1
|
Congenital Stationary Night Blindness: Clinical and Genetic Features. Int J Mol Sci 2022; 23:ijms232314965. [PMID: 36499293 PMCID: PMC9740538 DOI: 10.3390/ijms232314965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/22/2022] [Accepted: 10/29/2022] [Indexed: 12/03/2022] Open
Abstract
Congenital stationary night blindness (CSNB) is an inherited retinal disease (IRD) that causes night blindness in childhood with heterogeneous genetic, electrophysical, and clinical characteristics. The development of sequencing technologies and gene therapy have increased the ease and urgency of diagnosing IRDs. This study describes seven Taiwanese patients from six unrelated families examined at a tertiary referral center, diagnosed with CSNB, and confirmed by genetic testing. Complete ophthalmic exams included best corrected visual acuity, retinal imaging, and an electroretinogram. The effects of identified novel variants were predicted using clinical details, protein prediction tools, and conservation scores. One patient had an autosomal dominant CSNB with a RHO variant; five patients had complete CSNB with variants in GRM6, TRPM1, and NYX; and one patient had incomplete CSNB with variants in CACNA1F. The patients had Riggs and Schubert-Bornschein types of CSNB with autosomal dominant, autosomal recessive, and X-linked inheritance patterns. This is the first report of CSNB patients in Taiwan with confirmed genetic testing, providing novel perspectives on molecular etiology and genotype-phenotype correlation of CSNB. Particularly, variants in TRPM1, NYX, and CACNA1F in our patient cohort have not previously been described, although their clinical significance needs further study. Additional study is needed for the genotype-phenotype correlation of different mutations causing CSNB. In addition to genetic etiology, the future of gene therapy for CSNB patients is reviewed and discussed.
Collapse
|
2
|
Hippert C, Graca AB, Basche M, Kalargyrou AA, Georgiadis A, Ribeiro J, Matsuyama A, Aghaizu N, Bainbridge JW, Smith AJ, Ali RR, Pearson RA. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration. Glia 2021; 69:2272-2290. [PMID: 34029407 DOI: 10.1002/glia.24034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Gliosis is a complex process comprising upregulation of intermediate filament (IF) proteins, particularly glial fibrillary acidic protein (GFAP) and vimentin, changes in glial cell morphology (hypertrophy) and increased deposition of inhibitory extracellular matrix molecules. Gliosis is common to numerous pathologies and can have deleterious effects on tissue function and regeneration. The role of IFs in gliosis is controversial, but a key hypothesized function is the stabilization of glial cell hypertrophy. Here, we developed RNAi approaches to examine the role of GFAP and vimentin in vivo in a murine model of inherited retinal degeneration, the Rhodopsin knockout (Rho-/- ) mouse. Specifically, we sought to examine the role of these IFs in the establishment of Müller glial hypertrophy during progressive degeneration, as opposed to (more commonly assessed) acute injury. Prevention of Gfap upregulation had a significant effect on the morphology of reactive Müller glia cells in vivo and, more strikingly, the reduction of Vimentin expression almost completely prevented these cells from undergoing degeneration-associated hypertrophy. Moreover, and in contrast to studies in knockout mice, simultaneous suppression of both GFAP and vimentin expression led to severe changes in the cytoarchitecture of the retina, in both diseased and wild-type eyes. These data demonstrate a crucial role for Vimentin, as well as GFAP, in the establishment of glial hypertrophy and support the further exploration of RNAi-mediated knockdown of vimentin as a potential therapeutic approach for modulating scar formation in the degenerating retina.
Collapse
Affiliation(s)
- Claire Hippert
- University College London Institute of Ophthalmology, London, UK
| | - Anna B Graca
- University College London Institute of Ophthalmology, London, UK
| | - Mark Basche
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Aikaterini A Kalargyrou
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | | | - Joana Ribeiro
- University College London Institute of Ophthalmology, London, UK
| | - Ayako Matsuyama
- University College London Institute of Ophthalmology, London, UK
| | - Nozie Aghaizu
- University College London Institute of Ophthalmology, London, UK
| | | | - Alexander J Smith
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
3
|
Ke Y, Fan X, Hao R, Dong L, Xue M, Tan L, Yang C, Li X, Ren X. Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Müller cell retrodifferentiation via HSP90. Stem Cell Res Ther 2021; 12:21. [PMID: 33413616 PMCID: PMC7792097 DOI: 10.1186/s13287-020-02034-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Retinal degenerative diseases remain the dominant causes of blindness worldwide, and cell replacement is viewed as a promising therapeutic direction. However, the resources of seed cells are hard to obtain. To further explore this therapeutic approach, human embryonic stem extracellular vesicles (hESEVs) were extracted from human embryonic stem cells (hESCs) to inspect its effect and the possible mechanism on retinal Müller cells and retinal function. Methods hESEVs were extracted by multi-step differential centrifugation, whose morphologies and specific biomarkers (TSG101, CD9, CD63, and CD81) were observed and measured. After hESEVs were injected into the vitreous cavity of RCS rats, the retinal tissues and retinal functions of rats were assessed. The alteration of Müller cells and retinal progenitor cells was also recorded. Microvesicles (MVs) or exosomes (EXOs) were extracted from hESCs transfected with sh-HSP90 or pcDNA3.1-HSP9, and then incubated with Müller cells to measure the uptake of EVs, MVs, or EXOs in Müller cells by immunofluorescence. The retrodifferentiation of Müller cells was determined by measuring Vimentin and CHX10. qRT-PCR and western blot were used to detect HSP90 expression in MVs and evaluate Oct4 level in Müller cells, and Co-IP to inspect the interaction of HSP90 and Oct4. Results RCS rats at the postnatal 30 days had increased retinal progenitor cells which were dedifferentiated from Müller cells. hESEVs were successfully extracted from hESCs, evidenced by morphology observation and positive expressions of specific biomarkers (TSG101, CD9, CD63, and CD81). hESEVs promoted Müller cells dedifferentiated and retrodifferentiated into retinal progenitor cells evidenced by the existence of a large amount of CHX10-positive cells in the retinal inner layer of RCS rats in response to hESEV injection. The promotive role of hESEVs was exerted by MVs demonstrated by elevated fluorescence intensity of CHX10 and suppressed Vimentin fluorescence intensity in MVs rather than in EXOs. HSP90 in MVs inhibited the retrodifferentiation of Müller cells and suppressed the expression level of Oct4 in Müller cells. Co-IP revealed that HSP90 can target Oct4 in Müller cells. Conclusion hESEVs could promote the retrodifferentiation of Müller cells into retinal progenitor cells by regulating the expression of Oct4 in Müller cells by HSP90 mediation in MVs.
Collapse
Affiliation(s)
- Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Xiaoe Fan
- Jincheng People's Hospital, Jincheng, 048000, Shanxi, People's Republic of China
| | - Rui Hao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Min Xue
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei, 230000, Anhui, People's Republic of China
| | - Liangzhang Tan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Chunbo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3 BZ, UK
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
4
|
Park YS, Kim Y, Kim SW, Kim IB. Light microscopic evidence of in vivo differentiation from the transplanted inferior turbinate-derived stem cell into the rod photoreceptor in degenerating retina of the mouse. Appl Microsc 2020; 50:11. [PMID: 33580384 PMCID: PMC7818368 DOI: 10.1186/s42649-020-00031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 12/02/2022] Open
Abstract
The human turbinate-derived mesenchymal stem cells (hTMSCs), which were DiI-labeled and transplanted into the subretinal space in degenerating mouse retina, were observed in retinal vertical sections processed for rhodopsin (a marker for rod photoreceptor) by confocal microscope with differential interference contrast (DIC) filters. The images clearly demonstrated that DiI-labeled hTMSCs have rhodopsin-immunoreactive appendages, indicating differentiation of transplanted hTMSC into rod photoreceptor. Conclusively, the finding suggests therapeutic potential of hTMSCs in retinal degeneration.
Collapse
Affiliation(s)
- Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Yeonji Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.,Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea. .,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea. .,Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
5
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
6
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
7
|
Baakdhah T, van der Kooy D. Expansion of retinal stem cells and their progeny using cell microcarriers in a bioreactor. Biotechnol Prog 2019; 35:e2800. [DOI: 10.1002/btpr.2800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/10/2019] [Accepted: 02/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tahani Baakdhah
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
| | - Derek van der Kooy
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
- Department of Molecular GeneticsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
8
|
McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats. Invest Ophthalmol Vis Sci 2019; 59:2586-2603. [PMID: 29847666 PMCID: PMC5968836 DOI: 10.1167/iovs.17-23646] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30–65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.
Collapse
Affiliation(s)
- Bryce T McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Anuradha Mathur
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Robert B Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Biju B Thomas
- University of Southern California Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical, Inc., Irvine, California, United States
| | | | - Magdalene J Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| |
Collapse
|
9
|
Tsai ELS, Ortin-Martinez A, Gurdita A, Comanita L, Yan N, Smiley S, Delplace V, Shoichet MS, Nickerson PEB, Wallace VA. Modeling of Photoreceptor Donor-Host Interaction Following Transplantation Reveals a Role for Crx, Müller Glia, and Rho/ROCK Signaling in Neurite Outgrowth. Stem Cells 2019; 37:529-541. [DOI: 10.1002/stem.2985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- En L. S. Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Nicole Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Sheila Smiley
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Vianney Delplace
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Philip E. B. Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Valerie A. Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
- Department of Ophthalmology and Vision Sciences; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
10
|
Pluripotent Stem Cells as Models of Retina Development. Mol Neurobiol 2019; 56:6056-6070. [DOI: 10.1007/s12035-019-1504-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|
11
|
Wu H, Li J, Mao X, Li G, Xie L, You Z. Transplantation of rat embryonic stem cell-derived retinal cells restores visual function in the Royal College of Surgeons rats. Doc Ophthalmol 2018; 137:71-78. [DOI: 10.1007/s10633-018-9648-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2018] [Indexed: 11/24/2022]
|
12
|
Waldron PV, Di Marco F, Kruczek K, Ribeiro J, Graca AB, Hippert C, Aghaizu ND, Kalargyrou AA, Barber AC, Grimaldi G, Duran Y, Blackford SJI, Kloc M, Goh D, Zabala Aldunate E, Sampson RD, Bainbridge JWB, Smith AJ, Gonzalez-Cordero A, Sowden JC, Ali RR, Pearson RA. Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. Stem Cell Reports 2018; 10:406-421. [PMID: 29307580 PMCID: PMC5830910 DOI: 10.1016/j.stemcr.2017.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022] Open
Abstract
Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.
Collapse
Affiliation(s)
- Paul V Waldron
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Fabiana Di Marco
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anna B Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Claire Hippert
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Nozie D Aghaizu
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Amanda C Barber
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Giulia Grimaldi
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Yanai Duran
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Magdalena Kloc
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Eduardo Zabala Aldunate
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robert D Sampson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
13
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision. J Neurosci 2017; 37:4635-4644. [PMID: 28373392 DOI: 10.1523/jneurosci.2570-16.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022] Open
Abstract
Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring.SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support the idea that bipolar cells might be able to synapse with reintroduced photoreceptors, thereby restoring vision in patients blinded by retinal degeneration.
Collapse
|
15
|
Rao MB, Didiano D, Patton JG. Neurotransmitter-Regulated Regeneration in the Zebrafish Retina. Stem Cell Reports 2017; 8:831-842. [PMID: 28285877 PMCID: PMC5390103 DOI: 10.1016/j.stemcr.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/26/2023] Open
Abstract
Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG)-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA) signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas.
Collapse
Affiliation(s)
- Mahesh B Rao
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA
| | - Dominic Didiano
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA.
| |
Collapse
|
16
|
Experimental Study of the Biological Properties of Human Embryonic Stem Cell-Derived Retinal Progenitor Cells. Sci Rep 2017; 7:42363. [PMID: 28205557 PMCID: PMC5304228 DOI: 10.1038/srep42363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/09/2017] [Indexed: 01/16/2023] Open
Abstract
Retinal degenerative diseases are among the leading causes of blindness worldwide, and cell replacement is considered as a promising therapeutic. However, the resources of seed cells are scarce. To further explore this type of therapy, we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore, we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats. We quantified the thickness of the treated rats' outer nuclear layers (ONLs) and explored the visual function via electroretinography (ERG). It was found that the differentiated cells expressed RPC markers and photoreceptor progenitor markers. The transplanted RPCs survived for at least 12 weeks, resulting in beneficial effects on the morphology of the host retina, and led to a significant improvement in the visual function of the treated animals. These therapeutic effects suggest that the hESCs-derived RPCs could delay degeneration of the retina and partially restore visual function.
Collapse
|
17
|
Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DHW, Lako M. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater 2017; 49:329-343. [PMID: 27826002 DOI: 10.1016/j.actbio.2016.11.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. STATEMENT OF SIGNIFICANCE The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs, whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented, neural or epithelial tissue.
Collapse
Affiliation(s)
- Nicola C Hunt
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Ayesha Karimi
- Cumberland Infirmary, North Cumbria University Hospitals NHS Trust, Carlisle CA2 7HY, UK
| | - Carla B Mellough
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Jinju Chen
- School of Mechanical & Systems Engineering, Stephenson Building, Newcastle University, Newcastle upon Tyne, UK.
| | - David H W Steel
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK; Sunderland Eye Infirmary, Queen Alexandra Road, Sunderland SR2 9HP, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| |
Collapse
|
18
|
Chen X, Chen Z, Li Z, Zhao C, Zeng Y, Zou T, Fu C, Liu X, Xu H, Yin ZQ. Grafted c-kit +/SSEA1 - eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses. Stem Cell Res Ther 2016; 7:191. [PMID: 28038685 PMCID: PMC5203726 DOI: 10.1186/s13287-016-0451-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Methods Eye-wall c-kit+/stage-specific embryonic antigen 1 (SSEA1)− cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit+/SSEA1− cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Results Eye-wall c-kit+/SSEA1− cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit+/SSEA1− cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit+/SSEA1− cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit+/SSEA1− cells were capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit+/SSEA1− cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Conclusions Grafted c-kit+/SSEA1− cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.,School of Medicine, Nankai University, Tianjin, 300071, China.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zehua Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Chen Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
19
|
Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 2016; 7:13029. [PMID: 27701378 PMCID: PMC5059468 DOI: 10.1038/ncomms13029] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. Transplantation of healthy photoreceptor cells has been shown to rescue blindness. Here, the authors show that rather than donor cells integrating into the host retina, the predominant mechanism underlying this rescue involves exchange of cytoplasmic material between donor and host cells in vivo.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The following review will provide an update on stem cell therapy with a focus on completed and ongoing human trials. RECENT FINDINGS Significant progress has brought stem cell therapy from proof-of-concept animal models to human clinical trials. Although in its infancy, valuable safety and efficacy data are starting to emerge from trials looking at cell therapies for age-related macular degeneration, Stargardt's macular dystrophy, retinitis pigmentosa, and ischemic retinopathies. SUMMARY Although clinical trials continue to enroll and evaluate stem cell therapy in patients with retinal diseases, preliminary results using both cellular replacement and trophic models have provided initial support for this exciting therapy. Results of these pivotal trials will form a key foundation for moving forward toward the ultimate goal of preventing blinding disease.
Collapse
|
21
|
Semo M, Haamedi N, Stevanato L, Carter D, Brooke G, Young M, Coffey P, Sinden J, Patel S, Vugler A. Efficacy and Safety of Human Retinal Progenitor Cells. Transl Vis Sci Technol 2016; 5:6. [PMID: 27486556 PMCID: PMC4959814 DOI: 10.1167/tvst.5.4.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. METHODS Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. RESULTS The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. CONCLUSIONS Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. TRANSLATIONAL RELEVANCE Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies.
Collapse
Affiliation(s)
- Ma'ayan Semo
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | - Nasrin Haamedi
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | | | - David Carter
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | | | - Michael Young
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, MA, USA
| | - Peter Coffey
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | | | | | - Anthony Vugler
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
22
|
Venugopalan P, Wang Y, Nguyen T, Huang A, Muller KJ, Goldberg JL. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun 2016; 7:10472. [PMID: 26843334 PMCID: PMC4742891 DOI: 10.1038/ncomms10472] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
Retinal ganglion cells (RGCs) degenerate in diseases like glaucoma and are not replaced in adult mammals. Here we investigate whether transplanted RGCs can integrate into the mature retina. We have transplanted GFP-labelled RGCs into uninjured rat retinas in vivo by intravitreal injection. Transplanted RGCs acquire the general morphology of endogenous RGCs, with axons orienting towards the optic nerve head of the host retina and dendrites growing into the inner plexiform layer. Preliminary data show in some cases GFP(+) axons extending within the host optic nerves and optic tract, reaching usual synaptic targets in the brain, including the lateral geniculate nucleus and superior colliculus. Electrophysiological recordings from transplanted RGCs demonstrate the cells' electrical excitability and light responses similar to host ON, ON-OFF and OFF RGCs, although less rapid and with greater adaptation. These data present a promising approach to develop cell replacement strategies in diseased retinas with degenerating RGCs.
Collapse
Affiliation(s)
- Praseeda Venugopalan
- Neuroscience Program, University of Miami, Miami, Florida 33136, USA.,Shiley Eye Center, University of California, San Diego, California 92093, USA
| | - Yan Wang
- Shiley Eye Center, University of California, San Diego, California 92093, USA
| | - Tu Nguyen
- Shiley Eye Center, University of California, San Diego, California 92093, USA
| | - Abigail Huang
- Shiley Eye Center, University of California, San Diego, California 92093, USA
| | - Kenneth J Muller
- Neuroscience Program, University of Miami, Miami, Florida 33136, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Jeffrey L Goldberg
- Neuroscience Program, University of Miami, Miami, Florida 33136, USA.,Shiley Eye Center, University of California, San Diego, California 92093, USA.,Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, California 94303, USA
| |
Collapse
|
23
|
Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp Eye Res 2016; 150:90-105. [PMID: 26808487 DOI: 10.1016/j.exer.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 01/14/2016] [Indexed: 02/02/2023]
Abstract
With a photoreceptor mosaic containing ∼85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human's. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal's status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina's remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As we continue to discover them, the unique ways by which ground squirrel retina responds to hibernation or injury may be adaptable to therapeutic use.
Collapse
|
24
|
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med 2016; 22:115-134. [PMID: 26791247 DOI: 10.1016/j.molmed.2015.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.
Collapse
Affiliation(s)
- Marco Zarbin
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
25
|
Abstract
Human induced pluripotent stem (hiPS) cells could be used as an unlimited source of retinal cells for the treatment of retinal degenerative diseases. Although much progress has been made in the differentiation of pluripotent stem cells towards different retinal lineages, the production of retinal cells from hiPS cells for therapeutic approaches require the development of easy and standardized protocols. In this chapter, we describe a simple and effective protocol for retinal differentiation of hiPS cells bypassing embryoid body formation and the use of exogenous molecules and substrates. In 2 weeks, confluent hiPS cells cultured in pro-neural medium can generate both retinal pigmented epithelial cells and self-forming neural retina-like structures containing retinal progenitor cells. These progenitors can be differentiated into all retinal cell types, including retinal ganglion cells and precursors of photoreceptors, which could find important applications in regenerative medicine. This differentiation system and the resulting hiPS-derived retinal cells will also offer opportunity to study the molecular and cellular mechanisms underlying human retinal development, and the establishment of in vitro models of human retinal degenerative diseases.
Collapse
Affiliation(s)
- Sacha Reichman
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, U968 , 17 Rue Moreau, 75012, Paris, France
- Université Pierre-et-Marie-Curie Paris 6, Sorbonne Universités, UMR S968 , Paris, France
- Centre National de la Recherche Scientifique, UMR 7210, Paris, France
| | - Olivier Goureau
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, U968 , 17 Rue Moreau, 75012, Paris, France.
- Université Pierre-et-Marie-Curie Paris 6, Sorbonne Universités, UMR S968 , Paris, France.
- Centre National de la Recherche Scientifique, UMR 7210, Paris, France.
| |
Collapse
|
26
|
Gamm DM, Wong R. Report on the National Eye Institute Audacious Goals Initiative: Photoreceptor Regeneration and Integration Workshop. Transl Vis Sci Technol 2015; 4:2. [PMID: 26629398 DOI: 10.1167/tvst.4.6.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023] Open
Abstract
The National Eye Institute (NEI) hosted a workshop on May 2, 2015, as part of the Audacious Goals Initiative (AGI) to foster a concerted effort to develop novel therapies for outer retinal diseases. The central goal of this initiative is to "demonstrate by 2025 the restoration of usable vision in humans through the regeneration of neurons and neural connections in the eye and visual system." More specifically, the AGI identified two neural retinal cell classes-ganglion cells and photoreceptors-as challenging, high impact targets for these efforts. A prior workshop and subsequent white paper provided a foundation to begin addressing issues regarding optic nerve regeneration, whereas the major objective of the May 2015 workshop was to review progress toward photoreceptor replacement and identify research gaps and barriers that are limiting advancement of the field. The present report summarizes that discussion and input, which was gathered from a panel of distinguished basic science and clinical investigators with diverse technical expertise and experience with different model systems. Four broad discussion categories were put forth during the workshop, each addressing a critical area of need in the pursuit of functional photoreceptor regeneration: (1) cell sources for photoreceptor regeneration, (2) cell delivery and/or integration, (3) outcome assessment, and (4) preclinical models and target patient populations. For each category, multiple challenges and opportunities for research discovery and tool production were identified and vetted. The present report summarizes the dialogue that took place and seeks to encourage continued interactions within the vision science community on this topic. It also serves as a guide for funding to support the pursuit of cell and circuit repair in diseases leading to photoreceptor degeneration.
Collapse
Affiliation(s)
- David M Gamm
- Department of Ophthalmology and Visual Sciences and McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
27
|
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release 2015; 219:652-668. [PMID: 26435454 DOI: 10.1016/j.jconrel.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.
Collapse
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Samantha Payne
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Molly Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
28
|
Ma J, Guo C, Guo C, Sun Y, Liao T, Beattie U, López FJ, Chen DF, Lashkari K. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival. PLoS One 2015; 10:e0125695. [PMID: 25923430 PMCID: PMC4414591 DOI: 10.1371/journal.pone.0125695] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/19/2015] [Indexed: 11/30/2022] Open
Abstract
We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma.
Collapse
Affiliation(s)
- Jie Ma
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Chenying Guo
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Caiwei Guo
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Yu Sun
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Tiffany Liao
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Ursula Beattie
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Francisco J. López
- Ophthalmology DPU, RD. Alternative Discovery & Development, GlaxoSmithKline, King of Prussia, PA, 19406, United States of America
| | - Dong Feng Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Kameran Lashkari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
30
|
Chapter 4 - Restoring Vision to the Blind: Stem Cells and Transplantation. Transl Vis Sci Technol 2015; 3:6. [PMID: 25653890 DOI: 10.1167/tvst.3.7.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
31
|
Chapter 8 - Restoring Vision to the Blind: Evaluating Visual Function, Endpoints. Transl Vis Sci Technol 2014; 3:10. [PMID: 25653894 PMCID: PMC4314989 DOI: 10.1167/tvst.3.7.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
32
|
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 2014; 1595:51-73. [PMID: 25446438 DOI: 10.1016/j.brainres.2014.11.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 1970s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia.
| | - Helen M Ackland
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Melbourne, Australia.
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA.
| |
Collapse
|
33
|
Reichman S, Sahel JA, Goureau O. Production de rétinesin vitroà partir de cellules pluripotentes humaines. Med Sci (Paris) 2014; 30:845-8. [DOI: 10.1051/medsci/20143010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Ogawa S, Takemura H, Horiguchi H, Terao M, Haji T, Pestilli F, Yeatman JD, Tsuneoka H, Wandell BA, Masuda Y. White matter consequences of retinal receptor and ganglion cell damage. Invest Ophthalmol Vis Sci 2014; 55:6976-86. [PMID: 25257055 DOI: 10.1167/iovs.14-14737] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Patients with Leber hereditary optic neuropathy (LHON) and cone-rod dystrophy (CRD) have central vision loss; but CRD damages the retinal photoreceptor layer, and LHON damages the retinal ganglion cell (RGC) layer. Using diffusion MRI, we measured how these two types of retinal damage affect the optic tract (ganglion cell axons) and optic radiation (geniculo-striate axons). METHODS Adult onset CRD (n = 5), LHON (n = 6), and healthy controls (n = 14) participated in the study. We used probabilistic fiber tractography to identify the optic tract and the optic radiation. We compared axial and radial diffusivity at many positions along the optic tract and the optic radiation. RESULTS In both types of patients, diffusion measures within the optic tract and the optic radiation differ from controls. The optic tract change is principally a decrease in axial diffusivity; the optic radiation change is principally an increase in radial diffusivity. CONCLUSIONS Both photoreceptor layer (CRD) and retinal ganglion cell (LHON) retinal disease causes substantial change in the visual white matter. These changes can be measured using diffusion MRI. The diffusion changes measured in the optic tract and the optic radiation differ, suggesting that they are caused by different biological mechanisms.
Collapse
Affiliation(s)
- Shumpei Ogawa
- Department of Psychology, Stanford University, Stanford, California, United States Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Takemura
- Department of Psychology, Stanford University, Stanford, California, United States Department of Psychology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiko Terao
- Department of Psychology, The University of Tokyo, Tokyo, Japan Tamagawa University Brain Science Institute, Machida, Japan
| | - Tomoki Haji
- Department of Ophthalmology, Atsugi City Hospital, Kanagawa, Japan
| | - Franco Pestilli
- Department of Psychology, Stanford University, Stanford, California, United States
| | - Jason D Yeatman
- Department of Psychology, Stanford University, Stanford, California, United States
| | - Hiroshi Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Brian A Wandell
- Department of Psychology, Stanford University, Stanford, California, United States
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan The Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
35
|
D'Orazi FD, Suzuki SC, Wong RO. Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 2014; 37:594-603. [PMID: 25156327 DOI: 10.1016/j.tins.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
Developing neuronal circuits often undergo a period of refinement to eliminate aberrant synaptic connections. Inappropriate connections can also form among surviving neurons during neuronal degeneration. The laminar organization of the vertebrate retina enables synaptic reorganization to be readily identified. Synaptic rearrangements are shown to help sculpt developing retinal circuits, although the mechanisms involved remain debated. Structural changes in retinal diseases can also lead to functional rewiring. This poses a major challenge to retinal repair because it may be necessary to untangle the miswired connections before reconnecting with proper synaptic partners. Here, we review our current understanding of the mechanisms that underlie circuit remodeling during retinal development, and discuss how alterations in connectivity during damage could impede circuit repair.
Collapse
Affiliation(s)
- Florence D D'Orazi
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Photoreceptor replacement therapy: Challenges presented by the diseased recipient retinal environment. Vis Neurosci 2014; 31:333-44. [DOI: 10.1017/s0952523814000200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractVision loss caused by the death of photoreceptors is the leading cause of irreversible blindness in the developed world. Rapid advances in stem cell biology and techniques in cell transplantation have made photoreceptor replacement by transplantation a very plausible therapeutic strategy. These advances include the demonstration of restoration of vision following photoreceptor transplantation and the generation of transplantable populations of donor cells from stem cells. In this review, we present a brief overview of the recent progress in photoreceptor transplantation. We then consider in more detail some of the challenges presented by the degenerating retinal environment that must play host to these transplanted cells, how these may influence transplanted photoreceptor cell integration and survival, and some of the progress in developing strategies to circumnavigate these issues.
Collapse
|