1
|
Li L, Wu C, Chen Q, Shi Z, Xu K, Niu Y, Rao X. Preparation of dehydroabietic acid modified chitosan/wintergreen essential oil film and mandarin freshness preservation study. Food Chem 2025; 464:141836. [PMID: 39509898 DOI: 10.1016/j.foodchem.2024.141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
In order to obtain an eco-friendly and multifunctional preservative film, dehydroabietic acid (DHA) modified chitosan (CS) containing wintergreen essential oil (CSDA-WEO) film was developed. CS grafted by DHA was able to increase the deformation capacity of CS film (MCS) by about 12.5 %, and the film made by CSDA containing WEO increased the tensile deformation capacity to 32 %. CSDA-WEO film (MCSDA-WEO) can improve the transmittance and UV blocking, and MCSDA-WEO can be completely degraded within 35 days. In the Film-2 approach, PE film (MPE), CSDA film (MCSDA) and MCSDA-WEO again improve the preservative performance based on the original 1 approach and have good freshness preservation. MCSDA and MCSDA-WEO were able to delay the loss of antioxidant activity, improve the antifungal property and prolong the shelf life of mandarins up to 18 days. MCSDA and MCSDA-WEO have good performance, are green and healthy, and have a wide perspective for food preservation.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Qian Chen
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Zhengjun Shi
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Kaimeng Xu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Yanfei Niu
- Yunnan Baiyao Group Chinese Medicinal Resources Division, 650500, China
| | - Xiaoping Rao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China; College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Michel P, Olszewska MA. Phytochemistry and Biological Profile of Gaultheria procumbens L. and Wintergreen Essential Oil: From Traditional Application to Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2024; 25:565. [PMID: 38203735 PMCID: PMC10778675 DOI: 10.3390/ijms25010565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Gaultheria procumbens L. is a medicinal plant whose aerial parts (leaves, stems, and fruits) and methyl salicylate-rich essential oil (wintergreen oil) are used in phytotherapy to treat inflammation, muscular pain, and infection-related disorders. This overview summarises the current knowledge about ethnobotany, phytochemistry, pharmacology, molecular mechanisms, biocompatibility, and traditional use of G. procumbens and the wintergreen oil distilled from different plant organs. Over 70 hydrophilic compounds, including methyl salicylate glycosides, flavonoids, procyanidins, free catechins, caffeoylquinic acids, and simple phenolic acids, have been identified in G. procumbens plant parts. Moreover, aliphatic compounds, triterpene acids, and sterols have been revealed in lipophilic fractions. Furthermore, over 130 volatile compounds have been detected in wintergreen oil with dominating methyl salicylate (96.9-100%). The accumulated research indicates that mainly hydrophilic non-volatiles are responsible for the pharmacological effects of G. procumbens, primarily its potent anti-inflammatory, antioxidant, and photoprotective activity, with mechanisms verified in vitro and ex vivo in cellular and cell-free assays. The biological effectiveness of the dominant methyl salicylate glycoside-gaultherin-has also been confirmed in animals. Wintergreen oil is reported as a potent anti-inflammatory agent exhibiting moderate antioxidant and antimicrobial activity in vitro and significant insecticidal and larvicidal capacity. Together, G. procumbens accumulate a diverse fraction of polyphenols, triterpenes, and volatiles with validated in vitro and ex vivo biological activity but with the absence of in vivo studies, especially clinical trials concerning effective dose determination and toxicological verification and technological research, including drug formulation.
Collapse
Affiliation(s)
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
4
|
Liu C, Dai J, Wang X, Hu X. The Influence of Textile Structure Characteristics on the Performance of Artificial Blood Vessels. Polymers (Basel) 2023; 15:3003. [PMID: 37514393 PMCID: PMC10385882 DOI: 10.3390/polym15143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular disease is a major threat to human health worldwide, and vascular transplantation surgery is a treatment method for this disease. Often, autologous blood vessels cannot meet the needs of surgery. However, allogeneic blood vessels have limited availability or may cause rejection reactions. Therefore, the development of biocompatible artificial blood vessels is needed to solve the problem of donor shortage. Tubular fabrics prepared by textile structures have flexible compliance, which cannot be matched by other structural blood vessels. Therefore, biomedical artificial blood vessels have been widely studied in recent decades up to the present. This article focuses on reviewing four textile methods used, at present, in the manufacture of artificial blood vessels: knitting, weaving, braiding, and electrospinning. The article mainly introduces the particular effects of different structural characteristics possessed by various textile methods on the production of artificial blood vessels, such as compliance, mechanical properties, and pore size. It was concluded that woven blood vessels possess superior mechanical properties and dimensional stability, while the knitted fabrication method facilitates excellent compliance, elasticity, and porosity of blood vessels. Additionally, the study prominently showcases the ease of rebound and compression of braided tubes, as well as the significant biological benefits of electrospinning. Moreover, moderate porosity and good mechanical strength can be achieved by changing the original structural parameters; increasing the floating warp, enlarging the braiding angle, and reducing the fiber fineness and diameter can achieve greater compliance. Furthermore, physical, chemical, or biological methods can be used to further improve the biocompatibility, antibacterial, anti-inflammatory, and endothelialization of blood vessels, thereby improving their functionality. The aim is to provide some guidance for the further development of artificial blood vessels.
Collapse
Affiliation(s)
- Chenxi Liu
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| | - Jieyu Dai
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| | - Xueqin Wang
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| | - Xingyou Hu
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| |
Collapse
|
5
|
Rasti F, Yousefpoor Y, Abdollahi A, Safari M, Roozitalab G, Osanloo M. Antioxidative, anticancer, and antibacterial activities of a nanogel containing Mentha spicata L. essential oil and electrospun nanofibers of polycaprolactone-hydroxypropyl methylcellulose. BMC Complement Med Ther 2022; 22:261. [PMID: 36207726 PMCID: PMC9540714 DOI: 10.1186/s12906-022-03741-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As the largest organ, the skin has been frequently affected by trauma, chemical materials, toxins, bacterial pathogens, and free radicals. Recently, many attempts have been made to develop natural nanogels that, besides hydrating the skin, could also be used as antioxidant or antibacterial agents. METHODS In this study, the chemical composition of the Mentha spicata essential oil was first investigated using GC-MS analysis. Its nanoemulsion-based nanogel was then investigated; successful loading of the essential oil in the nanogel was confirmed using FTIR analysis. Besides, nanogel's antioxidative, anticancer, and antibacterial activities were investigated. RESULTS Carvone (37.1%), limonene (28.5%), borneol (3.9%), β-pinene (3.3%), and pulegone (3.3%) were identified as five major compounds in the essential oil. By adding carboxymethylcellulose (3.5% w/v) to the optimal nanoemulsion containing the essential oil (droplet size of 196 ± 8 nm), it was gelified. The viscosity was fully fitted with a common non-Newtonian viscosity regression, the Carreau-Yasuda model. The antioxidant effect of the nanogel was significantly more potent than the essential oil (P < 0.001) at all examined concentrations (62.5-1000 µg/mL). Furthermore, the potency of the nanogel with an IC50 value of 55.0 µg/mL was substantially more (P < 0.001) than the essential oil (997.4 µg/mL). Also, the growth of Staphylococcus aureus and Escherichia coli after treatment with 1000 µg/mL nanogel was about 50% decreased compared to the control group. Besides, the prepared electrospun polycaprolactone-hydroxypropyl methylcellulose nanofibers mat with no cytotoxic, antioxidant, or antibacterial effects was proposed as lesion dressing after treatment with the nanogel. High potency, natural ingredients, and straightforward preparation are advantages of the prepared nanogel. Therefore, it could be considered for further consideration in vivo studies.
Collapse
Affiliation(s)
- Fatemeh Rasti
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Center Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Khalil Abad Health Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojdeh Safari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Center Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Comini S, Scutera S, Sparti R, Banche G, Coppola B, Bertea CM, Bianco G, Gatti N, Cuffini AM, Palmero P, Allizond V. Combination of Poly(ε-Caprolactone) Biomaterials and Essential Oils to Achieve Anti-Bacterial and Osteo-Proliferative Properties for 3D-Scaffolds in Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14091873. [PMID: 36145620 PMCID: PMC9506294 DOI: 10.3390/pharmaceutics14091873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical implants, an essential part of the medical treatments, still suffer from bacterial infections that hamper patients’ recovery and lives. Antibiotics are widely used to cure those infections but brought antibiotic resistance. Essential oils (EOs) demonstrate excellent antimicrobial activity and low resistance development risk. However, EO application in medicine is still quite scarce and almost no research work considers its use in combination with bioresorbable biomaterials, such as the poly(ε-caprolactone) (PCL) polymer. This work aimed to combine the antibacterial properties of EOs and their components, particularly eugenol and cinnamon oil, against Staphylococcus aureus, S. epidermidis and Escherichia coli, with those of PCL for medical applications in which good tissue regeneration and antimicrobial effects are required. The PCL porous scaffolds, added with increasing (from 30% to 50%) concentrations of eugenol and cinnamon oil, were characterized by square-shaped macropores. Saos-2 cells’ cell viability/proliferation was hampered by 40 and 50% EO-enriched PCL, whereas no cytotoxic effect was recorded for both 30% EO-added PCL and pure-PCL. The antibacterial tests revealed the presence of a small inhibition halo around the 30% eugenol and cinnamon oil-functionalized PCL scaffolds only for staphylococci, whereas a significant decrease on both adherent and planktonic bacteria was recorded for all the three microorganisms, thus proving that, even if the EOs are only in part released by the EO-added PCL scaffolds, an anti-adhesive feature is anyway achieved. The scaffold will have the ability to support new tissue formation and simultaneously will be able to prevent post-surgical infection. This research shows the great potential in the use of EOs or their single components, at low concentrations, for biomaterial functionalization with enhanced anti-bacterial and biointegration properties.
Collapse
Affiliation(s)
- Sara Comini
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Rosaria Sparti
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
- Correspondence: (G.B.); (A.M.C.); Tel.: +39-011-670-5627 (G.B.); +39-011-670-5638 (A.M.C.)
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Cinzia Margherita Bertea
- Department of Life Sciences and Systems Biology, University of Torino, Via Quarello 15/A, 10135 Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Corso Bramante 88/90, 10126 Turin, Italy
| | - Noemi Gatti
- Department of Life Sciences and Systems Biology, University of Torino, Via Quarello 15/A, 10135 Turin, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
- Correspondence: (G.B.); (A.M.C.); Tel.: +39-011-670-5627 (G.B.); +39-011-670-5638 (A.M.C.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| |
Collapse
|
7
|
Alipanah H, Yarian F, Rasti F, Safari M, Hatami S, Osanloo M. Cytotoxic effects of chitosan nanoparticles containing Zataria multiflora essential oil against human breast and melanoma cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the most common cancer among women, and melanoma incidence increases worldwide. The emergence of drug resistance and side effects of chemotherapy drugs has led to a great deal of attention being paid to the development of natural medicines, especially using essential oil. The preparation of essential oil-based nanoformulation has thus recently received more attention.
Results
In this study, chitosan nanoparticles (ChiNPs) containing Zataria multiflora essential oil with a particle size of 177 ± 10 nm, a narrow particle size distribution (SPAN 0.96), and a cubic-like shape were first prepared. IC50 values of the prepared nanoformulation against human melanoma (A-375) and breast cancer cell lines (MCF-7 and MDA-MB-468) were obtained as 32 (12–84), 46 (32–67), and 105 (85–131) µg/mL. Besides, an electrospun polycaprolactone–polyethylene oxide scaffold was prepared as a dressing after treatment with the nanoformulation. Fourier transform infrared analysis confirmed the scaffold's preparation as well as successful loading of the essential oil in chitosan nanoparticles. Furthermore, the scaffold did not show a cytotoxic effect on A-375, MCF-7, and MDA-MB-468, and its surface was hydrophobic as the water contact angle with the surface was 136.5°.
Conclusions
The prepared prototype with natural ingredients and high efficacy could be considered for further consideration in vivo study or complementary medicine.
Graphical abstract
Collapse
|
8
|
Preparation, Properties and Water Dissolution Behavior of Polyethylene Oxide Mats Prepared by Solution Blow Spinning. Polymers (Basel) 2022; 14:polym14071299. [PMID: 35406174 PMCID: PMC9003185 DOI: 10.3390/polym14071299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between processing conditions, structure and morphology are key issues to understanding the final properties of materials. For instance, in the case of polymers to be used as scaffolds in tissue engineering, wound dressings and membranes, morphology tuning is essential to control mechanical and wettability behaviors. In this work, the relationship between the processing conditions of the solution blow spinning process (SBS) used to prepare nonwoven mats of polyethylene oxide (PEO), and the structure and morphology of the resulting materials are studied systematically, to account for the thermal and mechanical behaviors and dissolution in water. After finding the optimal SBS processing conditions (air pressure, feed rate, working distance and polymer concentration), the effect of the solvent composition has been considered. The structure and morphology of the blow spun fibers are studied as well as their thermal, mechanical behaviors and dissolution in water. We demonstrate that the morphology of the fibers (size and porosity) changes with the solvent composition, which is reflected in different thermal and mechanical responses and in the dissolution rates of the materials in water.
Collapse
|
9
|
Kattner AA. Greek gods and the double-edged sword of liver regeneration. Biomed J 2021; 44:515-520. [PMID: 34715410 PMCID: PMC8640535 DOI: 10.1016/j.bj.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
In the current issue of the Biomedical Journal we gain an insight into the regeneration of liver tissue and how an over-the-counter supplement, stem cells and two plant extracts counteract liver damage. Furthermore the advances against hepatitis C virus are presented, the role of long non-coding RNA elucidated as well as the potential of an adhesion G protein-coupled receptor. In another contribution, the definition and evolutionary impact of copy number variants is clarified. Also, the polymorphism of a scaffolding caspase is investigated. We furthermore learn about the relation between SARS-CoV2 mutants in dependence of geography and explore the challenges of telemedicine in a complex healthcare field. A novel approach to engineering artificial grafts is presented, the challenges of total knee arthroplasty discussed as well as a possible mean of sinus floor elevation for dental implants. At last the concept of flipped classroom is scrutinized in terms of usefulness for a hospital in Taiwan.
Collapse
|
10
|
Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112373. [PMID: 34579892 DOI: 10.1016/j.msec.2021.112373] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Due to the prevalence of cardiovascular diseases, there is a large need for small diameter vascular grafts that cannot be fulfilled using autologous vessels. Although medium to large diameter synthetic vessels are in use, no suitable small diameter vascular graft has been developed due to the unique dynamic environment that exists in small vessels. To achieve long term patency, a successful tissue engineered vascular graft would need to closely match the mechanical properties of native tissue, be non-thrombotic and non-immunogenic, and elicit the proper healing response and undergo remodeling to incorporate into the native vasculature. Electrospinning presents a promising approach to the development of a suitable tissue engineered vascular graft. This review provides a comprehensive overview of the different polymers, techniques, and functionalization approaches that have been used to develop an electrospun tissue engineered vascular graft.
Collapse
Affiliation(s)
- Alex P Rickel
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Xiajun Deng
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Daniel Engebretson
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Zhongkui Hong
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America.
| |
Collapse
|