1
|
Zhu H, Xu G. Electrochemical biosensors for dopamine. Clin Chim Acta 2025; 566:120039. [PMID: 39550057 DOI: 10.1016/j.cca.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels. Consequently, the precise determination of DA levels in biological systems is critical for the accurate diagnosis and treatment of these disorders. Among all analytical techniques, electrochemical studies provide the most selective and highly sensitive methods for detecting DA in biological samples. Ascorbic acid and uric acid are two examples of small biomolecules that can obstruct the detection of DA in biological fluids. To address this issue, numerous attempts have been made to modify bare electrodes to separate the signals of these substances and enhance the electrocatalytic activity towards DA. Various surface modifiers, including coatings, conducting polymers, ionic liquids, nanomaterials, and inorganic complexes, have been employed in the modification process. Despite the reported success in DA detection using electrochemical sensors, many of these approaches are deemed too complex and costly for real-world applications. Therefore, this review aims to provide an overview of DA electrochemical biosensors that are practical for real-world applications.
Collapse
Affiliation(s)
- Hang Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, Fujian 351100, China.
| | - Guifen Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China
| |
Collapse
|
2
|
Han Y, Zhou W, Wu Y, Deng A, Yuan L, Gao Y, Li H, Wang Z, Wang B, Zhu G, Yang Z. Characterisation of a colourimetric biosensor SapYZUM13@Mn 3O 4-NH 2 reveals the mechanisms underlying its rapid and sensitive detection of viable Staphylococcus aureus in food. Food Chem 2024; 457:140189. [PMID: 38924910 DOI: 10.1016/j.foodchem.2024.140189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
In this study, a colourimetric biosensor based on bacteriophage SapYZUM13 and an aminated Mn3O4 (Mn3O4-NH2) nanozyme was constructed and evaluated for its ability to detect Staphylococcus aureus in food. The biosensor had a detection time of 20 min, with a detection limit of 2 × 101 CFU/mL and recovery rate of 92.42-106.96%, indicating its high reliability and accuracy in detecting the food pathogen. Mechanistically, SapYZUM13@Mn3O4-NH2 exhibited oxidase-mimicking capability, producing O2•- free radicals which oxidise 3,3',5,5'-tetramethylbenzidine (TMB) to yield blue-coloured oxTMB. In the presence of S. aureus, the oxidase activity decreased remarkably owing to shielding of the nanozyme active sites. Moreover, SapYZUM13@Mn3O4-NH2 could detect viable S. aureus from various sources, likely because of the special receptor-binding proteins of SapYZUM13 adsorbing to the wall teichoic acids on the S. aureus cell surface. Thus, SapYZUM13@Mn3O4-NH2 has broad application prospects for the detection of viable S. aureus in various foods.
Collapse
Affiliation(s)
- Yeling Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Yuhong Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aiping Deng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
3
|
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Iyengar KP, Jain VK, Rajendran RL, Gangadaran P. Nanomaterials in point-of-care diagnostics: Bridging the gap between laboratory and clinical practice. Pathol Res Pract 2024; 263:155685. [PMID: 39471524 DOI: 10.1016/j.prp.2024.155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
The integration of nanomaterials into biosensing technologies represents a paradigm shift in medical diagnostics and environmental monitoring, marking a significant advancement in the field. This comprehensive review examines the role of nanomaterials, such as gold nanoparticles, carbon nanotubes, graphene, and quantum dots, in enhancing the performance of biosensors. These nanomaterials contribute unique physical and chemical properties, including exceptional electrical, optical, and thermal conductivities, which significantly improve the sensitivity, specificity, and versatility of biosensors. The review provides an in-depth analysis of the mechanisms by which these nanomaterials enhance biosensor functionality, including increased surface-to-volume ratio, improved electron transfer rates, and enhanced signal transduction. The practical applications of these advanced biosensors are explored across various domains, including oncology, infectious diseases, diabetes management, cardiovascular health, and neurodegenerative conditions, emphasizing their role in early disease detection, real-time health monitoring, and personalized medicine. Furthermore, the review addresses the critical challenges and limitations facing the field, such as biocompatibility, biofouling, stability, and integration into existing healthcare systems. Strategies to overcome these challenges, including advanced material engineering and novel fabrication techniques, are discussed. The future of nanomaterial-based biosensors is envisioned through the lens of emerging trends and technological innovations. The integration with microfluidics, artificial intelligence, and wearable technology is highlighted as a path toward more personalized, efficient, and accessible healthcare solutions. This review underscores the transformative impact of nanomaterials in biosensing, projecting a future where these advanced technologies play a pivotal role in reshaping diagnostics, patient care, and environmental monitoring, thereby significantly enhancing healthcare and public health outcomes.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India.
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Karthikeyan P Iyengar
- Trauma and Orthopaedic Surgeon, Southport and Ormskirk Hospitals, Mersey and West Lancashire Teaching NHS Trust, Southport PR8 6PN, United Kingdom
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Eremin SA, Mukhametova LI, Krylov VB, Nifantiev NE. Fluorescence Polarization Assay for Infection Diagnostics: A Review. Molecules 2024; 29:4712. [PMID: 39407640 PMCID: PMC11478262 DOI: 10.3390/molecules29194712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Rapid and specific diagnosis is necessary for both the treatment and prevention of infectious diseases. Bacteria and viruses that enter the bloodstream can trigger a strong immune response in infected animals and humans. The fluorescence polarization assay (FPA) is a rapid and accurate method for detecting specific antibodies in the blood that are produced in response to infection. One of the first examples of FPA is the non-competitive test for detecting brucellosis in animals, which was followed by the development of other protocols for detecting various infections. Fluorescently labeled polysaccharides (in the case of brucellosis and salmonellosis) or specific peptides (in the case of tuberculosis and salmonellosis, etc.) can be used as biorecognition elements for detecting infections. The availability of new laboratory equipment and mobile devices for fluorescence polarization measurements outside the laboratory has stimulated the development of new fluorescence polarization assays (FPAs) and the emergence of commercial kits on the market for the detection of brucellosis, tuberculosis, and equine infectious anemia viruses. It has been shown that, in addition to antibodies, the FPA method can detect both viruses and nucleic acids. The development of more specific and sensitive biomarkers is essential for the diagnosis of infections and therapy monitoring. This review summarizes studies published between 2003 and 2023 that focus on the detection of infections using FPA. Furthermore, it demonstrates the potential for using new biorecognition elements (e.g., aptamers, proteins, peptides) and the combined use of FPA with new technologies, such as PCR and CRISPR/Cas12a systems, for detecting various infectious agents.
Collapse
Affiliation(s)
- Sergei A. Eremin
- Chemical Department, M.V. Lomonosov Moscow State University, Leninsky Gory, 1, 119991 Moscow, Russia;
| | - Liliya I. Mukhametova
- Chemical Department, M.V. Lomonosov Moscow State University, Leninsky Gory, 1, 119991 Moscow, Russia;
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| |
Collapse
|
5
|
Park BC, Soh JO, Choi HJ, Park HS, Lee SM, Fu HE, Kim MS, Ko MJ, Koo TM, Lee JY, Kim YK, Lee JH. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS NANO 2024; 18:12781-12794. [PMID: 38733343 DOI: 10.1021/acsnano.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.
Collapse
Affiliation(s)
- Bum Chul Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Jeong Ook Soh
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Biomedical Research Institute (HBRI), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Yadav AK, Basavegowda N, Shirin S, Raju S, Sekar R, Somu P, Uthappa UT, Abdi G. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol 2024:10.1007/s12033-024-01157-y. [PMID: 38703305 DOI: 10.1007/s12033-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38451, Republic of Korea
| | - Saba Shirin
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India
| | - Shiji Raju
- Bioengineering and Nano Medicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu, Tamil Nadu, 603308, India
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil, Biotechnology and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmeer Expressway, Jaipur, Rajasthan, 303007, India.
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
7
|
Moulahoum H, Ghorbanizamani F, Beduk T, Beduk D, Ozufuklar O, Guler Celik E, Timur S. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. J Pharm Biomed Anal 2023; 235:115623. [PMID: 37542827 DOI: 10.1016/j.jpba.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Nanomaterials and nanotechnology offer promising opportunities in point-of-care (POC) diagnostics and therapeutics due to their unique physical and chemical properties. POC platforms aim to provide rapid and portable diagnostic and therapeutic capabilities at the site of patient care, offering cost-effective solutions. Incorporating nanomaterials with distinct optical, electrical, and magnetic properties can revolutionize the POC industry, significantly enhancing the effectiveness and efficiency of diagnostic and theragnostic devices. By leveraging nanoparticles and nanofibers in POC devices, nanomaterials have the potential to improve the accuracy and speed of diagnostic tests, making them more practical for POC settings. Technological advancements, such as smartphone integration, imagery instruments, and attachments, complement and expand the application scope of POCs, reducing invasiveness by enabling analysis of various matrices like saliva and breath. These integrated testing platforms facilitate procedures without compromising diagnosis quality. This review provides a summary of recent trends in POC technologies utilizing nanomaterials and nanotechnologies for analyzing disease biomarkers. It highlights advances in device development, nanomaterial design, and their applications in POC. Additionally, complementary tools used in POC and nanomaterials are discussed, followed by critical analysis of challenges and future directions for these technologies.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, Villach 9524, Austria
| | - Duygu Beduk
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
8
|
Zhou Y, Zhao X, Jiang Y, Lin DJ, Lu C, Wang Y, Le S, Li R, Yan J. A Mechanical Assay for the Quantification of Anti-RBD IgG Levels in Finger-Prick Whole Blood. ACS Sens 2023; 8:2986-2995. [PMID: 37582229 PMCID: PMC10464602 DOI: 10.1021/acssensors.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A large portion of the global population has been vaccinated with various vaccines or infected with SARS-CoV-2, the virus that causes COVID-19. The resulting IgG antibodies that target the receptor binding domain (RBD) of SARS-CoV-2 play a vital role in reducing infection rates and severe disease outcomes. Different immune histories result in the production of anti-RBD IgG antibodies with different binding affinities to RBDs of different variants, and the levels of these antibodies decrease over time. Therefore, it is important to have a low-cost, rapid method for quantifying the levels of anti-RBD IgG in decentralized testing for large populations. In this study, we describe a 30 min assay that allows for the quantification of anti-RBD IgG levels in a single drop of finger-prick whole blood. This assay uses force-dependent dissociation of nonspecifically absorbed RBD-coated superparamagnetic microbeads to determine the density of specifically linked microbeads to a protein A-coated transparent surface through anti-RBD IgGs, which can be measured using a simple light microscope and a low-magnification lens. The titer of serially diluted anti-RBD IgGs can be determined without any additional sample processing steps. The limit of detection for this assay is 0.7 ± 0.1 ng/mL referenced to the CR3022 anti-RBD IgG. The limits of the technology and its potential to be further developed to meet the need for point-of-care monitoring of immune protection status are discussed.
Collapse
Affiliation(s)
- Yu Zhou
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | - Xiaodan Zhao
- Department
of Physics, National University of Singapore, 117542, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, 117557, Singapore
| | - Yanqige Jiang
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | | | - Chen Lu
- Department
of Physics, National University of Singapore, 117542, Singapore
| | - Yinan Wang
- Department
of Physics, National University of Singapore, 117542, Singapore
| | - Shimin Le
- Department
of Physics, Xiamen University, Xiamen361005, P. R. China
| | - Rong Li
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
- Department
of Physics, National University of Singapore, 117542, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
9
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
10
|
Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, Gandhi S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100284. [PMID: 36448023 PMCID: PMC9691282 DOI: 10.1016/j.biosx.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 04/12/2023]
Abstract
The recent COVID-19 infection outbreak has raised the demand for rapid, highly sensitive POC biosensing technology for intelligent health and wellness. In this direction, efforts are being made to explore high-performance nano-systems for developing novel sensing technologies capable of functioning at point-of-care (POC) applications for quick diagnosis, data acquisition, and disease management. A combination of nanostructures [i.e., 0D (nanoparticles & quantum dots), 1D (nanorods, nanofibers, nanopillars, & nanowires), 2D (nanosheets, nanoplates, nanopores) & 3D nanomaterials (nanocomposites and complex hierarchical structures)], biosensing prototype, and micro-electronics makes biosensing suitable for early diagnosis, detection & prevention of life-threatening diseases. However, a knowledge gap associated with the potential of 0D, 1D, 2D, and 3D nanostructures for the design and development of efficient POC sensing is yet to be explored carefully and critically. With this focus, this review highlights the latest engineered 0D, 1D, 2D, and 3D nanomaterials for developing next-generation miniaturized, portable POC biosensors development to achieve high sensitivity with potential integration with the internet of medical things (IoMT, for miniaturization and data collection, security, and sharing), artificial intelligence (AI, for desired analytics), etc. for better diagnosis and disease management at the personalized level.
Collapse
Affiliation(s)
- Manisha Byakodi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| | - Riya Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Yogendra Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| |
Collapse
|
11
|
Kurihara Y, Yokota H, Takahashi M. Water-Dispersible Carboxymethyl Dextran-Coated Melamine Nanoparticles for Biosensing Applications. ACS OMEGA 2022; 7:41641-41650. [PMID: 36406549 PMCID: PMC9670359 DOI: 10.1021/acsomega.2c05653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, we developed a simple method for preparing highly dispersed, stable, and streptavidin (SA)-functionalized carboxymethyl dextran (CMD)-coated melamine nanoparticles (MNPs) in an aqueous buffer at neutral pH. Dynamic light scattering (DLS) revealed the agglomeration of MNPs in an aqueous buffer at neutral pH. When CMD, N-hydroxysuccinimide (NHS), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were simultaneously mixed with the MNPs, CMD was bound to the MNPs, promoting their dispersibility. Preparation of SA-CMD-MNPs was accomplished simply by adding SA solution to the CMD-MNPs. The amount of SA bound to the CMD-MNPs was quantified by the bicinchoninic assay, and the amount of SA molecules bound to each CMD-MNP was 417 ± 4. SA-CMD-MNPs exhibited high dispersity (polydispersity index = 0.058) in a neutral phosphate buffer and maintained it for 182 days with dispersion using a probe sonicator (5 s) before DLS characterization. The performance of the SA-CMD-MNPs in biosensing was evaluated by immunohistochemistry, which revealed that the nanoparticles could specifically stain MCF-7 cells derived from breast cancer cells with low HER2 expression. This study provides an effective method for synthesizing highly dispersible nanoparticles for biosensing.
Collapse
|
12
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
13
|
Abdalhamed AM, Naser SM, Mohamed AH, Zeedan GSG. Development of gold nanoparticles-lateral flow test as a novel field diagnostic assay for detecting foot-and-mouth disease and lumpy skin disease viruses. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:574-586. [PMID: 36721504 PMCID: PMC9867639 DOI: 10.18502/ijm.v14i4.10245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Rapid diagnosis is a cornerstone for controlling and preventing viral disease outbreaks. The present study is aimed to develop a rapid field diagnostic test based on gold nanoparticles for the detection of lumpy skin diseases (LSD), and foot and mouth diseases (FMD) in animals with high sensitivity and specificity. Materials and Methods FMD and LSD vaccines were used as a source of viruses' antigens for preparing monoclonal antibodies and conjugated with gold nanoparticles that characterized using various techniques such as UV-visible spectrometry, and transmission electron microscopy (TEM). Monoclonal antibodies (mAbs) for each serotype produced in experimental rats and used to capture antibodies for FMDV and/or LSDV. ELISA was used to screen 469 milk samples and 1165 serum samples from naturally infected cattle, buffaloes, sheep, and goats for validation of the lateral flow test (LFT). LSDV DNA was extracted from 117 blood and skin biopsy samples collected from naturally infected cattle during the 2019 outbreak. Results The specificity and sensitivity of GNP-LFT were evaluated and compared to Ag-ELISA, Western blot tests (WB), and PCR. A total of 95 FMDV positives out of 469 (20.25%) milk samples and 268 FMDV positives out of 1165 (23.3%) serum samples from natural infected cattle, buffaloes, sheep, and goats examined by ELISA to valid GNPS-LFT Viral LSDV DNA was detected in 60/117 (51.5%) and 31/60 (52.9%). While the GNPS-LFT assay results were 49/117 (41.9%) and 29/60 (48.3%) blood and skin biopsy samples, respectively. The diagnostic sensitivity and specificity of the GNP-LFT test were 72% and 82%, respectively. All vesicular fluid and epithelium samples collected from infected animals were identified as positive by the GNP-LFT and Ag-ELISA. Ag-ELISA, on the other hand, was 90% and 100%. While the developed GNP-LFT used LSDV polyclonal antibodies were similar to ELISA and IgG-WB with a sensitivity of 72.8% and a specificity of 88.8%, respectively. Conclusion The GNPS-LFT is a novel immunoassay based on mono or polyclonal antibodies conjugated with gold nanoparticles that provides an accurate, rapid, specific, and sensitive tool for field rapid diagnosis of FMDV and LSDV.
Collapse
Affiliation(s)
- Abeer Mostafa Abdalhamed
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt
| | - Soad Mohammed Naser
- Clinical Pathology Research Unit, Department of Parasitology and Animals Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Ayman Hamady Mohamed
- Biotechnology Unit, Department of Biotechnology, Cell Biology Research and Food Hygiene, Animal Health Institute, Dokki, Giza, Egypt
| | - Gamil Sayed Gamil Zeedan
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt,Corresponding author: Gamil Sayed Gamil Zeedan, Ph.D, Department of Parasitology and Animals Diseases, (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt. Tel: +201145535240 Fax: +20233370931
| |
Collapse
|
14
|
Sharma P, Suleman S, Farooqui A, Ali W, Narang J, Malode SJ, Shetti NP. Analytical Methods for Ebola Virus Detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Ayipo YO, Bakare AA, Badeggi UM, Jimoh AA, Lawal A, Mordi MN. Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100021. [PMID: 35815068 PMCID: PMC8806017 DOI: 10.1016/j.crchbi.2022.100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Ajibola Abdulahi Bakare
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Umar Muhammad Badeggi
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, P. M. B. 11, Minna 4947, Nigeria
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
16
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
17
|
Rahman MM, Opo FADM, Asiri AM. Cytotoxicity Study of Cadmium-Selenium Quantum Dots (Cdse QDs) for Destroying the Human HepG2 Liver Cancer Cell. J Biomed Nanotechnol 2021; 17:2153-2164. [PMID: 34906276 DOI: 10.1166/jbn.2021.3181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this approach, Hepatocellular carcinoma (HCC) is originated from hepatocytes cell, which can spread several parts in the body. It increases the death rate of cancer patients and more common in men rather than female. Patients having large tumor are growing through expensive treatment such as chemotherapy, radiotherapy and surgery. Nano medicine such as nano-dimensional particles as well as quantum dots might be an alternative treatment with greater efficiency in cancer biology field. Modification of surface and chemical properties of cadmium groups quantum dots can easily penetrate into the cancer cell without harming normal tissues. Here, Cadmium-Selenium Quantum Dot nanomaterials (CdSe QDs) have been prepared in solution phase with 0.1 M concentration, which was potentially applied for the destroying of HepG2 cancer cell with 24 hour and 36 hour of incubation. Due to their size, surface properties, lower cost, QDs can easily attached to the cell and able to damage the cells more rapidly in vitro process. For cell death, gene expression and morphological changing analysis were completed MTT, Flow Cytometry, qRT-PCR assay. Finally, the cell deaths were observed by cell shrinkage, rupture of membrane and expression of apoptotic gene (Bcl2, Beta catenin, Bax) were positive comparing untreated HepG2 cell line.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Firoz A D M Opo
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun, 61452, South Korea
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. BIOSENSORS 2021; 11:336. [PMID: 34562926 PMCID: PMC8472208 DOI: 10.3390/bios11090336] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 05/11/2023]
Abstract
The electrochemical biosensors are a class of biosensors which convert biological information such as analyte concentration that is a biological recognition element (biochemical receptor) into current or voltage. Electrochemical biosensors depict propitious diagnostic technology which can detect biomarkers in body fluids such as sweat, blood, feces, or urine. Combinations of suitable immobilization techniques with effective transducers give rise to an efficient biosensor. They have been employed in the food industry, medical sciences, defense, studying plant biology, etc. While sensing complex structures and entities, a large data is obtained, and it becomes difficult to manually interpret all the data. Machine learning helps in interpreting large sensing data. In the case of biosensors, the presence of impurity affects the performance of the sensor and machine learning helps in removing signals obtained from the contaminants to obtain a high sensitivity. In this review, we discuss different types of biosensors along with their applications and the benefits of machine learning. This is followed by a discussion on the challenges, missing gaps in the knowledge, and solutions in the field of electrochemical biosensors. This review aims to serve as a valuable resource for scientists and engineers entering the interdisciplinary field of electrochemical biosensors. Furthermore, this review provides insight into the type of electrochemical biosensors, their applications, the importance of machine learning (ML) in biosensing, and challenges and future outlook.
Collapse
Affiliation(s)
- Anoop Singh
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Asha Sharma
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Aamir Ahmed
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Hidemitsu Furukawa
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| |
Collapse
|
19
|
Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, Ibrahim AH, Kim H, Gobi KV. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 2021; 180:113112. [PMID: 33706158 PMCID: PMC7921732 DOI: 10.1016/j.bios.2021.113112] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by viruses can elevate up to undesired pandemic conditions affecting the global population and normal life function. These in turn impact the established world economy, create jobless situations, physical, mental, emotional stress, and challenge the human survival. Therefore, timely detection, treatment, isolation and prevention of spreading the pandemic infectious diseases not beyond the originated town is critical to avoid global impairment of life (e.g., Corona virus disease - 2019, COVID-19). The objective of this review article is to emphasize the recent advancements in the electrochemical diagnostics of twelve life-threatening viruses namely - COVID-19, Middle east respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS), Influenza, Hepatitis, Human immunodeficiency virus (HIV), Human papilloma virus (HPV), Zika virus, Herpes simplex virus, Chikungunya, Dengue, and Rotavirus. This review describes the design, principle, underlying rationale, receptor, and mechanistic aspects of sensor systems reported for such viruses. Electrochemical sensor systems which comprised either antibody or aptamers or direct/mediated electron transfer in the recognition matrix were explicitly segregated into separate sub-sections for critical comparison. This review emphasizes the current challenges involved in translating laboratory research to real-world device applications, future prospects and commercialization aspects of electrochemical diagnostic devices for virus detection. The background and overall progress provided in this review are expected to be insightful to the researchers in sensor field and facilitate the design and fabrication of electrochemical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Ahmed Khorshed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - V Sunil Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mohamed Oraby
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hern Kim
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India.
| |
Collapse
|
20
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
22
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
23
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
24
|
Stanciu SG, Latterini L, Charitidis CA. Editorial: Recent Trends in Optical and Mechanical Characterization of Nanomaterials. Front Chem 2020; 8:564014. [PMID: 33134272 PMCID: PMC7567032 DOI: 10.3389/fchem.2020.564014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, Politehnica University of Bucharest, Bucharest, Romania
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Costas A. Charitidis
- RNANO Lab—Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
25
|
Xu X, Winterwerber P, Ng D, Wu Y. DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Top Curr Chem (Cham) 2020; 378:31. [PMID: 32146596 PMCID: PMC7060966 DOI: 10.1007/s41061-020-0292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
DNA nanotechnology, based on sequence-specific DNA recognition, could allow programmed self-assembly of sophisticated nanostructures with molecular precision. Extension of this technique to the preparation of broader types of nanomaterials would significantly improve nanofabrication technique to lower nanometer scale and even achieve single molecule operation. Using such exquisite DNA nanostructures as templates, chemical synthesis of polymer and inorganic nanomaterials could also be programmed with unprecedented accuracy and flexibility. This review summarizes recent advances in the synthesis and assembly of polymer and inorganic nanomaterials using DNA nanostructures as templates, and discusses the current challenges and future outlook of DNA templated nanotechnology.
Collapse
Affiliation(s)
- Xuemei Xu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan, 430074, People's Republic of China
| | - Pia Winterwerber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - David Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan, 430074, People's Republic of China.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
26
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
27
|
Point-of-care detection of Microcystin-LR with a personal glucose meter in drinking water source. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Kannan P, Subramanian P, Maiyalagan T, Jiang Z. Cobalt Oxide Porous Nanocubes-Based Electrochemical Immunobiosensing of Hepatitis B Virus DNA in Blood Serum and Urine Samples. Anal Chem 2019; 91:5824-5833. [PMID: 30917656 DOI: 10.1021/acs.analchem.9b00153] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, we report a new biosensing platform for hepatitis B virus (HBV) DNA genosensing using cobalt oxide (Co3O4) nanostructures. The tunable morphologies of Co3O4 nanostructures such as porous nanocubes (PNCs), nanooctahedra (NOHs), and nanosticks (NSKs) are synthesized, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, nitrogen adsorption/desorption isotherms (BET), and electrochemical impedance spectral (EIS) methods. The HBV probe DNA (ssDNA) is immobilized on the Co3O4 nanostructures through coordinate bond formation between nucleic acid of ssDNA and Co metal, which results in highly stable nanostructured biosensing platform. To the best of our knowledge, first time the target cDNA of HBV is detected using ssDNA/Co3O4PNCs/GCE electrode by EIS method with a limit of detection (LOD) of 0.38 pM (signal-to-noise ratio (S/N) = 3). Moreover, the ssDNA/Co3O4PNCs/GCE has shown excellent specificity to HBV target cDNA, compared with noncomplementary DNA, and 1- and 3-mismatch DNAs. Finally, we explore ssDNA/Co3O4PNCs/GCE as potential electrode to test HBV DNA in blood serum and urine samples for practical applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing , Zhejiang - 314001 , People's Republic of China
| | - Palaniappan Subramanian
- Department of Material Engineering , KU Leuven , Kasteelpark Arenberg 44, P.O. Box 2450 , B-3001 Heverlee , Belgium
| | - Thandavarayan Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry , SRM Institute of Science and Technology , Kattankulathur 603203 , India
| | - Zhongqing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| |
Collapse
|
29
|
Chatterjee B, Kalyani N, Das S, Anand A, Sharma TK. Nano-realm for point-of-care (POC) bacterial diagnostics. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Regan B, O'Kennedy R, Collins D. Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I-Challenges and Potential Value. BIOSENSORS 2018; 8:E114. [PMID: 30469415 PMCID: PMC6316850 DOI: 10.3390/bios8040114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Cardiac biomarkers are frequently measured to provide guidance on the well-being of a patient in relation to cardiac health with many assays having been developed and widely utilised in clinical assessment. Effectively treating and managing cardiovascular disease (CVD) relies on swiftly responding to signs of cardiac symptoms, thus providing a basis for enhanced patient management and an overall better health outcome. Ultra-sensitive cardiac biomarker detection techniques play a pivotal role in improving the diagnostic capacity of an assay and thus enabling a better-informed decision. However, currently, the typical approach taken within healthcare depends on centralised laboratories performing analysis of cardiac biomarkers, thus restricting the roll-out of rapid diagnostics. Point-of-care testing (POCT) involves conducting the diagnostic test in the presence of the patient, with a short turnaround time, requiring small sample volumes without compromising the sensitivity of the assay. This technology is ideal for combatting CVD, thus the formulation of ultra-sensitive assays and the design of biosensors will be critically evaluated, focusing on the feasibility of these techniques for point-of-care (POC) integration. Moreover, there are several key factors, which in combination, contribute to the development of ultra-sensitive techniques, namely the incorporation of nanomaterials for sensitivity enhancement and manipulation of labelling methods. This review will explore the latest developments in cardiac biomarker detection, primarily focusing on the detection of cardiac troponin I (cTnI). Highly sensitive detection of cTnI is of paramount importance regarding the rapid rule-in/rule-out of acute myocardial infarction (AMI). Thus the challenges encountered during cTnI measurements are outlined in detail to assist in demonstrating the drawbacks of current commercial assays and the obstructions to standardisation. Furthermore, the added benefits of introducing multi-biomarker panels are reviewed, several key biomarkers are evaluated and the analytical benefits provided by multimarkers-based methods are highlighted.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110 Doha, Qatar.
| | - David Collins
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| |
Collapse
|
31
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
32
|
Comparative studies of biological activity of cadmium-based quantum dots with different surface modifications. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0787-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Development of a nanogold slot blot inhibition assay for the detection of antibodies against bovine herpesvirus type 1. Arch Virol 2018; 163:1549-1557. [DOI: 10.1007/s00705-018-3763-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
34
|
Razo SC, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB. Double-enhanced lateral flow immunoassay for potato virus X based on a combination of magnetic and gold nanoparticles. Anal Chim Acta 2018; 1007:50-60. [PMID: 29405988 DOI: 10.1016/j.aca.2017.12.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023]
Abstract
This study presents the joint use of magnetic nanoparticles (MNPs) and gold nanoparticles (GNPs) for double enhancement in a lateral flow immunoassay (LFIA). The study realizes two types of enhancement: (1) increasing the concentration of analytes in the samples using conjugates of MNPs with specific antibodies and (2) increasing the visibility of the label through MNP aggregation caused by GNPs. The proposed strategy was implemented using a LFIA for potato virus X (PVX), a significant potato pathogen. MNPs conjugated with biotinylated antibodies specific to PVX and GNPs conjugated with streptavidin were synthesized and characterized. The LFIAs with and without the proposed enhancements were compared. The double-enhanced LFIA achieved the highest sensitivity, equal to 0.25 ng mL-1 and 32 times more sensitivity than the non-enhanced LFIA (detection limit: 8 ng mL-1). LFIAs using one of the types of amplification (magnetic concentration without GNPs-causing aggregation or MNP aggregation without the concentration stage) showed intermediate levels of sensitivity. The double-enhanced LFIA was successfully used for PVX detection in potato leaves. The results for PVX detection in the infected plants were similar for the double-enhanced LFIA developed and the conventional LFIA based on the GNP conjugates; however, the new system provided significant coloring enhancement. This study confirmed that a simple combination of MNPs and GNPs has great potential for high-sensitivity detection and could possibly be adopted for LFIAs of other compounds.
Collapse
Affiliation(s)
- Shyatesa C Razo
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; Agricultural-Technological Institute, Peoples' Friendship University of Russia, Mikluho-Maklaya Street 8/2, 117198 Moscow, Russia
| | - Vasily G Panferov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Yuri A Varitsev
- A.G. Lorch All-Russian Potato Research Institute, Kraskovo-1, Moscow Region 140051, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
35
|
Abstract
Human chorionic gonadotropin (HCG) is a glycoprotein secreted by placental trophoblast cells in pregnancy. HCG is a heterodimer composed of two different α- and β-subunits, with the latter being unique to HCG. As well as being the most important diagnostic markers for pregnancy, HCG is also a tumor marker, therefore, quantitative detection of HCG is of great value. Numerous advanced technologies have been developed for HCG concentration detection including electrochemical immunoassay, chemiluminescent immunoassay, fluorescence immunoassay, resonance scattering spectrometry, atomic emission spectrometry, radioimmunoassay, MS and so on. Some have pursued simple and easy operation, while others have emphasized on accuracy and applications in clinical medicine. This review provides a comprehensive summary of various methods of detecting HCG.
Collapse
|
36
|
Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. LAB ON A CHIP 2017; 17:2713-2739. [PMID: 28702608 DOI: 10.1039/c7lc00397h] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.
Collapse
Affiliation(s)
- Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | |
Collapse
|
37
|
Wang Y, Yu L, Kong X, Sun L. Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine 2017; 12:4789-4803. [PMID: 28740385 PMCID: PMC5503494 DOI: 10.2147/ijn.s137338] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although tremendous efforts have been put into the treatment of infectious diseases to prevent epidemics and mortality, it is still one of the major health care issues that have a profound impact on humankind. Therefore, the development of specific, sensitive, accurate, rapid, low-cost, and easy-to-use diagnostic tools is still in urgent demand. Nanodiagnostics, defined as the application of nanotechnology to medical diagnostics, can offer many unique opportunities for more successful and efficient diagnosis and treatment for infectious diseases. In this review, we provide an overview of the nanodiagnostics for infectious diseases from nanoparticle-based, nanodevice-based, and point-of-care test (POCT) platforms. Most importantly, emphasis focused on the recent trends in the nanotechnology-based POCT system. The current state-of-the-art and most promising point-of-care nanodiagnostic technologies, including miniaturized diagnostic magnetic resonance platform, magnetic barcode assay system, cell phone-based polarized light microscopy platform, cell phone-based dongle platform, and paper-based POCT platform, for infectious diseases were fully examined. The limitations, challenges, and future trends of the nanodiagnostics in POCTs for infectious diseases are also discussed.
Collapse
Affiliation(s)
- Yongzhong Wang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, Anhui, People's Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaowei Kong
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, Anhui, People's Republic of China
| | - Leming Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|