1
|
Zhang H, Xing F, Duan L, Gao Q, Li S, Zhao Y. Effect of substrate concentration on sulfamethoxazole wastewater treatment by osmotic microbial fuel cell: Insight into operational efficiency, dynamic changes of membrane fouling and microbial response. BIORESOURCE TECHNOLOGY 2025; 417:131805. [PMID: 39542061 DOI: 10.1016/j.biortech.2024.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
To solve the problems of antibiotic pollution, water resources and energy shortage, an osmotic microbial fuel cell (OsMFC) was adopted innovatively to treat antibiotic wastewater containing sulfamethoxazole (SMX), and achieved SMX removal, water production and electricity generation. Substrate concentration was one of the key factors affecting the performances of OsMFC, but there were few relevant studies This study explored the effect of substrate concentration on system performances, clarified the dynamic changes of membrane fouling under different substrate concentrations, and further revealed the response of microbial communities. The results showed that the stable removal efficiency of SMX exceeded 98.8 % due to the efficient interception of forward osmosis (FO) membrane. Compared with the 1.0 g/L NaAc system, the SMX degradation efficiency and maximum output voltage in the 2.0 g/L NaAc system were only increased by 3.9 % and 6.3 %, respectively. However, the initial water flux decreased by 30.1 % in the 7th cycle due to more serious FO membrane fouling. In addition, there were significant differences in the dynamic formation process of FO membrane fouling. Higher substrate concentration increased the relative abundance of Desulfobacterota and Geobacter. Functional prediction analysis showed that increasing substrate concentration promoted carbohydrate metabolism pathways and relative abundance of sulfur respiration functional groups, thereby improving COD and SMX removal rates. However, the biosynthesis of other secondary metabolites was significantly improved, resulting in increased contents of EPS and SMP, which aggravated membrane fouling. Overall, the system performed better when the substrate concentration was 1.0 g/L. This study would provide certain guidance for the performance optimization and membrane fouling mitigation of OsMFC, thereby promoting its practical application in antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Hengliang Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
2
|
Heyne RM, Chia CP. Genome Sequence of Gordonia terrae Bacteriophage Wheezy. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001407. [PMID: 39845266 PMCID: PMC11751726 DOI: 10.17912/micropub.biology.001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/15/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Bacteriophage Wheezy, a lytic phage with siphoviral morphology isolated using the host Gordonia terrae 3612, has a genome of 67,021 base pairs and is 65.9% GC. The genome sequence of Wheezy aligns most closely with subcluster CR2 phages Tracker and NatB6. Annotation of the full-length genome sequence of Phage Wheezy revealed 92 protein-coding genes and no tRNA genes.
Collapse
Affiliation(s)
- Rachel M. Heyne
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States
| | - Catherine P. Chia
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States
| |
Collapse
|
3
|
Petrilli R, Fabbretti A, Pucci K, Pagliaretta G, Napolioni V, Falconi M. Development and Characterization of Ammonia Removal Moving Bed Biofilms for Landfill Leachate Treatment. Microorganisms 2024; 12:2404. [PMID: 39770607 PMCID: PMC11677484 DOI: 10.3390/microorganisms12122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH3-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs). In recent years, research has shown that microbial biofilms, developed on carriers of different materials and called "moving bed biofilm reactors" (MBBRs), may offer promising solutions for bioremediation. This study explored the biofilm development and the nitrification process of moving bed biofilms (MBBs) obtained from high ammonia-selected microbial communities. Using crystal violet staining and confocal laser-scanning microscopy, we followed the biofilm formation stages correlating nitrogen removal to metagenomic analyses. Our results indicate that MBBs unveiled a 10-fold more enhanced nitrification rate than the dispersed microbial community present in the native sludge of the Porto Sant'Elpidio (Italy) WWTP. Four bacterial families, Chitinophagaceae, Comamonadaceae, Sphingomonadaceae, and Nitrosomonadaceae, accumulate in structured biofilms and significantly contribute to the high ammonium removal rate of 80% in 24 h as estimated in leachate-containing wastewaters.
Collapse
Affiliation(s)
- Rossana Petrilli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
- Eco Control Laboratorio Ascolano s.r.l., 63900 Fermo, FM, Italy;
| | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| | - Kathleen Pucci
- Eco Elpidiense s.r.l., 63821 Porto Sant’Elpidio, FM, Italy;
| | - Graziella Pagliaretta
- Eco Control Laboratorio Ascolano s.r.l., 63900 Fermo, FM, Italy;
- Eco Elpidiense s.r.l., 63821 Porto Sant’Elpidio, FM, Italy;
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| | - Maurizio Falconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| |
Collapse
|
4
|
Li Y, Xu G, Wang J, Yu Y. Freeze-thaw aging increases the toxicity of microplastics to earthworms and enriches pollutant-degrading microbial genera. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135651. [PMID: 39208630 DOI: 10.1016/j.jhazmat.2024.135651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Freeze-thaw (FT) aging can change the physicochemical characteristics of microplastics (MPs). The toxic impacts of FT-aged-MPs to soil invertebrates are poorly understood. Here the toxic mechanisms of FT-aged-MPs were investigated in earthworms after 28 d exposure. Results showed that FT 50 µm PE-MPs significantly increased reactive oxygen species (ROS) by 5.78-9.04 % compared to pristine 50 µm PE-MPs (41.80-45.05 ng/mgprot), whereas FT 500 µm PE-MPs reduced ROS by 7.52-7.87 % compared to pristine 500 µm PE-MPs (51.44-54.46 ng/mgprot). FT-PP-MPs significantly increased ROS and malondialdehyde (MDA) content in earthworms by 14.82-44.06 % and 46.75-110.21 %, respectively, compared to pristine PP-MPs (40.56-44.66 ng/mgprot, 0.41-2.53 nmol/mgprot). FT-aged PE- and PP-MPs caused more severe tissue damage to earthworms. FT-aged PE-MPs increased the alpha diversity of the gut flora of earthworms compared to pristine MPs. Earthworm guts exposed to FT-aged-MPs were enriched with differential microbial genera of contaminant degradation capacity. FT-PE-MPs affected membrane translocation by up-regulating lipids and lipid-like molecules, whereas FT-PP-MPs changed xenobiotic biodegradation and metabolism by down-regulating organoheterocyclic compounds compared to the pristine PE- and PP-MPs. This study concludes that FT-aged MPs cause greater toxicity to earthworms compared to pristine MPs.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Lin R, Li H, Wu H, Ren H, Kong X, Lu Z. Resting for viability: Gordonia polyisoprenivorans ZM27, a robust generalist for petroleum bioremediation under hypersaline stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124618. [PMID: 39067736 DOI: 10.1016/j.envpol.2024.124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Awais M, Xiang Y, Shah N, Bilal H, Yang D, Hu H, Li T, Ji X, Li H. Unraveling the Role of Contaminants Reshaping the Microflora in Zea mays Seeds from Heavy Metal-Contaminated and Pristine Environment. MICROBIAL ECOLOGY 2024; 87:133. [PMID: 39467902 PMCID: PMC11519227 DOI: 10.1007/s00248-024-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Heavy metal (HM) contaminants are the emerging driving force for reshaping the microflora of plants by eradicating the non-tolerance and non-resistant microbes via their lethal effects. Seeds served as a prime source of ancestral microbial diversity hereditary transfer from generation to generation. However, the problem arises when they got exposed to metal contamination, does metal pollutant disrupt the delicate balance of microbial communities within seeds and lead to shifts in their microflora across generations. In this study, the endophytic community within Zea mays seeds was compared across three distinct regions in Yunnan province, China: a HM-contaminated site Ayika (AK), less-contaminated site Sanduoduo (SD), and a non-contaminated Site Dali (DL). High-throughput sequencing techniques were employed to analyze the microbial communities. A total of 492,177 high-quality reads for bacterial communities and 1,001,229 optimized sequences for fungal communities were obtained. These sequences were assigned to 502 and 239 operational taxonomic units (OTUs) for bacteria and fungi, respectively. A higher diversity was recorded in AK samples than in SD and DL. Microbial community structure analysis showed higher diversity and significant fluctuation in specific taxa abundance in the metal-polluted samples exhibiting higher response of microbial flora to HM. In AK samples, bacterial genera such as Gordonia and Burkholderia-Caballeronia-Paraburkholderia were dominant, while in SD Pseudomonas and Streptomyces were dominant. Among the fungal taxa, Fusarium, Saccharomycopsis, and Lecanicillium were prevalent in HM-contaminated sites. Our finding revealed the influential effect of HM contaminants on reshaping the seed microbiome of the Zea mays, showing both the resilience of certain important microbial taxa as well the shifts in the diversity in the contaminated and pristine conditions. The knowledge will benefit to develop effective soil remediation, reclamation, and crop management techniques, and eventually assisting in the extenuation of metal pollution's adverse effects on plant health and agricultural productivity.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hazrat Bilal
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, Jiangxi, 330029, P.R. China
| | - Dezhi Yang
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Hu
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tao Li
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
7
|
Ren L, Wang X, Zhou JL, Jia Y, Hu H, Li C, Lin Z, Liang M, Wang Y. Biodegradation of phthalic acid esters by a novel marine bacterial strain RL-BY03: Characterization, metabolic pathway, bioaugmentation and genome analysis. CHEMOSPHERE 2024; 366:143530. [PMID: 39419333 DOI: 10.1016/j.chemosphere.2024.143530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Biodegradation is recognized as the main route for the decomposition of phthalic acid esters (PAEs) in nature, but the fate of PAEs in marine ecosystems is not well understood. Herein, a novel marine bacterium, Gordonia sihwaniensis RL-BY03, was identified and analyzed for its ability to degrade PAEs. Furthermore, the metabolic mechanism of di-(2-ethylhexyl) phthalate (DEHP) was examined through UPLC-MS/MS and genomic analysis. RL-BY03 could rely solely on several types of PAEs as its sole carbon source. Initial pH and temperature for DEHP degradation were optimized as 8.0 and 30 °C, respectively. Surprisingly, RL-BY03 could simultaneously degrade ethyl acetate and DEHP and they could increase the cell surface hydrophobicity. DEHP degradation kinetics fitted well with the first-order decay model. The metabolic pathway of DEHP was deduced following the detection of five metabolic intermediates. Further, genes that are related to DEHP degradation were identified through genomic analysis and their expression levels were validated through RT-qPCR. A co-related metabolic pathway at biochemical and molecular level indicated that DEHP was turned into DBP and DEP by β-oxidation, which was further hydrolyzed into phthalic acid. Phthalic acid was utilized through catechol branch of β-ketoadipate pathway. Additionally, RL-BY03 exhibited excellent bioremediation potential for DEHP-contaminated marine samples. In general, these findings have the potential to enhance our understanding of the fate of PAEs in marine ecosystems.
Collapse
Affiliation(s)
- Lei Ren
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingjia Wang
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chengyong Li
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Mei Liang
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanyan Wang
- College of Coastal Agricultural Sciences, Shenzhen Institute, School of Chemistry and Environment, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
8
|
Wei Y, Niu S, Xu Y, Wei Z, Wang JJ. Removal of dibutyl phthalate (DBP) by bacterial extracellular polymeric substances (EPS) via enzyme catalysis and electron transmission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122161. [PMID: 39126842 DOI: 10.1016/j.jenvman.2024.122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Phthalic acid esters (PAEs) showed high environmental risk due to the widely existence and toxicity. Microbial-excreted extracellular polymeric substances (EPS) showed potential of degrading organic compounds. In this study, the degradation ability and the mechanisms of EPS from two bacteria (PAEs degrader Gordonia sihwensis; electrochemically active strain Shewanella oneidensis MR-1) were investigated. Results showed that EPS of the two bacteria had different composition of C-type cytochromes, flavins, catalase, and α-glucosidase. The removal of dibutyl phthalate (DBP) by total EPS were 68% of G. sihwensis and 72% for S. oneidensis. For both bacteria, the degradation rates k of EPS were as TB-EPS > LB-EPS > S-EPS. The degradation mechanisms of EPS from the two bacteria showed difference with electrochemical active components mediated electron transmission for S. oneidensis MR-1 and enzymes catalysis for G. sihwensis. Results of this study illustrated the variation of the contribution of active components of EPS to degradation.
Collapse
Affiliation(s)
- Yi Wei
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuai Niu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaxi Xu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhuo Wei
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jim J Wang
- School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| |
Collapse
|
9
|
Cao Y, Du P, Zhang J, Ji J, Xu J, Liang B. Dopamine alleviates cadmium stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed by high-throughput sequencing and soil metabolomics. HORTICULTURE RESEARCH 2023; 10:uhad112. [PMID: 37577402 PMCID: PMC10419553 DOI: 10.1093/hr/uhad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Dopamine has demonstrated promise as a stress-relief substance. However, the function of dopamine in Cd tolerance and its mechanism remains largely unknown. The current study was performed to investigate the mechanism of dopamine on alleviating apple Cd stress through regular application of CdCl2 and dopamine solution to potting soil. The results indicated that dopamine significantly reduced reactive oxygen species (ROS) and Cd accumulation and alleviated the inhibitory effect of Cd stress on the growth of apple plants through activation of the antioxidant system, enhancement of photosynthetic capacity, and regulation of gene expression related to Cd absorption and detoxification. The richness of the rhizosphere microbial community increased, and community composition and assembly were affected by dopamine treatment. Network analysis of microbial communities showed that the numbers of nodes and total links increased significantly after dopamine treatment, while the keystone species shifted. Linear discriminant analysis effect size indicated that some biomarkers were significantly enriched after dopamine treatment, suggesting that dopamine induced plants to recruit potentially beneficial microorganisms (Pseudoxanthomonas, Aeromicrobium, Bradyrhizobium, Frankia, Saccharimonadales, Novosphingobium, and Streptomyces) to resist Cd stress. The co-occurrence network showed several metabolites that were positively correlated with relative growth rate and negatively correlated with Cd accumulation, suggesting that potentially beneficial microorganisms may be attracted by several metabolites (L-threonic acid, profenamine, juniperic acid and (3β,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid). Our results demonstrate that dopamine alleviates Cd stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed. This study provides an effective means to reduce the harm to agricultural production caused by heavy metals.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiran Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiahao Ji
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
10
|
Wang YC, Lv YH, Wang C, Jiang GY, Han MF, Deng JG, Hsi HC. Microbial community evolution and functional trade-offs of biofilm in odor treatment biofilters. WATER RESEARCH 2023; 235:119917. [PMID: 37003115 DOI: 10.1016/j.watres.2023.119917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Biofilters inoculated with activated sludge are widely used for odor control in WWTP. In this process, biofilm community evolution plays an important role in the function of reactor and is closely related to reactor performance. However, the trade-offs in biofilm community and bioreactor function during the operation are still unclear. Herein, an artificially constructed biofilter for odorous gas treatment was operated for 105 days to study the trade-offs in the biofilm community and function. Biofilm colonization was found to drive community evolution during the start-up phase (phase 1, days 0-25). Although the removal efficiency of the biofilter was unsatisfactory at this phase, the microbial genera related to quorum sensing and extracellular polymeric substance secretion led to the rapid accumulation of the biofilm (2.3 kg biomass/m3 filter bed /day). During the stable operation phase (phase 2, days 26-80), genera related to target-pollutant degradation showed increases in relative abundance, which accompanied a high removal efficiency and a stable accumulation of biofilm (1.1 kg biomass/m3 filter bed/day). At the clogging phase (phase 3, days 81-105), a sharp decline in the biofilm accumulation rate (0.5 kg biomass/m3 filter bed /day) and fluctuating removal efficiency were observed. The quorum quenching-related genera and quenching genes of signal molecules increased, and competition for resources among species drove the evolution of the community in this phase. The results of this study highlight the trade-offs in biofilm community and functions during the operation of bioreactors, which could help improve bioreactor performance from a biofilm community perspective.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
11
|
He Y, Lyu L, Hu Z, Yu Z, Shao Z. Gordonia tangerina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748478 DOI: 10.1099/ijsem.0.005632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A Gram-stain-positive, aerobic bacterium, designated GW1C4-4T, was isolated from the seawater sample from the tidal zone of Guanyinshan Coast, Xiamen, Fujian Province, PR China. The strain was reddish-orange, rod-shaped and non-motile. Cells of strain GW1C4-4T were oxidase-negative and catalase-positive. The strain could grow at 10-42 °C (optimum, 32-35 °C), pH 5-9 (optimum, pH 6) and with 0-10 % NaCl (w/v; optimum, 1 %). Phylogenetic analysis based on the 16S rRNA sequences indicated that strain GW1C4-4T belonged to the genus Gordonia, having the highest similarity to Gordonia mangrovi HNM0687T (98.5 %), followed by Gordonia bronchialis DSM 43247T (98.4 %). The G+C DNA content was 66.5 mol %. Average nucleotide identity and digital DNA-DNA hybridization values between strain GW1C4-4T and G. mangrovi HNM0687T were 85.8 and 30.0 %, respectively. The principal fatty acids of strain GW1C4-4T were C16 : 0, C18 : 0 10-methyl (TBSA) and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). MK-9 (H2) was the sole respiratory quinone. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unidentified lipid. Based on its phylogenetic, phenotypic, chemotaxonomic and genomic characteristics, it is proposed that strain GW1C4-4T represents a novel species within the genus Gordonia, for which the name Gordonia tangerina sp. nov. is proposed. The type strain is GW1C4-4T (=MCCC 1A18727T=KCTC 49729T).
Collapse
Affiliation(s)
- Yufei He
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China.,State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.,University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, PR China
| | - Ziyan Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
12
|
Sánchez-Suárez J, Díaz L, Melo-Bolivar J, Villamil L. Draft genome sequence data of Gordonia hongkongensis strain EUFUS-Z928 isolated from the octocoral Eunicea fusca. Data Brief 2022; 42:108076. [PMID: 35372653 PMCID: PMC8971566 DOI: 10.1016/j.dib.2022.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Octocorals are among the most prolific sources of biologically active compounds. A significant part of their specialized metabolites richness is linked to the abundance of their associated microbiota. Consequently, research on the bioprospecting potential of microorganisms associated with these marine invertebrates has gained much interest. Here, we describe the draft genome of Gordonia hongkongensis strain EUFUS-Z928 isolated from the octocoral Eunicea fusca. The genome was assembled de novo from short-read whole-genome sequencing data. Additionally, functional annotation of predicted genes was performed using the RAST tool kit, including genome mining for specialized metabolite biosynthetic gene clusters using the antiSMASH v6.0 tool. The genome sequence data of G. hongkongensis EUFUS-Z928 can provide information for further analysis of the potential biotechnological use of this microorganism and guide the characterization of other related actinobacterial isolates. Likewise, this information increases the analytical capacity for studying the genus Gordonia.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Luis Díaz
- School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | | | - Luisa Villamil
- School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Corresponding author.
| |
Collapse
|
13
|
A New Biosurfactant/Bioemulsifier from Gordonia alkanivorans Strain 1B: Production and Characterization. Processes (Basel) 2022. [DOI: 10.3390/pr10050845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biosurfactants and bioemulsifiers (BS/BE) are naturally synthesized molecules, which can be used as alternatives to traditional detergents. These molecules are commonly produced by microorganisms isolated from hydrocarbon-rich environments. Gordonia alkanivorans strain 1B was originally found in such an environment, however little was known about its abilities as a BS/BE producer. The goal of this work was to access the potential of strain 1B as a BS/BE producer and perform the initial characterization of the produced compounds. It was demonstrated that strain 1B was able to synthesize lipoglycoprotein compounds with BS/BE properties, both extracellularly and adhered to the cells, without the need for a hydrophobic inducer, producing emulsion in several different hydrophobic phases. Using a crude BS/BE powder, the critical micelle concentration was determined (CMC = 16.94 mg/L), and its capacity to reduce the surface tension to a minimum of 35.63 mN/m was demonstrated, surpassing many commercial surfactants. Moreover, after dialysis, emulsification assays revealed an activity similar to that of Triton X-100 in almond and sunflower oils. In benzene, the E24 value attained was 83.45%, which is 30% greater than that of the commercial alternative. The results obtained highlight for the presence of promising novel BS/BE produced by strain 1B.
Collapse
|
14
|
Ci M, Yang W, Jin H, Hu L, Fang C, Shen D, Long Y. Evolution of sulfate reduction behavior in leachate saturated zones in landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:52-62. [PMID: 35093856 DOI: 10.1016/j.wasman.2022.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The sulfate reduction behavior of the landfill leachate saturated zone under different temperatures was investigated. The results showed that temperature had significant effects on sulfate reduction behavior. The sulfate reduction efficiency was the highest at high temperatures (55 °C and 45 °C), followed by mesophilic temperature (35 °C). Normal temperature 25 °C was far less effective than 55 °C, 45 °C and 35 °C. High abundances of aprA and dsrA genes were distributed under high temperatures. Through indicator species analysis and functional comparison, some key taxa were identified as putative key genera for sulfate reduction. Under high temperature, Paenibacillus could effectively degrade dimethyl sulfide. DsrAB is present in the genome of Tissierella. Gordonia, Syntrophomonas, and Lysinibacillus under mesophilic temperature indicates the potential of these organisms to degrade heterogenous biomass, environmental pollutants or other natural polymers with slow biodegradation. This microbial function is similar to that of the putative key genera under normal (25 °C) temperature. Most of the putative key genera belong to Firmicutes, Proteobacteria and Myxococcota. This study provides theoretical support for the control of hydrogen sulfide release from landfills.
Collapse
Affiliation(s)
- Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Wenyi Yang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haihong Jin
- Zhejiang Hongyi Environmental Protection Technology Co. Ltd, Hangzhou 310000, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
15
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Luo J, Cui J, Ma Y. Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113338. [PMID: 35228031 DOI: 10.1016/j.ecoenv.2022.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
As microplastics became the focus of global attention, the hazards of plastic plasticizers (PAEs) have gradually attracted people's attention. Agricultural soil is one of its hardest hit areas. However, current research of its impact on soil ecology only stops at the microorganism itself, and there is still lack of conclusion on the impact of soil metabolism. To this end, three most common PAEs (Dimethyl phthalate: DMP, Dibutyl phthalate: DBP and Bis (2-ethylhexyl) phthalate: DEHP) were selected and based on high-throughput sequencing and metabolomics platforms, the influence of PAEs residues on soil metabolic functions were revealed for the first time. PAEs did not significantly changed the alpha diversity of soil bacteria in the short term, but changed their community structure and interfered with the complexity of community symbiosis network. Metabolomics indicated that exposure to DBP can significantly change the soil metabolite profile. A total of 172 differential metabolites were found, of which 100 were up-regulated and 72 were down-regulated. DBP treatment interfered with 43 metabolic pathways including basic metabolic processes. In particular, it interfered with the metabolism of residual steroids and promoted the metabolism of various plasticizers. In addition, through differential labeling and collinear analysis, some bacteria with the degradation potential of PAEs, such as Gordonia, were excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
16
|
Suzina NE, Sorokin VV, Polivtseva VN, Klyueva VV, Emelyanova EV, Solyanikova IP. From Rest to Growth: Life Collisions of Gordonia polyisoprenivorans 135. Microorganisms 2022; 10:465. [PMID: 35208919 PMCID: PMC8879720 DOI: 10.3390/microorganisms10020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
In the process of evolution, living organisms develop mechanisms for population preservation to survive in unfavorable conditions. Spores and cysts are the most obvious examples of dormant forms in microorganisms. Non-spore-forming bacteria are also capable of surviving in unfavorable conditions, but the patterns of their behavior and adaptive reactions have been studied in less detail compared to spore-forming organisms. The purpose of this work was to study the features of transition from dormancy to active vegetative growth in one of the non-spore-forming bacteria, Gordonia polisoprenivorans 135, which is known as a destructor of such aromatic compounds as benzoate, 3-chlorobenzoate, and phenol. It was shown that G. polyisoprenivorans 135 under unfavorable conditions forms cyst-like cells with increased thermal resistance. Storage for two years does not lead to complete cell death. When the cells were transferred to fresh nutrient medium, visible growth was observed after 3 h. Immobilized cells stored at 4 °C for at least 10 months regenerated their metabolic activity after only 30 min of aeration. A study of the ultrathin organization of resting cells by transmission electron microscopy combined with X-ray microanalysis revealed intracytoplasmic electron-dense spherical membrane ultrastructures with significant similarity to previously described acidocalcisomas. The ability of some resting G. polyisoprenivorans 135 cells in the population to secrete acidocalcisome-like ultrastructures into the extracellular space was also detected. These structures contain predominantly calcium (Ca) and, to a lesser extent, phosphorus (P), and are likely to serve as depots of vital macronutrients to maintain cell viability during resting and provide a quick transition to a metabolically active state under favorable conditions. The study revealed the features of transitions from active growth to dormant state and vice versa of non-spore-forming bacteria G. polyisoprenivorans 135 and the possibility to use them as the basis of biopreparations with a long shelf life.
Collapse
Affiliation(s)
- Nataliya E. Suzina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Vladimir V. Sorokin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 117312 Moscow, Russia;
| | - Valentina N. Polivtseva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Violetta V. Klyueva
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| | - Elena V. Emelyanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Inna P. Solyanikova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| |
Collapse
|
17
|
Mechanistic Understanding of Gordonia sp. in Biodesulfurization of Organosulfur Compounds. Curr Microbiol 2022; 79:82. [PMID: 35107610 DOI: 10.1007/s00284-022-02770-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
Although conventional oil refining process like hydrodesulfurization (HDS) is capable of removing sulfur compounds present in crude oil, it cannot desulfurize recalcitrant organosulfur compounds such as dibenzothiophenes (DBTs), benzothiophenes (BTs), etc. Biodesulfurization (BDS) is a process of selective removal of sulfur moieties from DBT or BT by desulfurizing microbes. Therefore, BDS can be used as a complementary and economically feasible technology to achieve deep desulfurization of crude oil without affecting the calorific value. In the recent past, members of biodesulfurizing actinomycete genus Gordonia, isolated from versatile environments like soil, activated sludge, human beings etc. have been greatly exploited in the field of petroleum refining technology. The bacterium Gordonia sp. is slightly acid-fast and has been used for unconventional but potential oil refining processes like BDS in petroleum refineries. Gordonia sp. is unique in a way, that it can desulfurize both aliphatic and aromatic organosulfurs without affecting the calorific value of hydrocarbon molecules. Till date, approximately six different species and nineteen strains of the genus Gordonia have been recognized for BDS activity. Various factors such as enzyme specificity, availability of essential cofactors, feedback inhibition, toxicity of organic pollutants and the oil-water separations limit the desulfurization rate of microbial biocatalyst and influence its commercial applications. The current review selectively highlights the role of this versatile genus in removing sulfur from fossil fuels, mechanisms and future prospects on sustainable environment friendly technologies for crude oil refining.
Collapse
|
18
|
|
19
|
Soares FA, Steinbüchel A. Enzymatic and Chemical Approaches for Post-Polymerization Modifications of Diene Rubbers: Current state and Perspectives. Macromol Biosci 2021; 21:e2100261. [PMID: 34528407 DOI: 10.1002/mabi.202100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Diene rubbers are polymeric materials which present elastic properties and have double bonds in the macromolecular backbone after the polymerization process. Post-polymerization modifications of rubbers can be conducted by enzymatic or chemical methods. Enzymes are environmentally friendly catalysts and with the increasing demand for rubber waste management, biodegradation and biomodifications have become hot topics of research. Some rubbers are renewable materials and are a source of organic molecules, and biodegradation can be conducted to obtain either oligomers or monomers. On the other hand, chemical modifications of rubbers by click-chemistry are important strategies for the creation and combination of new materials. In a way to expand the scope of uses to other non-traditional applications, several and effective modifications can be conducted with diene rubbers. Two groups of efficient tools, enzymatic, and chemical modifications in diene rubbers, are summarized in this review. By analyzing stereochemical and reactivity aspects, the authors also point to some applications perspectives for biodegradation products and to rational modifications of diene rubbers by combining both methodologies.
Collapse
Affiliation(s)
- Franciela Arenhart Soares
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| |
Collapse
|
20
|
Duval E, Cravo-Laureau C, Poinel L, Duran R. Development of molecular driven screening for desulfurizing microorganisms targeting the dszB desulfinase gene. Res Microbiol 2021; 172:103872. [PMID: 34375709 DOI: 10.1016/j.resmic.2021.103872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOP) were developed for the detection of the dszB desulfinase gene (2'-hydroxybiphenyl-2-sulfinate desulfinase; EC 3.13.1.3) by polymerase chain reaction (PCR), which allow to reveal larger diversity than traditional primers. The new developed primers were used as molecular monitoring tool to drive a procedure for the isolation of desulfurizing microorganisms. The primers revealed a large dszB gene diversity in environmental samples, particularly in diesel-contaminated soil that served as inoculum for enrichment cultures. The isolation procedure using the dibenzothiophene sulfone (DBTO2) as sole sulfur source reduced drastically the dszB gene diversity. A dszB gene closely related to that carried by Gordonia species was selected. The desulfurization activity was confirmed by the production of desulfurized 2-hydroxybiphenyl (2-HBP). Metagenomic 16S rRNA gene sequencing showed that the Gordonia genus was represented at low abundance in the initial bacterial community. Such observation highlighted that the culture medium and conditions represent the bottleneck for isolating novel desulfurizing microorganisms. The new developed primers constitute useful tool for the development of appropriate cultural-dependent procedures, including medium and culture conditions, to access novel desulfurizing microorganisms useful for the petroleum industry.
Collapse
Affiliation(s)
- Emmanuel Duval
- Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM UMR, CNRS 5254, Bat. IBEAS, Pau, France; Segula Technologies, 71 rue Henri Gautier, 44550, Montoir de Bretagne, France.
| | - Cristiana Cravo-Laureau
- Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM UMR, CNRS 5254, Bat. IBEAS, Pau, France.
| | - Line Poinel
- Segula Technologies, 71 rue Henri Gautier, 44550, Montoir de Bretagne, France.
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM UMR, CNRS 5254, Bat. IBEAS, Pau, France.
| |
Collapse
|
21
|
Okafor CP, Udemang NL, Chikere CB, Akaranta O, Ntushelo K. Indigenous microbial strains as bioresource for remediation of chronically polluted Niger Delta soils. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
22
|
Sowani H, Kulkarni M, Zinjarde S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114538. [PMID: 32305803 DOI: 10.1016/j.envpol.2020.114538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m-1 after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
Collapse
Affiliation(s)
- Harshada Sowani
- Department of Chemistry, Biochemistry Division, Savitribai Phule Pune University, Pune, 411007, India
| | - Mohan Kulkarni
- Department of Chemistry, Biochemistry Division, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
23
|
Draft Genome Sequence of Gordonia sp. Strain YY1, Isolated from an Explosive-Contaminated Environment. Microbiol Resour Announc 2020; 9:9/16/e00070-20. [PMID: 32299869 PMCID: PMC7163007 DOI: 10.1128/mra.00070-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the whole-genome sequence of Gordonia sp. strain YY1, which was isolated from the surface soil in an explosive-contaminated site in Israel and cultivated with hexahydro-1,3,5-trinitro-1,3,5-triazine, i.e., royal demolition explosive (RDX), as a nitrogen source. This genome sequence will improve our understanding of the genes for RDX degradation. In addition, this research will reveal metabolic pathways in order to develop new bioremediation methods for polluted soil and groundwater. We report the whole-genome sequence of Gordonia sp. strain YY1, which was isolated from the surface soil in an explosive-contaminated site in Israel and cultivated with hexahydro-1,3,5-trinitro-1,3,5-triazine, i.e., royal demolition explosive (RDX), as a nitrogen source. This genome sequence will improve our understanding of the genes for RDX degradation. In addition, this research will reveal metabolic pathways in order to develop new bioremediation methods for polluted soil and groundwater.
Collapse
|
24
|
Water-soluble phosphorus contributes significantly to shaping the community structure of rhizospheric bacteria in rocky desertification areas. Sci Rep 2019; 9:18408. [PMID: 31804618 PMCID: PMC6895182 DOI: 10.1038/s41598-019-54943-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 02/01/2023] Open
Abstract
Microorganisms play important roles in soil improvement. Therefore, clarifying the contribution of environmental factors in shaping the microbial community structure is beneficial to improve soil fertility in karst rocky desertification areas. Here, the bacterial community structures of eight rhizospheric soil samples collected from perennial fruit plantations were analysed using an Illumina HiSeq2500 platform. The diversity and abundance of bacteria in rocky desertification areas were significantly lower than those in non-rocky desertification areas, while the bacterial community structure was not significantly different between root surface and non-root surface soils in the same rhizospheric soil samples. Proteobacteria predominated in rocky desertification areas, while Actinobacteria predominated in non-rocky desertification areas. Correlation analysis revealed that water-soluble phosphorus content (r2 = 0.8258), latitude (r2 = 0.7556), altitude (r2 = 0.7501), and the age of fruit trees (r2 = 0.7321) were positively correlated with the bacterial community structure, while longitude, pH, and total phosphorus content did not significantly influence the soil bacterial community structure. As water-soluble phosphorus content is derived from insoluble phosphorus minerals, supplementing phosphorus-solubilising bacteria to soils in rocky desertification areas is a feasible strategy for accelerating the dissolution of insoluble phosphorus minerals and improving agricultural production and environment ecology.
Collapse
|