29
Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta Gen Subj 2013;1830:3199-216. [DOI: 10.1016/j.bbagen.2013.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/21/2022]
30
Koch O, Cappel D, Nocker M, Jäger T, Flohé L, Sotriffer CA, Selzer PM. Molecular dynamics reveal binding mode of glutathionylspermidine by trypanothione synthetase. PLoS One 2013;8:e56788. [PMID: 23451087 PMCID: PMC3581523 DOI: 10.1371/journal.pone.0056788] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022]  Open
31
Soares CO, Colli W, Bechara EJ, Alves MJM. 1,4-Diamino-2-butanone, a putrescine analogue, promotes redox imbalance in Trypanosoma cruzi and mammalian cells. Arch Biochem Biophys 2012;528:103-10. [DOI: 10.1016/j.abb.2012.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
32
Fiorillo A, Colotti G, Boffi A, Baiocco P, Ilari A. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway. PLoS Negl Trop Dis 2012;6:e1781. [PMID: 22928053 PMCID: PMC3424247 DOI: 10.1371/journal.pntd.0001781] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/03/2012] [Indexed: 12/20/2022]  Open
33
Flohé L. The trypanothione system and its implications in the therapy of trypanosomatid diseases. Int J Med Microbiol 2012;302:216-20. [PMID: 22889611 DOI: 10.1016/j.ijmm.2012.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA