1
|
Mayrhofer P, Kunert R. Splicing by Overlap Extension PCR for the Production of Fusion Proteins. Methods Mol Biol 2025; 2853:17-31. [PMID: 39460912 DOI: 10.1007/978-1-0716-4104-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fusion proteins are valuable molecules to meet different demands related to the development of biopharmaceuticals and bioprocesses. In human therapy, they are used to improve the half-life of biologics by modifying the biophysical properties of the proteins. In biotechnology, the design of fusion proteins can standardize the establishment of production clones and the purification process. Analytical detection capabilities of the fusion partner and binding to affinity ligands play a crucial role. For the generation of the recombinant cell line, the maturation of the protein and the secretion are also crucial factors, which can be significantly influenced by the fusion partner and can determine the final yield of the bioprocess. Here we present a protocol to recombine the human extracellular domain of CD19 with the human serum albumin domain 2 resulting in a fusion protein CD19-AD2 including a flexible linker sequence in the interface between the C-terminus of CD19 and the N-terminus of HSA-D2 and a terminal His12-tag. The two fragments are independently amplified with primers allowing to genetically connect the two fragments in the next step by overlap extension PCR. By this strategy, the linker sequence as well as the albumin fragment can be chosen individually to be flexible in the fine-tuning of the final protein. The amplified product is then cloned into a mammalian expression vector suitable to generate a recombinant transient or stable cell culture. This workflow can be applied to any protein sequence by adapting the specific primer sequences.
Collapse
Affiliation(s)
- Patrick Mayrhofer
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Renate Kunert
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Lima AJF, Hajdu KL, Abdo L, Batista-Silva LR, de Oliveira Andrade C, Correia EM, Aragão EAA, Bonamino MH, Lourenzoni MR. In silico and in vivo analysis reveal impact of c-Myc tag in FMC63 scFv-CD19 protein interface and CAR-T cell efficacy. Comput Struct Biotechnol J 2024; 23:2375-2387. [PMID: 38873646 PMCID: PMC11170440 DOI: 10.1016/j.csbj.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Anti-CD19 CAR-T cell therapy represents a breakthrough in the treatment of B-cell malignancies, and it is expected that this therapy modality will soon cover a range of solid tumors as well. Therefore, a universal cheap and sensitive method to detect CAR expression is of foremost importance. One possibility is the use of epitope tags such as c-Myc, HA or FLAG tags attached to the CAR extracellular domain, however, it is important to determine whether these tags can influence binding of the CAR with its target molecule. Here, we conducted in-silico structural modelling of an FMC63-based anti-CD19 single-chain variable fragment (scFv) with and without a c-Myc peptide tag added to the N-terminus portion and performed molecular dynamics simulation of the scFv with the CD19 target. We show that the c-Myc tag presence in the N-terminus portion does not affect the scFv's structural equilibrium and grants more stability to the scFv. However, intermolecular interaction potential (IIP) analysis reveals that the tag can approximate the complementarity-determining regions (CDRs) present in the scFv and cause steric impediment, potentially disturbing interaction with the CD19 protein. We then tested this possibility with CAR-T cells generated from human donors in a Nalm-6 leukemia model, showing that CAR-T cells with the c-Myc tag have overall worse antitumor activity, which was also observed when the tag was added to the C-terminus position. Ultimately, our results suggest that tag addition is an important aspect of CAR design and can influence CAR-T cell function, therefore its use should be carefully considered.
Collapse
Affiliation(s)
- Ana Julia Ferreira Lima
- Research Group on Protein Engineering and Health Solutions (GEPeSS), Oswaldo Cruz Foundation Ceará (Fiocruz-CE), São José, Precabura, 61773-270 Eusébio, Ceará, Brazil
- Federal University of Ceará (UFC), Pici campus (Building 873), 60440-970 Fortaleza, Ceará, Brazil
| | - Karina Lobo Hajdu
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Luiza Abdo
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Clara de Oliveira Andrade
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Eduardo Mannarino Correia
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcos Roberto Lourenzoni
- Research Group on Protein Engineering and Health Solutions (GEPeSS), Oswaldo Cruz Foundation Ceará (Fiocruz-CE), São José, Precabura, 61773-270 Eusébio, Ceará, Brazil
| |
Collapse
|
3
|
Xiao YX, Wei J, Moffat J. Protocol for CRISPR-based endogenous protein tagging in mammalian cells. STAR Protoc 2024; 5:103404. [PMID: 39427309 DOI: 10.1016/j.xpro.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Tracking the localization and proximal interaction partners of endogenous proteins provides valuable functional insight. Here, we present a protocol for CRISPR-based endogenous protein tagging in mammalian cells. We describe steps for endogenously tagging human TSC22D2 and MAP4, including designing Cas9 and Cas12a guides for knockin, modularized repair template design and cloning, and procedures for lipid transfection and electroporation. This protocol accommodates Cas nucleases in plasmid expression or ribonucleoprotein complex (RNP) formats. This "endo-tagging" approach offers flexibility and broad applicability. For complete details on the use and execution of this protocol, please refer to Xiao et al.1.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Lyu YD, Chen PT. Development of a Chitin-Based Purification System Utilizing Chitin-Binding Domain and Tobacco Etch Virus Protease Cleavage for Efficient Recombinant Protein Recovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22229-22236. [PMID: 39340448 DOI: 10.1021/acs.jafc.4c07832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
This study aims to develop an efficient chitin-based purification system, leveraging a novel design where the target proteins, superfolding green fluorescent protein (sfGFP) and Thermus antranikianii trehalose synthase (TaTS), fused with a chitin-binding domain (ChBD) from Bacillus circulans WL-12 chitinase A1 and a tobacco etch virus protease (TEVp) cleavage site. This configuration allows for the effective immobilization of the target proteins on chitin beads, facilitating the removal of endogenous proteins. A mutant TEVp, H-TEVS219V-ChBD, fused with the His-tag and ChBD, is employed to cleave the target proteins from the chitin beads specifically. Subsequently, fresh chitin beads are added for adsorption to remove H-TEVS219V-ChBD in the solution, thereby significantly improving the purity of the target protein. Our results confirm that this system can efficiently and specifically purify and recover sfGFP and TaTS, achieving electrophoretic-grade purity exceeding 90%. This system holds significant potential for industrial production and other applications.
Collapse
Affiliation(s)
- Yao-Dong Lyu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| |
Collapse
|
5
|
Li X, Kuchinski LM, Park A, Murphy GS, Soto KC, Schuster BS. Enzyme purification and sustained enzyme activity for pharmaceutical biocatalysis by fusion with phase-separating intrinsically disordered protein. Biotechnol Bioeng 2024; 121:3155-3168. [PMID: 38951956 DOI: 10.1002/bit.28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
In recent decades, biocatalysis has emerged as an important alternative to chemical catalysis in pharmaceutical manufacturing. Biocatalysis is attractive because enzymatic cascades can synthesize complex molecules with incredible selectivity, yield, and in an environmentally benign manner. Enzymes for pharmaceutical biocatalysis are typically used in their unpurified state, since it is time-consuming and cost-prohibitive to purify enzymes using conventional chromatographic processes at scale. However, impurities present in crude enzyme preparations can consume substrate, generate unwanted byproducts, as well as make the isolation of desired products more cumbersome. Hence, a facile, nonchromatographic purification method would greatly benefit pharmaceutical biocatalysis. To address this issue, here we have captured enzymes into membraneless compartments by fusing enzymes with an intrinsically disordered protein region, the RGG domain from LAF-1. The RGG domain can undergo liquid-liquid phase separation, forming liquid condensates triggered by changes in temperature or salt concentration. By centrifuging these liquid condensates, we have successfully purified enzyme-RGG fusions, resulting in significantly enhanced purity compared to cell lysate. Furthermore, we performed enzymatic reactions utilizing purified fusion proteins to assay enzyme activity. Results from the enzyme assays indicate that enzyme-RGG fusions purified by the centrifugation method retain enzymatic activity, with greatly reduced background activity compared to crude enzyme preparations. Our work focused on three different enzymes-a kinase, a phosphorylase, and an ATP-dependent ligase. The kinase and phosphorylase are components of the biocatalytic cascade for manufacturing molnupiravir, and we demonstrated facile co-purification of these two enzymes by co-phase separation. To conclude, enzyme capture by RGG tagging promises to overcome difficulties in bioseparations and biocatalysis for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liam M Kuchinski
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Augene Park
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Grant S Murphy
- Department of Process Research and Development, Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Karla Camacho Soto
- Department of Process Research and Development, Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Kumar Y, Agrawal K, Ojha M, Pushpavanam K. Light-Activated Molecular Purification (LAMP) of Recombinant Proteins. Bioconjug Chem 2024; 35:1343-1351. [PMID: 39223465 DOI: 10.1021/acs.bioconjchem.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The production of recombinant proteins has become a focal point in biotechnology, with potential applications in catalysis, therapeutics, and diagnostics. Before their application, these proteins undergo cumbersome downstream processing, including multiple resin-based chromatography steps (ion exchange or affinity-based) to isolate the protein of interest from host cell proteins, which are more abundant. These methods often involve (1) nonspecific binding of host cell proteins onto the resin, (2) a trial and error approach in determining elution conditions for the protein of interest, and (3) complex functionalization of the resin. These processes are also further supplemented with additional processing steps including buffer exchange through dialysis or desalting. Despite the prevalence and need for proteins, challenges persist in optimizing elution conditions and minimizing downstream processing steps, which contribute to the overall cost, impeding their translation into the market. To address these challenges, there has been a growing interest in stimuli-responsive purification systems, which allow for precise control and modulation of the purification process for protein recovery by altering their properties or behavior in response to specific external conditions, such as heat, light, or chemicals. We have developed a light-activated molecular purification (LAMP) system, a stimuli-responsive chromatography technique where the purification of recombinant proteins is triggered by light. We employed a photocleavable protein (PhoCl1) that binds specifically to Ni-NTA resin through a hexa-histidine tag at its N-terminus. We harnessed the ability of PhoCl1 to undergo photocleavage into two fragments for the development of LAMP. To demonstrate LAMP, the protein of interest (POI) is genetically fused to the C-terminus of PhoCl1. The exposure to 405 nm light (1.5 mW cm-2 for 12 h) results in the release of POI into the supernatant. We showcased the potential of LAMP by purifying highly charged green fluorescent proteins and an enzyme, riboflavin kinase. Our custom-built violet light LED setup achieved more than 50% light-induced photocleavage of the fusion constructs, resulting in the release of more than 30% of the POI into the supernatant, with the remainder retained within the resin. All the proteins purified using LAMP were more than 90% pure. Moreover, the comparison of the riboflavin kinase purified through LAMP and the traditional chromatography (Ni-NTA affinity method) revealed no significant changes in the activity levels. These highlight the broad potential of LAMP in providing a facile, yet robust stimuli-responsive protein purification technique, which leverages the potential of light to purify the proteins and overcome the limitations of current conventional chromatography systems.
Collapse
Affiliation(s)
- Yashwant Kumar
- Chemical Engineering, IIT Gandhinagar, Gujarat 382355, India
| | - Krishna Agrawal
- Biological Sciences and Engineering, IIT Gandhinagar, Gandhinagar 382355, India
| | - Manisha Ojha
- Chemical Engineering, IIT Gandhinagar, Gujarat 382355, India
| | | |
Collapse
|
7
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Kuzmina NV, Gavrilova AA, Fefilova AS, Romanovich AE, Kuznetsova IM, Turoverov KK, Fonin AV. Von-Hippel Lindau protein amyloid formation. The role of GST-tag. Biochem Biophys Res Commun 2024; 715:150008. [PMID: 38685186 DOI: 10.1016/j.bbrc.2024.150008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
In the last decade, much attention was given to the study of physiological amyloid fibrils. These structures include A-bodies, which are the nucleolar fibrillar formations that appear in the response to acidosis and heat shock, and disassemble after the end of stress. One of the proteins involved in the biogenesis of A-bodies, regardless of the type of stress, is Von-Hippel Lindau protein (VHL). Known also as a tumor suppressor, VHL is capable to form amyloid fibrils both in vitro and in vivo in response to the environment acidification. As with most amyloidogenic proteins fusion with various tags is used to increase the solubility of VHL. Here, we first performed AFM-study of fibrils formed by VHL protein and by VHL fused with GST-tag (GST-VHL) at acidic conditions. It was shown that formed by full-length VHL fibrils are short heterogenic structures with persistent length of 2400 nm and average contour length of 409 nm. GST-tag catalyzes VHL amyloid fibril formation, superimpose chirality, increases length and level of hierarchy, but decreases rigidity of amyloid fibrils. The obtained data indicate that tagging can significantly affect the fibrillogenesis of the target protein.
Collapse
Affiliation(s)
- Natalia V Kuzmina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Bldg. 4, 31, Leninskiy ave., 119071, Moscow, Russia
| | - Anastasia A Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia
| | - Anna S Fefilova
- Center of Genomic Regulation (GRC), Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Anna E Romanovich
- Resource Center of Molecular and Cell Technologies, St-Petersburg State University Research Park, Universitetskaya Emb. 7-9, 199034, St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| |
Collapse
|
9
|
Ahmed A, Fujimura NA, Tahir S, Akram M, Abbas Z, Riaz M, Raza A, Abbas R, Ahmed N. Soluble and insoluble expression of recombinant human interleukin-2 protein using pET expression vector in Escherichia coli. Prep Biochem Biotechnol 2024:1-13. [PMID: 38824503 DOI: 10.1080/10826068.2024.2361146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Interleukin-2 has emerged as a potent protein-based drug to treat various cancers, AIDS, and autoimmune diseases. Despite its immense requirement, the production procedures are inefficient to meet the demand. Therefore, efficient production procedures must be adopted to improve protein yield and decrease procedural loss. This study analyzed cytoplasmic and periplasmic IL-2 expression for increased protein yield and significant biological activity. The study is focused on cloning IL-2 into a pET-SUMO and pET-28a vector that expresses IL-2 in soluble form and inclusion bodies, respectively. Both constructs were expressed into different E. coli expression strains, but the periplasmic and cytoplasmic expression of IL-2 was highest in overnight culture in Rosetta 2 (DE3). Therefore, E. coli Rosetta 2 (DE3) was selected for large-scale production and purification. Purified IL-2 was characterized by SDS-PAGE and western blotting, while its biological activity was determined using MTT bioassay. The results depict that the periplasmic and cytoplasmic IL-2 achieved adequate purification, yielding 0.86 and 0.51 mg/mL, respectively, with significant cytotoxic activity of periplasmic and cytoplasmic IL-2. Periplasmic IL-2 has shown better yield and significant biological activity in vitro which describes its attainment of native protein structure and function.
Collapse
Affiliation(s)
- Atif Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zaheer Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maira Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rabia Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Karan R, Renn D, Allers T, Rueping M. A systematic analysis of affinity tags in the haloarchaeal expression system, Haloferax volcanii for protein purification. Front Microbiol 2024; 15:1403623. [PMID: 38873150 PMCID: PMC11169840 DOI: 10.3389/fmicb.2024.1403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Extremophilic proteins are valuable in various fields, but their expression can be challenging in traditional hosts like Escherichia coli due to misfolding and aggregation. Haloferax volcanii (H. volcanii), a halophilic expression system, offers a solution. This study examined cleavable and non-cleavable purification tags at both the N- and C-termini when fused with the superfolder green fluorescent protein (sfGFP) in H. volcanii. Our findings reveal that an N-terminal 8xHis-tag or Strep-tag®II significantly enhances protein production, purity, and yield in H. volcanii. Further experiments with mCherry and halophilic alcohol dehydrogenase (ADH) showed improved expression and purification yields when the 8xHis-tag or Strep-tag®II was positioned at the C-terminus for mCherry and at the N-terminus for ADH. Co-positioning 8xHis-tag and Twin-Strep-tag® at the N-terminus of sfGFP, mCherry, and ADH yielded significantly enhanced results. These findings highlight the importance of thoughtful purification tag design and selection in H. volcanii, providing valuable insights for improving protein production and purification with the potential to advance biotechnological applications.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Dominik Renn
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Efficient Biosynthesis of Difucosyllactose via De Novo GDP-l-Fucose Pathway in Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4367-4375. [PMID: 38374607 DOI: 10.1021/acs.jafc.3c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Difucosyllactose (DFL) is an important component of human milk oligosaccharides (HMOs) and has significant benefits for the growth and development of infants. So far, a few microbial cell factories have been constructed for the production of DFL, which still have problems of low production and high cost. Herein, a high-level de novo pathway DFL-producing strain was constructed by multistep optimization strategies in Escherichia coli BL21star(DE3). We first efficiently synthesized the intermediate 2'-fucosyllactose (2'-FL) in E. coli BL21star(DE3) by the advisable stepwise strategy. The truncated α-1,3/4-fucosyltransferase (Hp3/4FT) was then introduced into the engineered strain to achieve de novo biosynthesis of DFL. ATP-dependent protease (Lon) and GDP-mannose hydrolase (NudK) were deleted, and mannose-6-phosphate isomerase (ManA) was overexpressed to improve GDP-l-fucose accumulation. The regulator RcsA was overexpressed to fine-tune the expression level of pathway genes, thereby increasing the synthesis of DFL. The final strain produced 6.19 g/L of DFL in the shake flask and 33.45 g/L of DFL in the 5 L fermenter, which were the highest reported titers so far. This study provides a more economical, sustainable, and effective strategy to produce the fucosylated human milk oligosaccharides (HMOs).
Collapse
Affiliation(s)
- Shanquan Liang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Zi He
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
12
|
Chen YL, Lee J, Liu Z, Strych U, Bottazzi ME, Lin YP, Chen WH. Biophysical and biochemical characterization of a recombinant Lyme disease vaccine antigen, CspZ-YA. Int J Biol Macromol 2024; 259:129295. [PMID: 38211914 DOI: 10.1016/j.ijbiomac.2024.129295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Lyme disease, caused by Lyme Borrelia spirochetes, is the most common vector-borne illness in the United States. Despite its global significance, with an estimated 14.5 % seroprevalence, there is currently no licensed vaccine. Previously, we demonstrated that CspZ-YA protein conferred protection against Lyme Borrelia infection, making it a promising vaccine candidate. However, such a protein was tagged with hexahistidine, and thus not preferred for vaccine development; furthermore, the formulation to stabilize the protein was understudied. In this work, we developed a two-step purification process for tag-free E. coli-expressed recombinant CspZ-YA. We further utilized various bioassays to analyze the protein and determine the suitable buffer system for long-term storage and formulation as a vaccine immunogen. The results indicated that a buffer with a pH between 6.5 and 8.5 stabilized CspZ-YA by reducing its surface hydrophobicity and colloidal interactions. Additionally, low pH values induced a change in local spatial conformation and resulted in a decrease in α-helix content. Lastly, an optimal salinity of 22-400 mM at pH 7.5 was found to be important for its stability. Collectively, this study provides a fundamental biochemical and biophysical understanding and insights into the ideal stabilizing conditions to produce CspZ-YA recombinant protein for use in vaccine formulation and development.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA; Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA.
| | - Wen-Hsiang Chen
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA.
| |
Collapse
|
13
|
Vera-Peralta H, Najburg V, Combredet C, Douché T, Gianetto QG, Matondo M, Tangy F, Mura M, Komarova AV. Applying Reverse Genetics to Study Measles Virus Interactions with the Host. Methods Mol Biol 2024; 2808:89-103. [PMID: 38743364 DOI: 10.1007/978-1-0716-3870-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
- Institut de recherche biomédicale des armées, Immunopathologie, Bretigny-sur-Orge, France
| | - Valerie Najburg
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
| | - Chantal Combredet
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics Hub, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
| | | | - Marie Mura
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
- Institut de recherche biomédicale des armées, Immunopathologie, Bretigny-sur-Orge, France
| | - Anastassia V Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity Laboratory, Paris, France.
| |
Collapse
|
14
|
Lebendiker M. Purification and Quality Control of Recombinant Proteins Expressed in Mammalian Cells: A Practical Review. Methods Mol Biol 2024; 2810:329-353. [PMID: 38926289 DOI: 10.1007/978-1-0716-3878-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In the recent years, there has been a rapid development of new technologies and strategies when it comes to protein purification and quality control (QC), but the basic technologies for these processes go back a long way, with many improvements over the past few decades. The purpose of this chapter is to review these approaches, as well as some other topics such as the advantages and disadvantages of various purification methods for intracellular or extracellular proteins, the most effective and widely used genetically engineered affinity tags, solubility-enhancing tags, and specific proteases for removal of nontarget sequences. Affinity chromatography (AC), like Protein A or G resins for the recovery of antibodies or Fc fusion proteins or immobilized metals for the recovery of histidine-tagged proteins, will be discussed along with other conventional chromatography techniques: ion exchange (IEC), hydrophobic exchange (HEC), mixed mode (MMC), size exclusion (SEC), and ultrafiltration (UF) systems. How to select and combine these different technologies for the purification of any given protein and the minimal criteria for QC characterization of the purity, homogeneity, identity, and integrity of the final product will be presented.
Collapse
Affiliation(s)
- Mario Lebendiker
- Protein Expression and Purification Facilities, The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Kuwahara A, Nazuka M, Kuroki Y, Ito K, Watanabe S, Kumagai I, Asano R. Functional integration of protein A binding ability to antibody fragments for convenient and tag-free purification. Bioengineered 2023; 14:2259093. [PMID: 37732741 PMCID: PMC10515673 DOI: 10.1080/21655979.2023.2259093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Although the development of small therapeutic antibodies is important, the affinity tags used for their purification often result in heterogeneous production and immunogenicity. In this study, we integrated Staphylococcus aureus protein A (SpA) binding ability into antibody fragments for convenient and tag-free purification. SpA affinity chromatography is used as a global standard purification method for conventional antibodies owing to its high binding affinity to the Fc region. SpA also has a binding affinity for some variable heavy domains (VH) classified in the VH3 subfamily. Through mutagenesis based on alignment and structural modeling results using the SpA-VH3 cocrystal structure, we integrated the SpA-binding ability into the anti-CD3 single-chain Fv. Furthermore, we applied this mutagenesis approach to more complicated small bispecific antibodies and successfully purified the antibodies using SpA affinity chromatography. The antibodies retained their biological function after purification. Integration of SpA-binding ability into conventional antibody fragments simplifies the purification and monitoring of the production processes and, thus, is an ideal strategy for accelerating the development of small therapeutic antibodies. Furthermore, because of its immunoactivity, the anti-CD3 variable region with SpA-binding ability is an effective building block for developing engineered cancer therapeutic antibodies without the Fc region.
Collapse
Affiliation(s)
- Atsushi Kuwahara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Misae Nazuka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuri Kuroki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kohei Ito
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
16
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
17
|
Aguiar TQ, Domingues L. Recombinant protein purification and immobilization strategies based on peptides with dual affinity to iron oxide and silica. Biotechnol J 2023; 18:e2300152. [PMID: 37478356 DOI: 10.1002/biot.202300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Iron oxide and silica-based materials have emerged as attractive protein purification and immobilization matrices. His6 has been reported as an effective affinity tag for both iron oxide and silica. Here, the silica-binding tags CotB1p and Car9 were shown to work as effectively as iron oxide-binding tags. Using EGFP as a model protein, commercially available bare iron oxide (BIONs) or silicon dioxide (BSiNs) nanoparticles as low-cost purification/immobilization matrices, and non-hazardous and mild binding and elution conditions, adsorption and desorption studies were performed with lysates from Escherichia coli-producing cells to compare the performance of these dual-affinity tags. Under the conditions tested, the His6 tag stood out as the best-performing tag, followed by CotB1p. Our findings concluded the promising combination of these tags, BIONs and BSiNs for one-step purification of recombinant proteins, and two-step purification and immobilization of recombinant proteins without intermediate buffer exchange. This proof of concept work set the ground for future evaluation of these purification and immobilization strategies using other proteins with different properties, which will be of interest to expand their utility and applicability.
Collapse
Affiliation(s)
- Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Lappöhn CA, Oestreich AM, Stei R, Weber LG, Maerz L, Wolff MW. Process intensification for the production of a C-tagged antimicrobial peptide in Escherichia coli - First steps toward a platform technology. J Biosci Bioeng 2023; 136:358-365. [PMID: 37770299 DOI: 10.1016/j.jbiosc.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
The production of antimicrobial peptides/proteins (AMPs) in sufficient quantities for clinical evaluation is challenging because complex peptides are unsuitable for chemical synthesis, natural sources have low yields, and heterologous systems often have low expression levels or require product-specific process adaptations. Here we describe the production of a complex AMP, the insect metalloproteinase inhibitor (IMPI), by adding a C-terminal C-tag to increase the yield compared to the unmodified peptide. We used a design of experiments approach for process intensification in Escherichia coli Rosetta-gami 2(DE3)pLysS cells and achieved a yield of 260 mg L-1, which is up to 30-fold higher than previously reported. The C-tag also enhanced product purity but had no effect on IMPI activity, making tag removal unnecessary and therefore simplifying process analytics and downstream processing. We have confirmed that the C-tag is compatible with the peptide and could form the basis of a platform technology for the expression, purification and detection of diverse AMPs produced in E. coli.
Collapse
Affiliation(s)
- Carolin A Lappöhn
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Arne M Oestreich
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Robin Stei
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Linus G Weber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Lea Maerz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
19
|
Zeng G, Zheng Y, Xiang Y, Liu R, Yang X, Lin Z. A novel protein purification scheme based on salt inducible self-assembling peptides. Microb Cell Fact 2023; 22:224. [PMID: 37899435 PMCID: PMC10614350 DOI: 10.1186/s12934-023-02229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Protein purification remains a critical need for biosciences and biotechnology. It frequently requires multiple rounds of chromatographic steps that are expensive and time-consuming. Our lab previously reported a cleavable self-aggregating tag (cSAT) scheme for streamlined protein expression and purification. The tag consists of a self-assembling peptide (SAP) and a controllable self-cleaving intein. The SAP drives the target protein into an active aggregate, then by intein-mediated cleavage, the target protein is released. Here we report a novel cSAT scheme in which the self-assembling peptide is replaced with a salt inducible self-assembling peptide. This allows a target protein to be expressed first in the soluble form, and the addition of salt then drives the target protein into the aggregated form, followed by cleavage and release. RESULTS In this study, we used MpA (MKQLEDKIEELLSKAAMKQLEDKIEELLSK) as a second class of self-assembling peptide in the cSAT scheme. This scheme utilizes low salt concentration to keep the fusion protein soluble, while eliminating insoluble cellular matters by centrifugation. Salt then triggers MpA-mediated self-aggregation of the fusion, removing soluble background host cell proteins. Finally, intein-mediated cleavage releases the target protein into solution. As a proof-of-concept, we successfully purified four proteins and peptides (human growth hormone, 22.1 kDa; LCB3, 7.7 kDa; SpyCatcherΔN-ELP-SpyCatcherΔN, 26.2 kDa; and xylanase, 45.3 kDa) with yields ranging from 12 to 87 mg/L. This was comparable to the classical His-tag method both in yield and purity (72-97%), but without the His-tag. By using a further two-step column purification process that included ion-exchange chromatography and size-exclusion chromatography, the purity was increased to over 99%. CONCLUSION Our results demonstrate that a salt-inducible self-assembling peptide can serve as a controllable aggregating tag, which might be advantageous in applications where soluble expression of the target protein is preferred. This work also demonstrates the potential and advantages of utilizing salt inducible self-assembling peptides for protein separation.
Collapse
Affiliation(s)
- Guang Zeng
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Yinzhen Zheng
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Ya Xiang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Run Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Javanshad R, Taylor CJ, Delavari N, Barkman TJ, Stull F, Venter AR. Analysis of histidine-tagged recombinant proteins from nickel and copper coated surfaces by direct electrospray ionization and desorption electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9516. [PMID: 37013403 DOI: 10.1002/rcm.9516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
RATIONALE Purification of recombinant proteins is a necessary step for functional or structural studies and other applications. Immobilized metal affinity chromatography is a common recombinant protein purification method. Mass spectrometry (MS) allows for confirmation of identity of expressed proteins and unambiguous detection of enzymatic substrates and reaction products. We demonstrate the detection of enzymes purified on immobilized metal affinity surfaces by direct or ambient ionization MS, and follow their enzymatic reactions by direct electrospray ionization (ESI) or desorption electrospray ionization (DESI). METHODS A protein standard, His-Ubq, and two recombinant proteins, His-SHAN and His-CS, expressed in Escherichia coli were immobilized on two immobilized metal affinity systems, Cu-nitriloacetic acid (Cu-NTA) and Ni-NTA. The proteins were purified on surface, and released in the ESI spray solvent for direct infusion, when using the 96-well plate form factor, or analyzed directly from immobilized metal affinity-coated microscope slides by DESI-MS. Enzyme activity was followed by incubating the substrates in wells or by depositing substrate on immobilized protein on coated slides for analysis. RESULTS Small proteins (His-Ubq) and medium proteins (His-SAHN) could readily be detected from 96-well plates by direct infusion ESI, or from microscope slides by DESI-MS after purification on surface from clarified E. coli cell lysate. Protein oxidation was observed for immobilized proteins on both Cu-NTA and Ni-NTA; however, this did not hamper the enzymatic reactions of these proteins. Both the nucleosidase reaction products for His-SAHN and the methylation product of His-CS (theobromine to caffeine) were detected. CONCLUSIONS The immobilization, purification, release and detection of His-tagged recombinant proteins using immobilized metal affinity surfaces for direct infusion ESI-MS or ambient DESI-MS analyses were successfully demonstrated. Recombinant proteins were purified to allow identification directly out of clarified cell lysate. Biological activities of the recombinant proteins were preserved allowing the investigation of enzymatic activity via MS.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | | | - Niusha Delavari
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
21
|
Benedini LJ, Furlan FF, Figueiredo D, Cabrera-Crespo J, Ribeiro MPA, Campani G, Gonçalves VM, Zangirolami TC. A comprehensive method for modeling and simulating ion exchange chromatography of complex mixtures. Protein Expr Purif 2023; 205:106228. [PMID: 36587709 DOI: 10.1016/j.pep.2022.106228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
In recent years, many biological-based products have been developed, representing a significant fraction of income in the pharmaceutical market. Ion exchange chromatography is an important downstream step for the purification of target recombinant proteins present in clarified cell extracts, together with many other unknown impurities. This work develops a robust approach to model and simulate the purification of untagged heterologous proteins, so that the improved conditions to carry out an ion exchange chromatography are identified in a rational basis prior to the real purification run itself. Purification of the pneumococcal surface protein A (PspA4Pro) was used as a case study. This protein is produced by recombinant Escherichia coli and is a candidate for the manufacture of improved pneumococcal vaccines. The developed method combined experimental and computational procedures. Different anion exchange operating conditions were mapped in order to gather a broad range of representative experimental data. The equilibrium dispersive and the steric mass action equations were used to model and simulate the process. A training strategy to fit the model and separately describe the elution profiles of PspA4Pro and other proteins of the cell extract was applied. Based on the simulation results, a reduced ionic strength was applied for PspA4Pro elution, leading to increases of 14.9% and 11.5% for PspA4Pro recovery and purity, respectively, compared to the original elution profile. These results showed the potential of this method, which could be further applied to improve the performance of ion exchange chromatography in the purification of other target proteins under real process conditions.
Collapse
Affiliation(s)
- Leandro J Benedini
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Federal Institute of São Paulo (IFSP), Catanduva, Brazil.
| | - Felipe F Furlan
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Douglas Figueiredo
- Butantan Institute, Laboratory of Vaccine Development, São Paulo, Brazil
| | | | - Marcelo P A Ribeiro
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Gilson Campani
- Department of Engineering, Federal University of Lavras, Lavras, Brazil
| | | | - Teresa C Zangirolami
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
22
|
Xu X, Xie Y, Guo P, Shi Y, Sun M, Zhou J, Wang C, Han C, Liu J, Li T. Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample. Food Chem 2023; 404:134645. [DOI: 10.1016/j.foodchem.2022.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
23
|
Fabrication of Fe3O4@SiO2@PDA-Ni2+ nanoparticles for one-step affinity immobilization and purification of His-tagged glucose dehydrogenase. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
24
|
Gomari MM, Tarighi P, Choupani E, Abkhiz S, Mohamadzadeh M, Rostami N, Sadroddiny E, Baammi S, Uversky VN, Dokholyan NV. Structural evolution of Delta lineage of SARS-CoV-2. Int J Biol Macromol 2023; 226:1116-1140. [PMID: 36435470 PMCID: PMC9683856 DOI: 10.1016/j.ijbiomac.2022.11.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
One of the main obstacles in prevention and treatment of COVID-19 is the rapid evolution of the SARS-CoV-2 Spike protein. Given that Spike is the main target of common treatments of COVID-19, mutations occurring at this virulent factor can affect the effectiveness of treatments. The B.1.617.2 lineage of SARS-CoV-2, being characterized by many Spike mutations inside and outside of its receptor-binding domain (RBD), shows high infectivity and relative resistance to existing cures. Here, utilizing a wide range of computational biology approaches, such as immunoinformatics, molecular dynamics (MD), analysis of intrinsically disordered regions (IDRs), protein-protein interaction analyses, residue scanning, and free energy calculations, we examine the structural and biological attributes of the B.1.617.2 Spike protein. Furthermore, the antibody design protocol of Rosetta was implemented for evaluation the stability and affinity improvement of the Bamlanivimab (LY-CoV55) antibody, which is not capable of interactions with the B.1.617.2 Spike. We observed that the detected mutations in the Spike of the B1.617.2 variant of concern can cause extensive structural changes compatible with the described variation in immunogenicity, secondary and tertiary structure, oligomerization potency, Furin cleavability, and drug targetability. Compared to the Spike of Wuhan lineage, the B.1.617.2 Spike is more stable and binds to the Angiotensin-converting enzyme 2 (ACE2) with higher affinity.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Esmaeil Sadroddiny
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 16802, USA.
| |
Collapse
|
25
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
26
|
Kumar P, Sharma N, Ahmed MA, Verma AK, Umaraw P, Mehta N, Abubakar AA, Hayat MN, Kaka U, Lee SJ, Sazili AQ. Technological interventions in improving the functionality of proteins during processing of meat analogs. Front Nutr 2022; 9:1044024. [PMID: 36601080 PMCID: PMC9807037 DOI: 10.3389/fnut.2022.1044024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring). '.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Akhilesh K. Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
27
|
Gomari MM, Abkhiz S, Pour TG, Lotfi E, Rostami N, Monfared FN, Ghobari B, Mosavi M, Alipour B, Dokholyan NV. Peptidomimetics in cancer targeting. Mol Med 2022; 28:146. [PMID: 36476230 PMCID: PMC9730693 DOI: 10.1186/s10020-022-00577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Abkhiz
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantab Pour
- grid.411746.10000 0004 4911 7066Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Lotfi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rostami
- grid.411425.70000 0004 0417 7516Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Fatemeh Nafe Monfared
- grid.411705.60000 0001 0166 0922Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ghobari
- grid.412831.d0000 0001 1172 3536Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mona Mosavi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behruz Alipour
- grid.411705.60000 0001 0166 0922Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikolay V. Dokholyan
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA USA
| |
Collapse
|
28
|
Kumar P, Mehta N, Abubakar AA, Verma AK, Kaka U, Sharma N, Sazili AQ, Pateiro M, Kumar M, Lorenzo JM. Potential Alternatives of Animal Proteins for Sustainability in the Food Sector. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Pavan Kumar
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Akhilesh Kumar Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, UT of Jammu and Kashmir, India
| | - Awis Qurni Sazili
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Ourense, Spain
| |
Collapse
|
29
|
Gomari MM, Rostami N, Faradonbeh DR, Asemaneh HR, Esmailnia G, Arab S, Farsimadan M, Hosseini A, Dokholyan NV. Evaluation of pH change effects on the HSA folding and its drug binding characteristics, a computational biology investigation. Proteins 2022; 90:1908-1925. [DOI: 10.1002/prot.26386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamid Reza Asemaneh
- Polymer Research Center, Department of Chemical Engineering Razi University Kermanshah Iran
| | - Giti Esmailnia
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahriar Arab
- Department of Biophysics School of Biological Sciences, Tarbiat Modares University Tehran Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences University of Guilan Rasht Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology Pennsylvania State University College of Medicine Hershey Pennsylvania USA
| |
Collapse
|
30
|
Engineering His-Tagged Senecavirus A for One-Step Purification of Viral Antigens. Vaccines (Basel) 2022; 10:vaccines10020170. [PMID: 35214628 PMCID: PMC8880742 DOI: 10.3390/vaccines10020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine, and the inactivated vaccine is used to prevent and control SVA infection. To develop a new chromatography strategy for the purification and concentration of SVA vaccine antigens, we inserted a 6×His-tag at the VP1 C-terminal of the SVA/HLJ/CHA/2016 in an infectious clone to rescue a His-tagged SVA. The constructed and rescued recombinant virus, named as rSVA-His, exhibited similar growth kinetics to that of its parental virus. In addition, the expression of a 6×His-tag on the surface of SVA showed genetic stability in cell passages in vitro, which allowed one-step purification of SVA antigens by Ni2+ affinity columns. Furthermore, the immunogenicity of the inactivated rSVA-His was evaluated by inoculating rabbits and detecting neutralizing antibodies. The animals receiving two doses of the inactivated rSVA-His emulsified with oil adjuvant developed a high titer of neutralizing antibodies, indicating that SVA VP1 is tolerant to His-tag insertion without detriment to its antigenicity. In summary, the constructed 6×His-tagged SVA may offer a feasible approach to the affinity purification and concentration of antigens in the process of SVA inactivated vaccine production.
Collapse
|
31
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
32
|
Jaramillo-Martinez V, Ganapathy V, Urbatsch IL. Peptide Tags and Domains for Expression and Detection of Mammalian Membrane Proteins at the Cell Surface. Methods Mol Biol 2022; 2507:337-358. [PMID: 35773591 DOI: 10.1007/978-1-0716-2368-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Normal functions of cell-surface proteins are dependent on their proper trafficking from the site of synthesis to the cell surface. Transport proteins mediating solute transfer across the plasma membrane constitute an important group of cell-surface proteins. There are several diseases resulting from mutations in these proteins that interfere with their transport function or trafficking, depending on the impact of the mutations on protein folding and structure. Recent advances in successful treatment of some of these diseases with small molecules which correct the mutations-induced folding and structural changes underline the need for detailed structural and biophysical characterization of membrane proteins. This requires methods to express and purify these proteins using heterologous expression systems. Here, using the solute carrier (SLC) transporter NaCT (Na+-coupled citrate transporter) as an example, we describe experimental strategies for this approach. We chose this example because several mutations in NaCT, distributed throughout the protein, cause a severe neurologic disease known as early infantile epileptic encephalopathy-25 (EIEE-25). NaCT was modified with various peptide tags, including a RGS-His10, a Twin-Strep, the SUMOstar domain, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. When transiently expressed in HEK293 cells, recombinant NaCT proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited citrate transport activity similar to the nontagged protein. Surface NaCT expression was enhanced by the presence of SUMOstar on the N-terminus. The dual-purpose peptide epitopes RGS-His10 and Twin-Strep facilitated detection of NaCT by immunohistochemistry and western blot and may serve useful tags for affinity purification. This approach sets the stage for future analyses of mutant NaCT proteins that may alter protein folding and trafficking. It also demonstrates the capability of a transient mammalian cell expression system to produce human NaCT of sufficient quality and quantity to augment future biophysical and structural studies and drug discovery efforts.
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Departments of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Cell Biology and Biochemistry, and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ina L Urbatsch
- Cell Biology and Biochemistry, and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
33
|
Shahrabi Farahani M, Saraygord-Afshari N, M Farajollahi M. Optimizing the Preparation Procedure of Recombinant PSCA, as a Practical Biomarker in Prostate Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2631. [PMID: 34435055 PMCID: PMC8358172 DOI: 10.30498/ijb.2021.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: The unique expression pattern of prostate stem cell antigen (PSCA) in a number of prevalent neoplasms has made the antigen a great target for cancer researches,
and many clinical methods have been developed based on the application of this tumor marker. Hence, optimal PSCA laboratory production can be considered a hallmark for many researchers. Objective: An analytical study was designed to improve the quality and quantity of PSCA production. Materials and Methods: The effects of different compositions of lysis buffers and some ultrasound durations were assessed by calculation of the protein recovery followed by PSCA specific blotting experiments.
Then, based on the results of the web-based characterization, interference removal, followed by re-solubilization of the protein in various buffers, was designed, applied, and assessed. Results: Since the selection of an appropriate methodology depends merely on the research purposes, we tried to discuss the pros and cons of the investigated methods according
to the hydrophobic nature of PSCA as well as its dramatic tendency to aggregate in the form of inclusion bodies in the expression hosts. Conclusions: We introduced a newly designed method to fit the delicate immunological surveys and overcome some limiting factors in PSCA production.
Collapse
Affiliation(s)
- Mahboube Shahrabi Farahani
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Strategies for the Production of Soluble Interferon-Alpha Consensus and Potential Application in Arboviruses and SARS-CoV-2. Life (Basel) 2021; 11:life11060460. [PMID: 34063766 PMCID: PMC8223780 DOI: 10.3390/life11060460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.
Collapse
|