1
|
Liu J, Xu S, Gao B, Yuan M, Zhong L, Guo R. Protective effect of SERCA2a-SUMOylation by SUMO-1 on diabetes-induced atherosclerosis and aortic vascular injury. Mol Cell Biochem 2025; 480:279-293. [PMID: 38438822 DOI: 10.1007/s11010-024-04953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024]
Abstract
Diabetes is a major risk factor for cardiovascular disease. However, the exact mechanism by which diabetes contributes to vascular damage is not fully understood. The aim of this study was to investigate the role of SUMO-1 mediated SERCA2a SUMOylation in the development of atherosclerotic vascular injury associated with diabetes mellitus. ApoE-/- mice were treated with streptozotocin (STZ) injection combined with high-fat feeding to simulate diabetic atherosclerosis and vascular injury. Human aortic vascular smooth muscle cells (HAVSMCs) were treated with high glucose (HG, 33.3 mM) and palmitic acid (PA, 200 µM) for 24 h to mimic a model of diabetes-induced vascular injury in vitro. Aortic vascular function, phenotypic conversion, migration, proliferation, intracellular Ca2+ concentration, the levels of small ubiquitin-like modifier type 1 (SUMO1), SERCA2a and SUMOylated SERCA2a were detected. Diabetes-induced atherosclerotic mice presented obvious atherosclerotic plaques and vascular injury, companied by significantly lower levels of SUMO1 and SERCA2a in aorta. HG and PA treatment in HAVSMCs reduced the expressions of SUMO1, SERCA2a and SUMOylated SERCA2a, facilitated the HAVSMCs phenotypic transformation, proliferation and migration, attenuated the Ca2+ transport, and increased the resting intracellular Ca2+ concentration. We also confirmed that SUMO1 directly bound to SERCA2a in HAVSMCs. Overexpression of SUMO1 restored the function and phenotypic contractile ability of HAVSMCs by upregulating SERCA2a SUMOylation, thereby alleviating HG and PA-induced vascular injury. These observations suggest an essential role of SUMO1 to protect diabetes-induced atherosclerosis and aortic vascular injury by the regulation of SERCA2a-SUMOylation and calcium homeostasis.
Collapse
MESH Headings
- Animals
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- SUMO-1 Protein/metabolism
- Sumoylation
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Humans
- Aorta/pathology
- Aorta/metabolism
- Male
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout, ApoE
Collapse
Affiliation(s)
- Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shifang Xu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bin Gao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Meng Yuan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China.
| |
Collapse
|
2
|
Lennikov A, ElZaridi F, Yang M. Modified streptozotocin-induced diabetic model in rodents. Animal Model Exp Med 2024; 7:777-780. [PMID: 39350510 PMCID: PMC11528383 DOI: 10.1002/ame2.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Streptozotocin (STZ)-induced type I diabetes mellitus (DM) models have been pivotal in diabetes research due to their ability to mimic the insulin-dependent hyperglycemia akin to human type I diabetes. However, these models often suffer from poor induction rates and low survival post-STZ induction, especially in long-term experiments, necessitating insulin supplementation, which introduces additional variables to experiments. To address this, we present a novel modification to the STZ-induced DM model in C57BL/6J mice to improve survival rates without insulin supplementation. Our method involves non-fasting, low-dose STZ injections dissolved in pH-neutral phosphate buffer saline instead of acidic sodium citrate buffer, administered over 5 days. We observed hyperglycemia induction in 94.28% of mice within a week post-injection, with stable high blood glucose levels, stable body weight, and minimal mortality up to 21 weeks. Notably, omitting 10% sucrose in water and fasting did not affect hyperglycemia induction. Our findings suggest that the modified protocol not only decreases the experimental effort of the researchers, but reduces animal stress and mortality, thus enhancing experimental outcomes and animal welfare. By optimizing the STZ-induced DM model in C57BL/6J mice, our study provides a valuable resource for researchers aiming to study diabetes and its complications while minimizing experimental variability and animal usage.
Collapse
Affiliation(s)
- Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| | - Farris ElZaridi
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Li X, Ji Q, Zhong C, Wu C, Wu J, Yuan C, Ran J. Ghrelin regulates the endoplasmic reticulum stress signalling pathway in gestational diabetes mellitus. Biochem Biophys Res Commun 2024; 709:149844. [PMID: 38564940 DOI: 10.1016/j.bbrc.2024.149844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE We aimed to investigate the effects and mechanisms of the ghrelin-regulated endoplasmic reticulum stress (ERS) signalling pathway in gestational diabetes mellitus (GDM). METHODS Pregnant female C57BL/6 mice were randomly divided into a normal group, GDM group (high-fat diet + STZ), GDM + ghrelin group (acyl ghrelin), and GDM + ghrelin + ghrelin inhibitor group ([D-lys3]-GHRP-6). We measured body weight, the intake of water and food, glucose, cholesterol, triglyceride and fasting insulin levels in each group. HE staining was used to observe the morphological changes in the pancreas. The TUNEL method was used to detect the apoptosis rate of islet cells. qPCR and Western boltting were performed to detect the relative expression levels of PERK, ATF6, IREIα, GRP78, CHOP and caspase-12, which are related to the ERS signalling pathway in the pancreas. Then, NIT-1 cells were cultured to verify whether ghrelin regulates ERS under high-glucose or tunicamycin conditions. RESULTS Compared with the GDM group, the GDM + ghrelin group showed improved physical conditions and significantly decreased the fasting blood glucose, glucose tolerance, cholesterol, triglyceride and fasting insulin levels. Damaged islet areas were inhibited by ghrelin in the GDM group. The GDM + ghrelin group showed reduced β-cell apoptosis compared to the GDM and GDM + ghrelin + ghrelin inhibitor groups. ERS-associated factors (PERK, ATF6, IREIα, GRP78, CHOP and caspase-12) mRNA and protein levels were obviously lower in the GDM + ghrelin group than in the GDM group, while expression levels were restored in the inhibitor group. Ghrelin treatment improved the high-glucose or tunicamycin-induced apoptosis, increased insulin levels and upregulation of GRP78, CHOP and caspase-12 in NIT-1 cells. CONCLUSION Ghrelin suppressed ERS signalling and apoptosis in GDM mice and in NIT-1 cells. This study established a link between ghrelin and GDM, and the targeting of ERS with ghrelin represents a promising therapeutic strategy for GDM.
Collapse
Affiliation(s)
- Xinying Li
- Department of Endocrinology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China; Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qun Ji
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chunrong Zhong
- Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Congyin Wu
- Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinchan Wu
- Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Caihong Yuan
- Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jianmin Ran
- Department of Endocrinology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Pan S, Yang L, Zhong W, Wang H, Lan Y, Chen Q, Yu S, Yang F, Yan P, Peng H, Liu X, Gao X, Song J. Integrated analyses revealed the potential role and immune link of mitochondrial dysfunction between periodontitis and type 2 diabetes mellitus. Int Immunopharmacol 2024; 130:111796. [PMID: 38452412 DOI: 10.1016/j.intimp.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
There is a reciprocal comorbid relationship between periodontitis and type 2 diabetes mellitus (T2DM). Recent studies have suggested that mitochondrial dysfunction (MD) could be the key driver underlying this comorbidity. The aim of this study is to provide novel understandings into the potential molecular mechanisms between MD and the comorbidity, and identify potential therapeutic targets for personalized clinical management. MD-related differentially expressed genes (MDDEGs) were identified. Enrichment analyses and PPI network analysis were then conducted. Six algorithms were used to explore the hub MDDEGs, and these were validated by ROC analysis and qRT-PCR. Co-expression and potential drug targeting analyses were then performed. Potential biomarkers were identified using LASSO regression. The immunocyte infiltration levels in periodontitis and T2DM were evaluated via CIBERSORTx and validated in mouse models. Subsequently, MD-related immune-related genes (MDIRGs) were screened by WGCNA. The in vitro experiment verified that MD was closely associated with this comorbidity. GO and KEGG analyses demonstrated that the connection between periodontitis and T2DM was mainly enriched in immuno-inflammatory pathways. In total, 116 MDDEGs, eight hub MDDEGs, and two biomarkers were identified. qRT-PCR revealed a distinct hub MDDEG expression pattern in the comorbidity group. Altered immunocytes in disease samples were identified, and their correlations were explored. The in vivo examination revealed higher infiltration levels of inflammatory immunocytes. The findings of this study provide insight into the mechanism underlying the gene-mitochondria-immunocyte network and provide a novel reference for future research into the function of mitochondria in periodontitis and T2DM.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - LanXin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Qiyue Chen
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Pingping Yan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Houli Peng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Liu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
5
|
Brishti MA, Raghavan S, Lamar K, Singh UP, Collier DM, Leo MD. Diabetic Endothelial Cell Glycogen Synthase Kinase 3β Activation Induces VCAM1 Ectodomain Shedding. Int J Mol Sci 2023; 24:14105. [PMID: 37762417 PMCID: PMC10531890 DOI: 10.3390/ijms241814105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Soluble cell adhesion molecules (sCAMs) are secreted ectodomain fragments of surface adhesion molecules, ICAM1 and VCAM1. sCAMs have diverse immune functions beyond their primary function, impacting immune cell recruitment and activation. Elevated sVCAM1 levels have been found to be associated with poor cardiovascular disease (CVD) outcomes, supporting VCAM1's role as a potential diagnostic marker and therapeutic target. Inhibiting sVCAM1's release or its interaction with immune cells could offer cardioprotection in conditions such as diabetes. Membrane-bound surface adhesion molecules are widely expressed in a wide variety of cell types with higher expression in endothelial cells (ECs). Still, the source of sCAMs in the circulation is not clear. Hypothesizing that endothelial cells (ECs) could be a potential source of sCAMs, this study investigated whether dysfunctional EC signaling mechanisms during diabetes cause VCAM1 ectodomain shedding. Our results from samples from an inducible diabetic mouse model revealed increased sVCAM1 plasma levels in diabetes. Protein analysis indicated upregulated VCAM1 expression and metalloproteases ADAM10 and ADAM17 in diabetic ECs. ADAMs are known for proteolytic cleavage of adhesion molecules, contributing to inflammation. GSK3β, implicated in EC VCAM1 expression, was found to be activated in diabetic ECs. GSK3β activation in control ECs increased ADAM10/17 and VCAM1. A GSK3β inhibitor reduced active GSK3β and VCAM1 ectodomain shedding. These findings suggest diabetic ECs with elevated GSK3β activity led to VCAM1 upregulation and ADAM10/17-mediated sVCAM1 shedding. This mechanism underscores the potential therapeutic role of GSK3β inhibition in reducing the levels of circulating sVCAM1. The complex roles of sCAMs extend well beyond CVD. Thus, unraveling the intricate involvement of sCAMs in the initiation and progression of vascular disease, particularly in diabetes, holds significant therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Dennis Leo
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.B.)
| |
Collapse
|
6
|
Deng L, Yang Y, Xu G. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159234. [PMID: 36185030 DOI: 10.1016/j.bbalip.2022.159234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The dysregulation of gut microbiota can be found in patients with type 2 diabetes mellitus (T2DM)-related diabetic nephropathy (DN). Inhibitors of sodium-glucose co-transporter 2 (SGLT2) were reported to affect gut microbiota. This study aimed to identify whether empagliflozin (EMPA) attenuated DN via regulating gut microbiota. MATERIALS AND METHODS The high-fat diet (HFD) combining streptozocin (STZ) injection was performed to induce DN in mice. The therapeutic effects of EMPA were observed by staining of renal tissues and urine albumin/creatinine ratio (UACR). Mouse feces were collected for 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) and fecal and serum lipopolysaccharide (LPS) were determined. An antibiotic-ablated model was established to confirm the role of the gut microbiota in the actions of EMPA. RESULTS EMPA reduced the elevation of blood glucose and UACR caused by HFD/STZ. It inhibited the thickening of the colonic crypt and restored goblet cells and the expressions of ZO-1 and Occludin. The 16S rRNA sequencing showed that the diversity of gut microbiota was reduced after HFD/STZ treatment, while it was restored after EMPA treatment. The LPS-producing bacteria, Oscillibacter, and the SCFA-producing bacteria, Bateroid and Odoribacter, were changed after EMPA administration. The therapeutic effects of EMPA on ABX-treated mice were reduced. Meanwhile, the level of fecal SCFAs was decreased, while the levels of fecal and serum LPS were elevated, in T2DM mice, and they were negated by the administration of EMPA. CONCLUSION EMPA ameliorates T2DM-related DN via altering the gut microbiota, especially reducing LPS-producing bacteria and increasing SCFA-producing bacteria.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Jiangxi 330006, China
| | - Yang Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Jiangxi 330006, China
| | - Gaosi Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Jiangxi 330006, China.
| |
Collapse
|
7
|
Liu G, Feng S, Yan J, Luan D, Sun P, Shao P. Antidiabetic potential of polysaccharides from Brasenia schreberi regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. Curr Res Food Sci 2022; 5:1465-1474. [PMID: 36119371 PMCID: PMC9478496 DOI: 10.1016/j.crfs.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the hypoglycemic activities and gut microbial regulation effects of polysaccharides from Brasenia schreberi (BS) in diabetic mice induced by high-fat diet and streptozotocin. Our data indicated that BS polysaccharides not only improved the symptoms of hyperglycemia and relieved metabolic endotoxemia-related inflammation but also optimized the gut microbiota composition of diabetic mice with significantly decreased Firmicutes/Bacteroidetes ratios. More importantly, altered gut microbiota components may affect liver glycogen and muscle glycogen by increasing the mRNA expression of phosphatidylinositol-3-kinase (PI3K) and protein kinase B (Akt) in the liver of mice through modulated the abundance of beneficial bacteria (Lactobacillus). Altogether, our findings, for the first time, demonstrate that BS polysaccharides may be used as a beneficial probiotic agent that reverses gut microbiota dysbiosis and the hypoglycemic mechanisms of BS polysaccharides may be related to enhancing the abundance of Lactobacillus to activate PI3K/Akt-mediated signaling pathways in T2DM mice. Brasenia schreberi polysaccharides ameliorated hyperglycemia and dyslipidemia in mice. The polysaccharides regulated glucose metabolism through activating PI3K-Akt pathway. The polysaccharides modulated gut microbiota profile of diabetic mice.
Collapse
Affiliation(s)
- Gaodan Liu
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Simin Feng
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
- Corresponding author. Department of Food Science and technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Jiadan Yan
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Di Luan
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
- Corresponding author. College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
8
|
Han ZF, Cao JH, Liu ZY, Yang Z, Qi RX, Xu HL. Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing. Diabetes Res Clin Pract 2022; 183:109126. [PMID: 34742784 DOI: 10.1016/j.diabres.2021.109126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
AIMS We focused on BMSC-derived exosomal lncRNA KLF3-AS1 and its significance in diabetic cutaneous wound healing. METHODS Potential interaction between KLF3-AS1 and miR-383, miR-383 and VEGFA were predicted using bioinformatic analysis and validated by luciferase reporter, RIP, and FISH assays. The proliferation, apoptosis, migration and tube formation of HUVECs were evaluated by CCK-8, flow cytometry, wound healing, and tube formation assays, respectively. A murine diabetic cutaneous wound model was used to investigate therapeutic effects of exosomal KLF3-AS1 in vivo. Histological alterations in skin tissues were examined using HE, Masson staining, and immunostaining of CD31. RESULTS BMSC-derived exosomal KLF3-AS1 sufficiently promoted proliferation, migration, and tube formation, while inhibited apoptosis of HUVECs challenged by high glucose. The protective effects of exosomal KLF3-AS1 were achieved at least partially by down-regulating miR-383, and boosting the expression of its target, VEGFA. In vivo, exosomes from KLF3-AS1-expressing BMSCs demonstrated the best effects in promoting cutaneous wound healing in diabetic mice, which were associated with minimal weight loss, increased blood vessel formation, reduced inflammation, decreased miR-383 expression, and up-regulated VEGFA. CONCLUSIONS Exosomal lncRNA KLF3-AS1 derived from BMSCs induces angiogenesis to promote diabetic cutaneous wound healing.
Collapse
Affiliation(s)
- Zhao-Feng Han
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China.
| | - Jun-Hua Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Zhong-Yang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Zheng Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Rui-Xue Qi
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Hua-Lin Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| |
Collapse
|
9
|
Bedi O, Srivastava N, Parsad D, Krishan P. Fatty acid synthase inhibition ameliorates diabetes induced liver injury in rodent experimental model. Eur J Pharmacol 2021; 901:174078. [PMID: 33839087 DOI: 10.1016/j.ejphar.2021.174078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023]
Abstract
The abnormal dietary life style leads to hyperlipidemia and insulin resistance with ectopic lipid accumulation and elevated levels of hepatic glucose development which are the underlying pathological characteristics of fatty liver diseases. The pharmacological inhibition of fatty acid synthase of de novo lipogenesis may regulate the dysfunctional lipid biotransformation and reverse the pathological state of diabetic liver injury. The three pharmacological interventions (PTS; Pterostilbene, ARB; Arbutin, PUR; Purpurin) were administered to manage the condition of diabetic liver injury against the high fat diet (HFD) + Streptozotocin (STZ) 30 mg/kg b.wt. rodent animal model to observe the effect of abnormal fatty acid synthesis. The qRT-PCR was used to evaluate the fatty acid synthase (FASN) expression which is independently allied with diabetes associated fatty liver disorders. To determine the therapeutic potential of three selected drugs, the biochemical parameters and histopathological considerations were utilized. Three subsequent dosage of PTS, ARB and PUR administered (i.e., 30,60 & 120 mg/kg/p.o.) for five weeks significantly alter the serum parameters, oxidative burden in HFD-STZ which, in turn, resulted in diabetic liver injury. It was also revealed that increased mRNA expression of fatty acid synthase (FASN), which is known to promote abnormal fatty acid synthesis through different molecular signaling pathways, was associated with the development of diabetes associated liver injury, this expression was observed to be significantly suppressed by PTS, ARB and PUR treatment. Moreover, the studies of histopathology showed that there was substantial structural improvement after PTS, ARB and PUR treatment. All three selected drugs have been shown to be effective for Diabetic liver injury (DLI) care but PTS shows impressive results compared to other selected drugs.
Collapse
Affiliation(s)
- Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Niharika Srivastava
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
10
|
Myricitrin Ameliorates Hyperglycemia, Glucose Intolerance, Hepatic Steatosis, and Inflammation in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21051870. [PMID: 32182914 PMCID: PMC7084451 DOI: 10.3390/ijms21051870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
To test the hypothesis that myricitrin (MYR) improves type 2 diabetes, we examined the effect of MYR on hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice. Male C57BL/6J mice were randomly divided into three groups: non-diabetic, diabetic control, and MYR (0.005%, w/w)-supplemented diabetic groups. Diabetes was induced by HFD and STZ, and MYR was administered orally for 5 weeks. Myricitrin exerted no significant effects on food intake, body weight, fat weight, or plasma lipids levels. However, MYR significantly decreased fasting blood glucose levels, improved glucose intolerance, and increased pancreatic β-cell mass compared to the diabetic control group. Myricitrin administration also markedly increased glucokinase mRNA expression and activity as well as lowered glucose-6-phosphatase and phosphoenolpyruvate carboxykinase mRNA expression and activity in the liver. In addition, liver weight, hepatic triglyceride content, and lipid droplet accumulation were markedly decreased following MYR administration. These changes were seemingly attributable to the suppression of the hepatic lipogenic enzymes—fatty acid synthase and phosphatidate phosphohydrolase. Myricitrin also significantly lowered plasma MCP-1 and TNF-α levels and the mRNA expression of hepatic pro-inflammatory genes. These results suggest that MYR has anti-diabetic potential.
Collapse
|
11
|
The 12-HHT/BLT2/NO Axis Is Associated to the Wound Healing and Skin Condition in Different Glycaemic States. Med Sci (Basel) 2019; 7:medsci7040065. [PMID: 31022982 PMCID: PMC6524016 DOI: 10.3390/medsci7040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes affects over 340 million people worldwide. This condition can go unnoticed and undiagnosed for years, leading to a late stage where high glycaemia produces complications such as delayed wound healing. Studies have shown that 12-HHT through BLT2, accelerates keratinocyte migration and wound healing. Additionally, evidence has shown the role of nitric oxide as a pro-regenerative mediator, which is decreased in diabetes. Our main goal was to study the association between the 12-HHT/BLT2 axis and the nitric oxide production in wound healing under different glycaemia conditions. For that purpose, we used in vivo and in vitro models. Our results show that the skin from diabetic mice showed reduced BLT2 and iNOS mRNA, TEER, 12-HHT, nitrites, and tight junction levels, accompanied by higher MMP9 mRNA levels. Furthermore, a positive correlation between BLT2 mRNA and nitrites was observed. In vitro, HaCaT-BLT2 cells showed higher nitric oxide and tight junction levels, and reduced MMP9 mRNA levels, compared to mock-keratinocytes under low and high glucose condition. The wound healing capacity was associated with higher nitric oxide production and was affected by the NOS inhibition. We suggest that the BLT2 expression improves the keratinocyte response to hyperglycaemia, associated with the production of nitric oxide.
Collapse
|
12
|
Abstract
In this issue of the Biomedical Journal we explore the history of dengue infection in Taiwan and what current trends have to say about the vector responsible for transmitting the disease on the island. We focus on original research reporting the development of a new perfusion bioreactor to engineer bone from human cord blood stem cells. Finally, we look at trends in osteoporosis in Taiwan and how they highlight the success of public health campaigns.
Collapse
Affiliation(s)
- Emma Louise Walton
- Staff Writer at the Biomedical Journal, 56 Dronningens Gate, 7012 Trondheim, Norway.
| |
Collapse
|