1
|
Hennessey AV, McDonald MB, Johnson PP, Gladfelter MF, Merrill KL, Tenison SE, Ganegoda SS, Hoang TC, Torbert HA, Beck BH, Wilson AE. Evaluating the tolerance of harmful algal bloom communities to copper. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125691. [PMID: 39848484 DOI: 10.1016/j.envpol.2025.125691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Harmful algal blooms (HABs) cause severe economic and environmental impacts, including hypoxic events and the production of toxins and off-flavor compounds. Chemical treatments, such as copper sulfate pentahydrate (CuSO4·5H2O), are often used to mitigate the damaging effects of algal blooms. However, treatment effects are usually short-lived leading to waterbodies requiring repeated CuSO4·5H2O applications to control persistent algal blooms, particularly in highly eutrophic systems, such as aquaculture ponds or small agricultural impoundments. We hypothesized phytoplankton communities routinely treated with Cu develop community tolerance to treatment, making algal blooms more difficult to manage over time. Pollution-induced community tolerance is a method for measuring how a community can withstand selective pressures to a toxicant. To test whether phytoplankton develop community tolerance to algaecidal treatment, the toxic effects of Cu were evaluated at a standard dose (1.37 mg/L CuSO4·5H2O or 0.35 mg/L total Cu) and a low dose (0.69 mg/L CuSO4·5H2O or 0.17 mg/L total Cu) relative to untreated controls. Treatments were applied once to 1,300 L mesocosm enclosures installed in a productive aquaculture pond and monitored for 28 days Acute toxicity bioassays measured photosynthetic efficiency across a wide range of Cu concentrations (0.05 to 300 mg/L). The PICT bioassay results were used to generate dose-response curves for median effective concentrations (EC50s) to assess phytoplankton community tolerance to Cu toxicity. The results of this study showed that both doses of Cu led to over 99% removal of cyanobacteria in the first seven days and maintained a reduction in cyanobacterial abundance by at least 70% throughout the experiment. After three days of exposure, the phytoplankton communities in the standard and low-dose treatments exhibited a 12.4x and 5.2x increase in Cu community tolerance, respectively, compared to controls. This increase in community tolerance was driven by Cu-tolerant chlorophyte species. These findings suggest that, while community tolerance to Cu may alter the perceived effectiveness of treatment over time, it can promote a beneficial shift from cyanobacteria to chlorophyte species, ultimately contributing to a more sustainable system.
Collapse
Affiliation(s)
- Ashley V Hennessey
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Michael B McDonald
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Peyton P Johnson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Kate L Merrill
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Suzanne E Tenison
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Sathya S Ganegoda
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | - Tham C Hoang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL
| | | | | | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL.
| |
Collapse
|
2
|
Papapanagiotou G, Samara C, Psachoulia P, Chatzidoukas C. Microalgae bioprospecting for the food industry: insights into the autotrophic biomass production and macromolecular accumulation of four microalgal species. World J Microbiol Biotechnol 2024; 41:12. [PMID: 39690311 DOI: 10.1007/s11274-024-04229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
In this study, four microalgal strains were evaluated for their biomass production capacity and macromolecule biosynthesis. These include three strains from the phylum Chlorophyta: Monoraphidium sp. LB2PC 0120, Stichococcus sp. LB2PC 0117, and Tetraselmis sp. LB2PC 0320, and one strain from the phylum Haptophyta: Isochrysis sp. LB2PC 0220. The experiments were conducted under typical laboratory-scale setups. Additionally, phylogenetic analysis based on the 18-28 S rRNA internal transcribed spacer (ITS) was performed to validate the taxonomic identity of the strains. Each strain was exposed to four different cultivation conditions based on two levels of illumination intensity [25-(LI) and 50-(HI) µmol m- 2 s- 1] and nitrogen loading [100-(LΝ) and 300-(HΝ) mg NaNO3 L- 1] in a full factorial design. All the microalgae achieved maximum biomass production under HI-HN conditions, which amounted to 1495, 919, 844, and 708 mg/L for Monoraphidium sp. LB2PC 0120, Stichococcus sp. LB2PC 0117, Tetraselmis sp. LB2PC 0320 and Isochrysis sp. LB2PC 0220, respectively, after 16 days of cultivation. Among them, Stichococcus sp. LB2PC 0117 had the highest protein content (49.9% wt.) under LI-HN conditions and Monoraphidium sp. LB2PC 0120 had the highest lipid content (44.3% wt.) under HI-LN conditions. Both Monoraphidium sp. LB2PC 0120 and Tetraselmis sp. LB2PC 0320 accumulated the highest carbohydrate content (~ 37% wt.) under LI-LN and HI-LN conditions, respectively. Based on biomass and macromolecule production, Monoraphidium sp. LB2PC 0120 was identified as the most promising candidate for upscaling studies, expecting its highly manipulatable compositional profile to support multiple applications in the food industry, rendering this microalga a valuable resource.
Collapse
Affiliation(s)
- Georgia Papapanagiotou
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
| | - Christina Samara
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
| | - Paraskevi Psachoulia
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
| | - Christos Chatzidoukas
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece.
| |
Collapse
|
3
|
Díaz V, Antiñolo L, Poyatos JM, Muñío MDM, Martín-Pascual J. Effect of hydraulic retention time and treated urban wastewater ratio on progressive adaptation of an inoculated microalgae in membrane photobioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123005. [PMID: 39476682 DOI: 10.1016/j.jenvman.2024.123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Currently, there is a growing concern about water scarcity. The rising demand for wastewater treatment systems that facilitate the reuse of wastewater has resulted in a focus on the use of microalgae in sustainable treatments. These methods not only eliminate nutrients from the wastewater but also produce biomass that can be used to obtain high-value products. This study aimed to observe the effect of different hydraulic retention times (HRTs) and treated urban wastewater (TUWW) percentages on the growth of microalgae biomass and nutrient consumption in membrane photobioreactors. Microalgae biomass growth increases with HRT regardless of the percentage of TUWW. Biomass concentration stabilises at between 40% and 60% TUWW but significantly increases when 100% TUWW is used, resulting in the highest biomass concentrations. As HRT increases, ammonium and total nitrogen consumption also rise. A positive trend in ammonium consumption was observed with increasing TUWW, reaching its peak with 100% TUWW. The optimal conditions for biomass growth and nutrient removal are achieved with a 7-day HRT and 100% TUWW as influent, which was confirmed as optimal with the response surface methodology.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - José Manuel Poyatos
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - María Del Mar Muñío
- Institute of Water Research, University of Granada 18071, Granada, Spain; Department of Chemical Engineering, University of Granada 18071, Granada, Spain.
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| |
Collapse
|
4
|
Islam MA, Salvatierra D, González MP, Cordero-de-Castro A, Kholssi R, Moreno-Garrido I, Blasco J, Araújo CVM. Structural and functional alterations under stress conditions by contamination: A multi-species study in a non-forced multi-compartmented mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175849. [PMID: 39209171 DOI: 10.1016/j.scitotenv.2024.175849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Despite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms. Other species, such as Artemia sp. and macroalgae were also introduced into the system as environmental enrichment. All the species were distributed in five interconnected mesocosm compartments containing a copper gradient (0, 1, 10, 100 and 250 μg/L). The mobile fish avoided the copper contaminants from 1 μg/L (24 h-AC50: 4.88 μg/L), while the shrimp avoided from 50 μg/L (24 h-AC50: 136.58 μg/L). This finding suggests interspecies interactions influence habitat selection in contaminated environments, potentially jeopardizing population persistence. Among the non-motile organisms, the growth and chlorophyll content of the microalgae were concentration dependent. The growth of I. galbana was more sensitive (growth inhibition of 50 % at the highest concentration) in contrast to N. gaditana (30 % inhibition at the highest concentration) and T. chuii (25 % inhibition at the last two highest concentrations). In summary, the mesocosm HeMHAS showed how contamination-driven responses can be studied at landscape scales, enhancing the ecological relevance of ecotoxicological research.
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - David Salvatierra
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - María Pilar González
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Andrea Cordero-de-Castro
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Rajaa Kholssi
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain.
| |
Collapse
|
5
|
Mattsson L, Farnelid H, Hirwa M, Olofsson M, Svensson F, Legrand C, Lindehoff E. Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11142. [PMID: 39415406 DOI: 10.1002/wer.11142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO2 effluent. Total N (TN) removal was higher in spring (1.5 g-2d-1), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g-2d-1). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g-2d-1), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.
Collapse
Affiliation(s)
- Lina Mattsson
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Maurice Hirwa
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Martin Olofsson
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
- BioResM, Kalmar, Sweden
| | - Fredrik Svensson
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Wu H, Cheng F, Chen J, Li H, Xu J, He P, Li S. Species-Specific Responses of Bloom-Forming Algae to the Ocean Warming and Acidification. PLANTS (BASEL, SWITZERLAND) 2024; 13:2433. [PMID: 39273917 PMCID: PMC11396949 DOI: 10.3390/plants13172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Macroalgal biomass blooms, including those causing the green and golden tides, have been rising along Chinese coasts, resulting in considerable social impacts and economic losses. To understand the links between the ongoing climate changes (ocean warming and acidification) and algal tide formation, the effects of temperature (20 and 24 °C), pCO2 concentration (Partial Pressure of Carbon Dioxide, 410 ppm and 1000 ppm) and their interaction on the growth of Ulva prolifera and Ulva lactuca (green tide forming species), as well as Sargassum horneri (golden tide forming species) were investigated. The results indicate that the concurrent rises in temperature and pCO2 level significantly boosted the growth and nutrient uptake rates of U. lactuca. For U. prolifera, the heightened growth and photosynthetic efficiency under higher CO2 conditions are likely due to the increased availability of inorganic carbon. In contrast, S. horneri exhibited negligible responsiveness to the individual and combined effects of the increased temperature and CO2 concentration. These outcomes indicate that the progressive climate changes, characterized by ocean warming and acidification, are likely to escalate the incidence of green tides caused by Ulva species, whereas they are not anticipated to precipitate golden tides.
Collapse
Affiliation(s)
- Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fangsheng Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiang Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - He Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Peimin He
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Sufang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
7
|
Xu N, Xu K, Xu Y, Ji D, Wang W, Xie C. Interactions between nitrogen and phosphorus modulate the food quality of the marine crop Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis). Food Chem 2024; 448:138973. [PMID: 38522292 DOI: 10.1016/j.foodchem.2024.138973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
The quality of Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis) is directly affected by nutrient availability. However, the molecular mechanism underlying the synergistic regulatory effects of nitrogen (N) and phosphorus (P) availability on P. haitanensis quality is unknown. Here, we performed physiological and multi-omics analyses to reveal the combined effects of N and P on P. haitanensis quality. The pigments accumulated under high N because of increases in N metabolism and porphyrin metabolism, ultimately resulting in intensely colored thalli. High N also promoted amino acid metabolism and inosine 5'-mononucleotide (IMP) synthesis, but inhibited carbohydrates accumulation. This resulted in increased amino acid, IMP and decreased agaro-carrageenan and cellulose contents, thereby improving the nutritional value and taste. Furthermore, high P promoted carbon metabolism and amino acid metabolism.This study provided the basis for elucidating the mechanism behind N and P regulating the seaweed quality.
Collapse
Affiliation(s)
- Ningning Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| |
Collapse
|
8
|
Aguiar Severo I, Azevedo OGDA, da Silva PAS, Jacob-Furlan B, Mariano AB, Ordonez JC, Vargas JVC. Wastewater treatment process using immobilized microalgae. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1306-1320. [PMID: 39215740 DOI: 10.2166/wst.2024.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Microalgae biomass products are gaining popularity due to their diverse applications in various sectors. However, the costs associated with media ingredients and cell harvesting pose challenges to the scale-up of microalgae cultivation. This study evaluated the growth and nutrient removal efficiency (RE) of immobilized microalgae Tetradesmus obliquus in sodium alginate beads cultivated in swine manure-based wastewater compared to free cells. The main findings of this research include (i) immobilized cells outperformed free cells, showing approximately 2.3 times higher biomass production, especially at 10% effluent concentration; (ii) enhanced organic carbon removal was observed, with a significant 62% reduction in chemical oxygen demand (383.46-144.84 mg L-1) within 48 h for immobilized cells compared to 6% in free culture; (iii) both immobilized and free cells exhibited efficient removal of total nitrogen and total phosphorus, with high REs exceeding 99% for phosphorus. In addition, microscopic analysis confirmed successful cell dispersion within the alginate beads, ensuring efficient light and substrate transfer. Overall, the results highlight the potential of immobilization techniques and alternative media, such as biodigested swine manure, to enhance microalgal growth and nutrient RE, offering promising prospects for sustainable wastewater treatment processes.
Collapse
Affiliation(s)
- Ihana Aguiar Severo
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil; Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, USA E-mail:
| | - Otto Gustavo de Avila Azevedo
- Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Paulo Alexandre Silveira da Silva
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Beatriz Jacob-Furlan
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - André Bellin Mariano
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Juan C Ordonez
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, USA
| | - José Viriato Coelho Vargas
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| |
Collapse
|
9
|
Jonynaite K, Stirke A, Gerken H, Frey W, Gusbeth C. Influence of growth medium on the species-specific interactions between algae and bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13321. [PMID: 39168352 PMCID: PMC11338630 DOI: 10.1111/1758-2229.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
In this study, we investigated a species-specific algal-bacterial co-culture that has recently attracted worldwide scientific attention as a novel approach to enhancing algal growth rate. We report that the type of interaction between Chlorella vulgaris and bacteria of the genus Delftia is not solely determined by species specificity. Rather, it is a dynamic process of adaptation to the surrounding conditions, where one or the other microorganism dominates (temporally) depending on the growth conditions, in particular the medium. Under laboratory conditions, we found that Delftia sp. had a negative effect on C. vulgaris growth when co-cultured in a TAP medium. However, the co-culture of algae and bacteria under BG-11 and BG-11 + acetic acid resulted in an increase in algal concentration compared to algal cultures without bacteria under the same conditions. Additional chemical analysis revealed that the presence of different carbon (the main organic carbon source-acetic acid in TAP or BG-11 + acetic acid medium and inorganic carbon source-Na2CO3 in BG-11 or BG-11 + acetic acid medium) and nitrogen (NH4Cl in TAP medium and NaNO3 in BG-11 or BG-11 + acetic acid medium) species in the growth medium was one of the main factors driving the shift in interaction type.
Collapse
Affiliation(s)
- Kamile Jonynaite
- Laboratory of Bioelectrics, Department of Functional Materials and ElectronicsState Research Institute Center for Physical Sciences and TechnologyVilniusLithuania
| | - Arunas Stirke
- Laboratory of Bioelectrics, Department of Functional Materials and ElectronicsState Research Institute Center for Physical Sciences and TechnologyVilniusLithuania
| | - Henri Gerken
- School of Sustainable Engineering and the Built Environment, Arizona Center for Algae Technology and InnovationArizona State UniversityTempeArizonaUSA
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Christian Gusbeth
- Institute for Pulsed Power and Microwave TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
10
|
Primo TARDC, Vargas LB, Alves RD, de Farias Neves F, Skoronski E. New insights into chicken processing wastewater treatment: the role of the microalgae Parachlorella kessleri on nitrogen removal. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39052955 DOI: 10.1080/09593330.2024.2381643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Microalgal Technologies have recently been employed as an alternative treatment for high nitrogen content wastewater. Nitrogen is an essential nutrient for microalgae growth, and its presence in wastewater may be an alternative source to synthetic medium, contributing to a circular economy. This study aimed to investigate the effect of using Parachlorella kessleri cultivated in wastewater from the thermal processing of chicken meat. Experiments were performed to obtain the ideal sampling site, inoculum dosage, and contact time. P. kessleri had better growth in the sample from the settling basin. Nitrogen removal was 95% (0,15 mg TNK/107 cells) in 9 days, and the final nitrogen concentration was lower than 20 mg/L, and the nitrate concentration was lower than 1 mg/L. However, during the third cycle in the kinetic assay, there was a decline in the microalgae growth, occasioned by the accumulation of nitrite (38,4 mg/L) in the inside of the cell. The study demonstrated that nitrogen concentration is directly related to the cell growth of the algae. Parachlorella kessleri efficiently removed nitrogen from chicken meat thermal processing wastewater and is a potential option for tertiary treatment and valorisation of such effluent as a nitrogen source.
Collapse
Affiliation(s)
- Thais Agda R da C Primo
- Department of Environmental and Sanitary Engineering, Laboratory for Water and Waste Treatment, Santa Catarina State University, Lages, Brazil
| | - Luana Búrigo Vargas
- Department of Environmental and Sanitary Engineering, Laboratory for Water and Waste Treatment, Santa Catarina State University, Lages, Brazil
| | - Rafaela Dexcheimer Alves
- Department of Environmental and Sanitary Engineering, Laboratory for Water and Waste Treatment, Santa Catarina State University, Lages, Brazil
| | - Fabio de Farias Neves
- Department of Fisheries Engineering and Biological Sciences, Laboratory of Alga Cultivation and Biotechnology, Santa Catarina State University, Laguna, Brazil
| | - Everton Skoronski
- Department of Environmental and Sanitary Engineering, Laboratory for Water and Waste Treatment, Santa Catarina State University, Lages, Brazil
| |
Collapse
|
11
|
Marques F, Pereira F, Machado L, Martins JT, Pereira RN, Costa MM, Genisheva Z, Pereira H, Vicente AA, Teixeira JA, Geada P. Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate. Foods 2024; 13:1018. [PMID: 38611325 PMCID: PMC11011475 DOI: 10.3390/foods13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A significant fraction of the food produced worldwide is currently lost or wasted throughout the supply chain, squandering natural and economic resources. Food waste valorization will be an important necessity in the coming years. This work investigates the ability of food waste to serve as a viable nutritional substrate for the heterotrophic growth of Chlorella vulgaris. The impact of different pretreatments on the elemental composition and microbial contamination of seven retail food waste mixtures was evaluated. Among the pretreatment methods applied to the food waste formulations, autoclaving was able to eliminate all microbial contamination and increase the availability of reducing sugars by 30%. Ohmic heating was also able to eliminate most of the contaminations in the food wastes in shorter time periods than autoclave. However, it has reduced the availability of reducing sugars, making it less preferable for microalgae heterotrophic cultivation. The direct utilization of food waste containing essential nutrients from fruits, vegetables, dairy and bakery products, and meat on the heterotrophic growth of microalgae allowed a biomass concentration of 2.2 × 108 cells·mL-1, being the culture able to consume more than 42% of the reducing sugars present in the substrate, thus demonstrating the economic and environmental potential of these wastes.
Collapse
Affiliation(s)
- Fabiana Marques
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Francisco Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Luís Machado
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Monya M. Costa
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | | | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro Geada
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Rörig LR, Gressler PD, Tramontin DP, de Souza Schneider RDC, Derner RB, de Oliveira Bastos E, de Souza MP, Oliveira CYB. Biomass productivity and characterization of Tetradesmus obliquus grown in a hybrid photobioreactor. Bioprocess Biosyst Eng 2024; 47:367-380. [PMID: 38407617 DOI: 10.1007/s00449-024-02969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/14/2024] [Indexed: 02/27/2024]
Abstract
In this study, the effects of CO2 addition on the growth performance and biochemical composition of the green microalga Tetradesmus obliquus cultured in a hybrid algal production system (HAPS) were investigated. The HAPS combines the characteristics of tubular photobioreactors (towards a better carbon dioxide dissolution coefficient) with thin-layer cascade system (with a higher surface-to-volume ratio). Experimental batches were conducted with and without CO2 addition, and evaluated in terms of productivity and biomass characteristics (elemental composition, protein and lipid contents, pigments and fatty acids profiles). CO2 enrichment positively influenced productivity, and proteins, lipids, pigments and unsaturated fatty acids contents in biomass. The HAPS herein presented contributes to the optimization of microalgae cultures in open systems, since it allows, with a simple adaptation-a transit of the cultivation through a tubular portion where injection and dissolution of CO2 is efficient-to obtain in TLC systems, greater productivity and better-quality biomass.
Collapse
Affiliation(s)
- Leonardo Rubi Rörig
- Laboratório de Ficologia, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Pablo Diego Gressler
- Laboratório de Ficologia, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Deise Parolo Tramontin
- Laboratório de Sistemas Porosos, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Rosana de Cassia de Souza Schneider
- Centro de Excelência em Produtos e Processos Oleoquímicos e Biotecnológicos, Universidade de Santa Cruz do Sul-UNISC, Avenida Independência, 2293, Santa Cruz do Sul, RS, 96815-900, Brazil
| | - Roberto Bianchini Derner
- Laboratório de Cultivo de Algas, Universidade Federal de Santa Catarina-UFSC, Rua dos Coroas, 503, Barra da Lagoa, Florianópolis, SC, 88061-600, Brazil
| | - Eduardo de Oliveira Bastos
- Laboratório de Ficologia, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Maiara Priscilla de Souza
- Centro de Excelência em Produtos e Processos Oleoquímicos e Biotecnológicos, Universidade de Santa Cruz do Sul-UNISC, Avenida Independência, 2293, Santa Cruz do Sul, RS, 96815-900, Brazil
| | - Carlos Yure B Oliveira
- Laboratório de Ficologia, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
13
|
Maltsev Y, Kulikovskiy M, Maltseva S. Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microb Cell Fact 2023; 22:239. [PMID: 37981666 PMCID: PMC10658923 DOI: 10.1186/s12934-023-02244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Microalgae, capable of accumulating large amounts of lipids, are of great value for biodiesel production. The high cost of such production stimulates the search for cultivation conditions that ensure their highest productivity. Reducing the content of nitrogen and phosphorus in the culture medium is widely used to change the content and productivity of lipids in microalgae. Achieving the right balance between maximum growth and maximum lipid content and productivity is the primary goal of many experimental works to ensure cost-effective biodiesel production from microalgae. The content of nitrogen and phosphorus in nutrient media for algal cultivation after converted to nitrogen (-N) and phosphorus (-P) lies in an extensive range: from 0.007 g L- 1 to 0.417 g L- 1 and from 0.0003 g L- 1 to 0.227 g L- 1 and N:P ratio from 0.12:1 to 823.33:1. When studying nutritional stress in microalgae, no single approach is used to determine the experimental concentrations of nitrogen and phosphorus. This precludes the possibility of correct interpretation of the data and may lead to erroneous conclusions. This work results from the systematisation of information on using nitrogen and phosphorus restriction to increase the lipid productivity of microalgae of different taxonomic and ecological groups to identify future research directions. The results of 301 experiments were included in the analysis using the principal components method. The investigation considered various divisions and classes: Cyanobacteria, Rhodophyta, Dinophyta, Haptophyta, Cryptophyta, Heterokontophyta/Ochrophyta (Bacillariophyceae, Eustigmatophyceae, Xanthophyceae), Chlorophyta, and also the ratio N:P, the time of the experiment, the light intensity during cultivation. Based on the concentrations of nitrogen and phosphorus existing in various nutrient media, a general scheme for designating the supply of nutrient media for nitrogen (as NO3- or NH4+, N g L- 1) and phosphorus (as РO4-, P g L- 1) has been proposed: replete -N (˃0.4 g L- 1), moderate -N (0.4-0.2), moderate N-limitation (0.19-0.1), strong N-limitation (˂0.1), without nitrogen (0), replete -Р (˃0.2), moderate -P (0.2-0.02), moderate P-limitation (0.019-0.01), strong P-limitation (˂0.01), without phosphorus (0).
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia.
| | - Maxim Kulikovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Svetlana Maltseva
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
14
|
Molina-Miras A, Abreu AC, López Rosales L, Cerón-García MC, Sánchez-Mirón A, Fernández I, García-Camacho F. A step forward in sustainable pesticide production from Amphidinium carterae biomass via photobioreactor cultivation with urea as a nitrogen source. BIORESOURCE TECHNOLOGY 2023; 387:129643. [PMID: 37562492 DOI: 10.1016/j.biortech.2023.129643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
This study addresses the problem of replacing nitrate and ammonium with urea as a greener nitrogen source in the mass cultivation of the microalga Amphidinium carterae for the development of amphidinol-based phytosanitary products. To solve this problem, a nuclear magnetic resonance assisted investigation evaluated the effect of nitrogen sources on growth and metabolic profiles in photobioreactors. Urea-fed cultures exhibited growth kinetics comparable to nitrate-fed cultures (µmax = 0.30 day-1, Pbmax = 43 mgL-1day-1). Urea-fed cultures had protein, lipid, and carbohydrate contents of 39.5%, 14.5%, and 42.4%, respectively, while nitrate-fed cultures had 27.9 %, 17.5% and 48.1%, respectively. Metabolomics revealed nitrogen source-dependent metabotypes and a correlation between amphidinols and polyunsaturated fatty acids. The amphidinol-to-nitrogen yield coefficient in urea-fed cultures (135 mg/g) was approximately 2.5 times higher than in nitrate-fed cultures. The potent antiphytopathogenic activity exhibited by extracts from urea-fed cultures underscores the potential of urea as a sustainable nitrogen source in microalgae-based biorefineries.
Collapse
Affiliation(s)
- A Molina-Miras
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A C Abreu
- Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - L López Rosales
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - I Fernández
- Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain.
| | - F García-Camacho
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
15
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
16
|
Zhang B, Shen J, Mao X, Zhang B, Shen Y, Shi W. A novel membrane bioreactor inoculated with algal-bacterial granular sludge for sewage reuse and membrane fouling mitigation: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122194. [PMID: 37453682 DOI: 10.1016/j.envpol.2023.122194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a novel membrane bioreactor (MBR) inoculated with algal-bacterial granular sludge (ABGMBR) was established to improve pollutant removal and alleviate membrane fouling. The ABGMBR system showed higher pollutant removal rate and longer operation time (152 day) compared to the control MBR (AGMBR). Moreover, the contents of the pollutants such as granular sludges, extracellular polymeric substances (EPS), and soluble microbial products on the membrane were remarkably reduced, leading to the formation of a porous and loose cake layer on the membrane and a slow increase in transmembrane pressure. Standard blocking was the main mechanism of membrane fouling; however, the membrane pore blockage was significantly reduced in ABGMBR. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the aggregation and adhesion of foulants on the membrane were greatly inhibited in ABGMBR. Furthermore, correlation analysis showed significant differences in membrane fouling characteristics between AGMBR and ABGMBR. The ABGMBR system effectively retarded sludge disintegration and increased the repulsion between the sludge and membrane owing to the favorable mixed liquor characteristics. This study showcases the superior operational efficiency and anti-fouling performance of ABGMBR, offering a novel perspective on sewage reuse and membrane fouling mitigation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China.
| | - Jing Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xin Mao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
17
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
18
|
Amaro HM, Salgado EM, Nunes OC, Pires JCM, Esteves AF. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117678. [PMID: 36948147 DOI: 10.1016/j.jenvman.2023.117678] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Water is the most valuable resource on the planet. However, massive anthropogenic activities generate threatening levels of biological, organic, and inorganic pollutants that are not efficiently removed in conventional wastewater treatment systems. High levels of conventional pollutants (carbon, nitrogen, and phosphorus), emerging chemical contaminants such as antibiotics, and pathogens (namely antibiotic-resistant ones and related genes) jeopardize ecosystems and human health. Conventional wastewater treatment systems entail several environmental issues: (i) high energy consumption; (ii) high CO2 emissions; and (iii) the use of chemicals or the generation of harmful by-products. Hence, the use of microalgal systems (entailing one or several microalgae species, and in consortium with bacteria) as environmental agents towards wastewater treatment has been seen as an environmentally friendly solution to remove conventional pollutants, antibiotics, coliforms and antibiotic resistance genes. In recent years, several authors have evaluated the use of microalgal systems for the treatment of different types of wastewater, such as agricultural, municipal, and industrial. Generally, microalgal systems can provide high removal efficiencies of: (i) conventional pollutants, up to 99%, 99%, and 90% of total nitrogen, total phosphorus, and/or organic carbon, respectively, through uptake mechanisms, and (ii) antibiotics frequently found in wastewaters, such as sulfamethoxazole, ciprofloxacin, trimethoprim and azithromycin at 86%, 65%, 42% and 93%, respectively, through the most desirable microalgal mechanism, biodegradation. Although pathogens removal by microalgal species is complex and very strain-specific, it is also possible to attain total coliform and Escherichia coli removal of 99.4% and 98.6%, respectively. However, microalgal systems' effectiveness strongly relies on biotic and abiotic conditions, thus the selection of operational conditions is critical. While the combination of selected species (microalgae and bacteria), ratios and inoculum concentration allow the efficient removal of conventional pollutants and generation of high amounts of biomass (that can be further converted into valuable products such as biofuels and biofertilisers), abiotic factors such as pH, hydraulic retention time, light intensity and CO2/O2 supply also have a crucial role in conventional pollutants and antibiotics removal, and wastewater disinfection. However, some rationale must be considered according to the purpose. While alkaline pH induces the hydrolysis of some antibiotics and the removal of faecal coliforms, it also decreases phosphates solubility and induces the formation of ammonium from ammonia. Also, while CO2 supply increases the removal of E. coli and Pseudomonas aeruginosa, as well as the microalgal growth (and thus the conventional pollutants uptake), it decreases Enterococcus faecalis removal. Therefore, this review aims to provide a critical review of recent studies towards the application of microalgal systems for the efficient removal of conventional pollutants, antibiotics, and pathogens; discussing the feasibility, highlighting the advantages and challenges of the implementation of such process, and presenting current case-studies of different applications of microalgal systems.
Collapse
Affiliation(s)
- Helena M Amaro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eva M Salgado
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
19
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
20
|
Wang Y, Johnson GI, Postles A, Coyne KJ. Nitrate reductase enzymes in alga Chattonella subsalsa are regulated by environmental cues at the translational and post-translational levels. Front Microbiol 2023; 14:1059074. [PMID: 36937302 PMCID: PMC10018130 DOI: 10.3389/fmicb.2023.1059074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Nitrate reductase (NR) catalyzes the rate-limiting step in nitrate assimilation. Plant and algal NRs have a highly conserved domain architecture but differ in regulation. In plants, NR activity is regulated by reversible phosphorylation and subsequent binding of 14-3-3 proteins at a conserved serine residue. Algal NRs typically lack 14-3-3 binding motifs, which have only recently been identified in a few algal species. Previous research indicates that the alga, Chattonella subsalsa, possesses a novel NR, NR2-2/2HbN (NR2), which incorporates a 2/2 hemoglobin domain. A second NR (NR3) in C. subsalsa lacks the cytochrome b5 (heme-Fe) domain but includes a putative binding motif for 14-3-3 proteins. The expression of NR2 and NR3 genes indicates that NR2 transcript abundance was regulated by light, nitrogen source, and temperature, while NR3 transcript levels were only regulated by light. Here, we measured total NR activity in C. subsalsa and the potential for regulation of NR activity by putative 14-3-3 binding proteins. Results indicate that NR activity in C. subsalsa was regulated by light, nitrogen source, and temperature at the translational level. NR activity was also regulated by endogenous rhythm and temperature at the post-translational level, supporting the hypothesis that NR3 is regulated by 14-3-3 binding proteins. Together with a previous report describing the regulation of NR gene expression in C. subsalsa, results suggest that C. subsalsa responds to environmental conditions by differential regulation of NRs at transcriptional, translational, and post-translational levels. This flexibility may provide a competitive advantage for this species in the environment. To date, this is the first report which provides evidence for the potential post-translational regulation of NR by 14-3-3 proteins in algal species and suggests that regulatory mechanisms for NR activity may be shared between plants and some algal species.
Collapse
|
21
|
Cai G, Yu X, Cai R, Wang H. Eliminating the ecological hazards of Heterosigma akashiwo bloom by a microbial algicide: removal of nitrite contamination, redirection of carbon flow and restoration of metabolic generalists. FEMS Microbiol Ecol 2022; 99:6955817. [PMID: 36546573 DOI: 10.1093/femsec/fiac154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Harmful algal blooms (HABs) attracted much attention due to their extensive ecological hazards and the increasing influences on global biogeochemical cycles with the intensification of human impact and global warming. Lysing algal cells with species-specific microbial algicide seemed to be promising to eliminate HABs, but the potential ecotoxicity was rarely studied. In this study, microcosms simulating Heterosigma akashiwo blooms were established to reveal the influences of a microbial algicide from Streptomyces sp. U3 on the biological, physicochemical parameters and bacterial community. The results showed that H. akashiwo bloom accumulated nitrite to a lethal dose, produced bio-labile DOM with widespread influences and enriched pathogenic Coxiella to a high abundance. Lysing H. akashiwo cells by microbial algicide induced a bacterial bloom, eliminated nitrite contamination, enhanced the recalcitrance of DOM, and restored bacterial population from a Gammaproteobacteria-dominant community during bloom back to an Alphaproteobacteria-dominant community similar to the non-bloom seawater. Succession of bacterial genera further suggested that the variation from algal exudates to lysates promoted the restoration of metabolic generalists, which redirected the carbon flow to a less ecologically impactive path. This study revealed the benefits of using microbial algicide to remediate the ecological hazards of HABs, which provided references for future application.
Collapse
Affiliation(s)
- Guanjing Cai
- Biology Department and Institute of Marine Sciences, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.,State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Xiaoqi Yu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Runlin Cai
- Biology Department and Institute of Marine Sciences, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hui Wang
- Biology Department and Institute of Marine Sciences, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
22
|
Sanchez-Arcos C, Paris D, Mazzella V, Mutalipassi M, Costantini M, Buia MC, von Elert E, Cutignano A, Zupo V. Responses of the Macroalga Ulva prolifera Müller to Ocean Acidification Revealed by Complementary NMR- and MS-Based Omics Approaches. Mar Drugs 2022; 20:md20120743. [PMID: 36547890 PMCID: PMC9783899 DOI: 10.3390/md20120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.
Collapse
Affiliation(s)
- Carlos Sanchez-Arcos
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Debora Paris
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
| | - Valerio Mazzella
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, 87071 Amendolara, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Eric von Elert
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| |
Collapse
|
23
|
Guérin N, Ciccarella M, Flamant E, Frémont P, Mangenot S, Istace B, Noel B, Belser C, Bertrand L, Labadie K, Cruaud C, Romac S, Bachy C, Gachenot M, Pelletier E, Alberti A, Jaillon O, Wincker P, Aury JM, Carradec Q. Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence. Commun Biol 2022; 5:983. [PMID: 36114260 PMCID: PMC9481584 DOI: 10.1038/s42003-022-03939-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The smallest phytoplankton species are key actors in oceans biogeochemical cycling and their abundance and distribution are affected with global environmental changes. Among them, algae of the Pelagophyceae class encompass coastal species causative of harmful algal blooms while others are cosmopolitan and abundant. The lack of genomic reference in this lineage is a main limitation to study its ecological importance. Here, we analysed Pelagomonas calceolata relative abundance, ecological niche and potential for the adaptation in all oceans using a complete chromosome-scale assembled genome sequence. Our results show that P. calceolata is one of the most abundant eukaryotic species in the oceans with a relative abundance favoured by high temperature, low-light and iron-poor conditions. Climate change projections based on its relative abundance suggest an extension of the P. calceolata habitat toward the poles at the end of this century. Finally, we observed a specific gene repertoire and expression level variations potentially explaining its ecological success in low-iron and low-nitrate environments. Collectively, these findings reveal the ecological importance of P. calceolata and lay the foundation for a global scale analysis of the adaptation and acclimation strategies of this small phytoplankton in a changing environment.
Collapse
Affiliation(s)
- Nina Guérin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Marta Ciccarella
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Elisa Flamant
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Sophie Mangenot
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Laurie Bertrand
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, 29680, Roscoff, France
| | - Charles Bachy
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, 29680, Roscoff, France
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Martin Gachenot
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|
24
|
Microalgae Cultivation on Nutrient Rich Digestate: The Importance of Strain and Digestate Tailoring under PH Control. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The bioremediation of digestate using microalgae presents a solution to the current eutrophication issue in Northwest Europe, where the use of digestate as soil fertiliser is limited, thus resulting in an excess of digestate. Ammonium is the main nutrient of interest in digestate for microalgal cultivation, and improving its availability and consequent uptake is crucial for optimal bioremediation. This work aimed to determine the influence of pH on ammonium availability in cultures of two green microalgae, additionally screened for their growth performances on three digestates produced from different feedstocks, demonstrating the importance of tailoring a microalgal strain and digestate for bioremediation purposes. Results showed that an acidic pH of 6–6.5 resulted in a better ammonium availability in the digestate media, translated into better growth yields for both S. obliquus (GR: 0.099 ± 0.001 day−1; DW: 0.23 ± 0.02 g L−1) and C. vulgaris (GR: 0.09 ± 0.001 day−1; DW: 0.49 ± 0.012 g L−1). This result was especially true when considering larger-scale applications where ammonium loss via evaporation should be avoided. The results also demonstrated that digestates from different feedstocks resulted in different growth yields and biomass composition, especially fatty acids, for which, a digestate produced from pig manure resulted in acid contents of 6.94 ± 0.033% DW and 4.91 ± 0.3% DW in S. obliquus and C. vulgaris, respectively. Finally, this work demonstrated that the acclimation of microalgae to novel nutrient sources should be carefully considered, as it could convey significant advantages in terms of biomass composition, especially fatty acids and carbohydrate, for which, this study also demonstrated the importance of harvesting time.
Collapse
|
25
|
Protein potential of Desmodesmus asymmetricus grown in greenhouse as an alternative food source for aquaculture. World J Microbiol Biotechnol 2022; 38:92. [DOI: 10.1007/s11274-022-03275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
26
|
Farooq W. Maximizing Energy Content and CO 2 Bio-fixation Efficiency of an Indigenous Isolated Microalga Parachlorella kessleri HY-6 Through Nutrient Optimization and Water Recycling During Cultivation. Front Bioeng Biotechnol 2022; 9:804608. [PMID: 35223814 PMCID: PMC8867024 DOI: 10.3389/fbioe.2021.804608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
An alternative source of energy and materials with low negative environmental impacts is essential for a sustainable future. Microalgae is a promising candidate in this aspect. The focus of this study is to optimize the supply of nitrogen and carbon dioxide during the cultivation of locally isolated strain Parachlorella kessleri HY-6. This study focuses on optimizing nitrogen and CO2 supply based on total biomass and biomass per unit amount of nitrogen and CO2. Total biomass increased from 1.23 to 2.30 g/L with an increase in nitrogen concentration from 15.8 to 47.4 mg/L. However, biomass per unit amount of nitrogen supplied was higher at low nitrogen content. Biomass and CO2 fixation rate increased at higher CO2 concentrations in bubbling air, but CO2 fixation efficiency decreased drastically. Finally, the energy content of biomass increased with increases in both nitrogen and CO2 supply. This work thoroughly analyzed the biomass composition via ultimate, proximate, and biochemical analysis. Water is recycled three times for cultivation at three different nitrogen levels. Microalgae biomass increased during the second recycling and then decreased drastically during the third. Activated carbon helped remove the organics after the third recycling to improve the water recyclability. This study highlights the importance of selecting appropriate variables for optimization by considering net energy investment in terms of nutrients (as nitrogen) and CO2 fixation efficiency and effective water recycling.
Collapse
Affiliation(s)
- Wasif Farooq
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.,Integrated Research Centre for Membranes and Water Security (IRC-MWS ), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
27
|
Divya Kuravi S, Venkata Mohan S. Mixotrophic cultivation of Monoraphidium sp. In dairy wastewater using Flat-Panel photobioreactor and photosynthetic performance. BIORESOURCE TECHNOLOGY 2022; 348:126671. [PMID: 34995780 DOI: 10.1016/j.biortech.2021.126671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Monoraphidium sp. SVMIICT6 was isolated and mixotrophically cultivated in a flat-panel photobioreactor (8 days) to treat synthetic dairy wastewater. COD, nitrates, and phosphates removal efficiencies were 75%, 85%, and 60% respectively. The nutrient removal supported the growth of microalgae in terms of biomass productivity (50 mg L-1d-1), and accumulation of carbohydrate (228.8 mg g-1), protein (88.8 mg g-1), and lipid content (25%). Elemental analysis of microalgal biomass revealed carbon (50.6%) as a major fraction. Quantum yield and electron transport rate (ETR) from PSII to PSI increased with time correlating well with chlorophyll pigments (89.53 mg g-1). The lipid profile resulted in a major fraction of Heptadecanoic acid (C17:0; 51.5%), followed by Myristoleic acid (C14:1; 24.3%) with potent nutraceutical properties. The isolated strain showed efficient treatment of dairy wastewater yielding biomass for diverse applications.
Collapse
Affiliation(s)
- Sri Divya Kuravi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
28
|
Assessment of Nutrients Recovery Capacity and Biomass Growth of Four Microalgae Species in Anaerobic Digestion Effluent. WATER 2022. [DOI: 10.3390/w14020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Four microalgae species were evaluated for their bioremediation capacity of anaerobic digestion effluent (ADE) rich in ammonium nitrogen, derived from a biogas plant. Chlorella vulgaris, Chlorella sorokiniana, Desmodesmus communis and Stichococcus sp. were examined for their nutrient assimilation efficiency, biomass production and composition through their cultivation in 3.7% v/v ADE; their performance was compared with standard cultivation media which consisted in different nitrogen sources, i.e., BG-11NO3 and BG-11ΝH4 where N-NO3 was replaced by N-NH4. The results justified ammonium as the most preferable source of nitrogen for microalgae growth. Although Stichococcus sp. outperformed the other 3 species in N-NH4 removal efficiency both in BG-11NH4 and in 3.7% ADE (reaching up to 90.79% and 69.69% respectively), it exhibited a moderate biomass production when it was cultivated in diluted ADE corresponding to 0.59 g/L, compared to 0.89 g/L recorded by C. vulgaris and 0.7 g/L by C. sorokiniana and D. communis. Phosphorus contained in the effluent and in the control media was successfully consumed by all of the species, although its removal rate was found to be affected by the type of nitrogen source used and the particular microalgae species. The use of ADE as cultivation medium resulted in a significant increase in carbohydrates content in all investigated species.
Collapse
|
29
|
Growth Performance, Biochemical Composition and Nutrient Recovery Ability of Twelve Microalgae Consortia Isolated from Various Local Organic Wastes Grown on Nano-Filtered Pig Slurry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020422. [PMID: 35056737 PMCID: PMC8781922 DOI: 10.3390/molecules27020422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Abstract
This paper demonstrated the growth ability of twelve algae-microbial consortia (AC) isolated from organic wastes when a pig slurry-derived wastewater (NFP) was used as growth substrate in autotrophic cultivation. Nutrient recovery, biochemical composition, fatty acid and amino acid profiles of algae consortia were evaluated and compared. Three algae-microbial consortia, i.e., a Chlorella-dominated consortium (AC_1), a Tetradesmus and Synechocystis co-dominated consortium (AC_10), and a Chlorella and Tetradesmus co-dominated consortium (AC_12) were found to have the best growth rates (µ of 0.55 ± 0.04, 0.52 ± 0.06, and 0.58 ± 0.03 d−1, respectively), which made them good candidates for further applications. The ACs showed high carbohydrates and lipid contents but low contents of both proteins and essential amino acids, probably because of the low N concentration of NFP. AC_1 and AC_12 showed optimal ω6:ω3 ratios of 3.1 and 3.6, which make them interesting from a nutritional point of view.
Collapse
|
30
|
Chia SR, Nomanbhay SBHM, Chew KW, Munawaroh HSH, Shamsuddin AH, Show PL. Algae as potential feedstock for various bioenergy production. CHEMOSPHERE 2022; 287:131944. [PMID: 34438210 DOI: 10.1016/j.chemosphere.2021.131944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.
Collapse
Affiliation(s)
- Shir Reen Chia
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Saifuddin Bin Hj M Nomanbhay
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia.
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Abd Halim Shamsuddin
- AAIBE Chair of Renewable Energy, Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
31
|
Liao A, Han D, Song X, Yang S. Impacts of storm events on chlorophyll-a variations and controlling factors for algal bloom in a river receiving reclaimed water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113376. [PMID: 34325374 DOI: 10.1016/j.jenvman.2021.113376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Harmful algal bloom is prevalent in the reclaimed-water-source (RWS) river caused by the excessive nutrient's inputs. Rainfall water may be the sole nutrient-diluted water source for the RWS river. However, the effects of storm events on the algal bloom in the RWS river are poorly understood. This study presents chlorophyll-a (Chl-a) variations before, during, and after the initial storm events (Pre-storm, In-storm, and Post-storm) at four representative sites with distinct hydraulic conditions in a dam-regulated RWS river system, Beijing. The response of Chl-a to the initial storm events mostly depends on the ecosystem status that caused by the river hydraulic properties. The upstream is more river-like and downstream is more lake-like. In the river-like system, elevated water temperature (WT, increased by 2 %) could support the dominating algae (diatom) growth (Chl-a increased by 130 %) from Pre-storm to In-storm period. In the lake-like system, the dominant algae (blue algae) declined (Chl-a sharply decreased by 96%-99 %) due to the lower WT (decreased by 3%-7%) and increased flow velocities from Pre-storm to In-storm period. During the Post-storm period, the dominant algae break out (Chl-a surged by 20%-319 %) in the lake-like system caused by the recovered WT (increased by 3%-6%) and flow velocity. The occurrence of algal bloom can be predicted by the Random Forest (RF) model based on water quality parameters such as total nitrogen (TN). The thresholds of algal bloom for the Pre-storm, In-storm, and Post-storm periods were identified as 30 μg/L, 10 μg/L, and 10 μg/L, respectively. The two driven factors were WT and nitrate (NO3-N) for the Pre-storm period and were WT and TN for the In- & Post-storm periods. A higher risk of algal bloom is highlighted during the initial storm events in the RWS river. We propose recommendations for improving water quality in the RWS river systems under the climatic change.
Collapse
Affiliation(s)
- Anran Liao
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish College (SDC), University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Xianfang Song
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish College (SDC), University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | | |
Collapse
|
32
|
Renuka N, Ratha SK, Kader F, Rawat I, Bux F. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113257. [PMID: 34303940 DOI: 10.1016/j.jenvman.2021.113257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Algae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production. However, the optimum nutrient concentration and ratio may vary depending upon the microalgal species as well as cultivation conditions. The use of indigenous algae and algae-based consortia with other microorganisms has been proved promising in improving nutrient recovery efficiency and biomass production in pilot scale operations. However, environmental and cultivation conditions also play a significant role in determining the feasibility of the process. This review further focused on the assessment of the potential benefits of algal biomass production, renewable biofuel generation, and CO2 sequestration using wastewater in different countries on the basis of available data on wastewater generation and estimated nutrient contents. It was estimated that 5-10% replacement of fossil crude requirement with algal biofuels would require ~952-1903 billion m3 of water, 10-21 billion tons of nitrogen, and 2-4 billion tons of phosphorus fertilizers. In this context, coupling wastewater treatment and algal biomass production seem to be the most sustainable option with potential global benefits of polishing wastewater through nutrients recycling and carbon dioxide sequestration.
Collapse
Affiliation(s)
- Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sachitra Kumar Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa; Phycology Laboratory, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, 226001, India
| | - Farzana Kader
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|