1
|
Isik OG, Ing C. Maternal exposure to general anesthesia and labor epidural analgesia during pregnancy and delivery, and subsequent neurodevelopmental outcomes in children. Int J Obstet Anesth 2024; 61:104318. [PMID: 39754838 DOI: 10.1016/j.ijoa.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Oliver G Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Caleb Ing
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
2
|
Barton K, Yellowman RD, Holm T, Beaulieu F, Zuckerberg G, Gwal K, Setty BN, Janitz E, Hwang M. Pre-clinical and clinical trials for anesthesia in neonates: gaps and future directions. Pediatr Radiol 2024; 54:2143-2156. [PMID: 39349661 DOI: 10.1007/s00247-024-06066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 12/13/2024]
Abstract
Literature examining possible deleterious effects of anesthesia exposure on the developing brain has increased substantially over the past 30 years. Initial concerning findings in animal models, both rodents and non-human primates, prompted increasingly thorough examinations in humans, including randomized controlled trials. This review will provide a concise overview of what we know about anesthesia and the developing brain: the background in animal studies, the most robust results we have in humans, and the work yet to be done. This is particularly relevant to a pediatric radiology audience because we have the unique opportunity to modify anesthesia exposure during imaging through innovation.
Collapse
Affiliation(s)
- Katherine Barton
- Department of Radiology, Oregon Health & Science University, Portland, OR, USA.
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L340, Portland, OR, 97239, USA.
| | | | - Tara Holm
- Department of Radiology, University of Minnesota, Masonic Children's Hospital, Minneapolis, MN, USA
| | - Forrest Beaulieu
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel Zuckerberg
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kriti Gwal
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Bindu N Setty
- Department of Radiology, Boston University, Boston, MA, USA
| | - Emily Janitz
- Department of Radiology, Akron Children's Hospital, Akron, OH, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
He M, Wan H, Cong P, Li X, Cheng C, Huang X, Zhang Q, Wu H, Tian L, Xu K, Xiong L. Structural basis for the inhibition of cystathionine-β-synthase by isoflurane and its role in anaesthesia-induced social dysfunction in mice. Br J Anaesth 2024:S0007-0912(24)00600-7. [PMID: 39603853 DOI: 10.1016/j.bja.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Anaesthesia has been shown to impair social functioning, but the underlying mechanisms remain largely unknown. The volatile anaesthetic isoflurane potentially disrupts the methionine cycle and trans-sulphuration pathway, contributing to social deficits. Cystathionine-β-synthase (CBS), a key enzyme in this pathway, might be targeted by isoflurane. We investigated the CBS-isoflurane interaction and its role in neuronal function and social behaviour. METHODS Mice aged 3-15 months were anaesthetised with 2 vol% isoflurane for 2 h, and social behaviours were tested 24 h after exposure. Alterations in neuronal activity were assessed using electrophysiological analysis in vivo. Pharmacological activators (S-adenosylmethionine [SAM]) or inhibitors (amino-oxyacetic acid [AOAA]), and adeno-associated virus (AAV) were used to modulate CBS activity. The binding site of isoflurane on CBS was determined using X-ray crystallography. A novel transgenic model with a point mutation knock-in was constructed to eliminate the CBS-isoflurane interaction. RESULTS Isoflurane inhibited CBS activity (by 0.35-fold [0.07] vs 1.00-fold [0.05]; P<0.001), leading to neuronal hypoactivity in the anterior cingulate cortex (ACC) and social impairments in adult and elderly mice. SAM, AOAA, and AAV interventions demonstrated a causal link. Structural and functional analysis identified the lysine 273 (K273) in CBS to be involved in isoflurane inhibition. CBS K273A knock-in mice exhibited increased CBS activity compared with wild-type littermates after isoflurane exposure (2.2-fold [0.22] vs 1.0-fold [0.28]; P<0.001), with successful alleviation of ACC neuronal hypoactivity and social dysfunction. CONCLUSIONS These findings reveal a crucial role for CBS inhibition by isoflurane in anaesthesia-induced social impairment.
Collapse
Affiliation(s)
- Mengfan He
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanxi Wan
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peilin Cong
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyang Li
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chun Cheng
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Zhang
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Tian
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ke Xu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Zhou H, Neudecker V, Perez-Zoghbi JF, Brambrink AM, Yang G. Age-dependent cerebral vasodilation induced by volatile anesthetics is mediated by NG2 + vascular mural cells. Commun Biol 2024; 7:1519. [PMID: 39548262 PMCID: PMC11568297 DOI: 10.1038/s42003-024-07200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Anesthesia can influence cerebral blood flow by altering vessel diameter. Using in vivo two-photon imaging, we examined the effects of volatile anesthetics, sevoflurane and isoflurane, on vessel diameter in young and adult mice. Our results show that these anesthetics induce robust dilation of cortical arterioles and arteriole-proximate capillaries in adult mice, with milder effects in juveniles and no dilation in infants. This anesthesia-induced vasodilation correlates with decreased cytosolic Ca2+ levels in NG2+ vascular mural cells. Optogenetic manipulation of these cells bidirectionally regulates vessel diameter, and their ablation abolishes the vasodilatory response to anesthetics. In immature brains, NG2+ mural cells are fewer in number and express lower levels of Kir6.1, a subunit of ATP-sensitive potassium channels. This likely contributes to the age-dependent differences in vasodilation, as Kir6.1 activation promotes, while its inhibition reduces, anesthesia-induced vasodilation. These findings highlight the essential role of NG2+ mural cells in mediating anesthesia-induced cerebral vasodilation.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, Guangdong Province, 518107, China
| | - Viola Neudecker
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA.
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA.
| |
Collapse
|
5
|
Frykholm P, Veyckemans F. New methods needed to investigate the potential adverse effects of anaesthesia on neurological development in childhood. Br J Anaesth 2024; 133:931-933. [PMID: 39198093 DOI: 10.1016/j.bja.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The issue of potentially harmful effects of neurotoxicity or anaesthesia management on children undergoing general anaesthesia is still not resolved. Studies have so far been limited by methodological problems. In a retrospective cohort study, a new noninvasive method was used to demonstrate visual processing changes in children with a single previous exposure to anaesthesia. We need new noninvasive methods that can be used before and after exposure to anaesthesia and surgery to detemine possible effects on long-term neurodevelopment.
Collapse
Affiliation(s)
- Peter Frykholm
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden; Uppsala Centre for Paediatric Anaesthesia and Intensive Care Research, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
6
|
Wang S, Li Z, Liu X, Fan S, Wang X, Chang J, Qin L, Zhao P. Repeated postnatal sevoflurane exposure impairs social recognition in mice by disrupting GABAergic neuronal activity and development in hippocampus. Br J Anaesth 2024; 133:810-822. [PMID: 39142987 DOI: 10.1016/j.bja.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Repeated exposure to sevoflurane during early developmental stages is a risk factor for social behavioural disorders, but the underlying neuropathological mechanisms remain unclear. As the hippocampal cornu ammonis area 2 subregion (CA2) is a critical centre for social cognitive functions, we hypothesised that sevoflurane exposure can lead to social behavioural disorders by disrupting neuronal activity in the CA2. METHODS Neonatal mice were anaesthetised with sevoflurane 3 vol% for 2 h on postnatal day (PND) 6, 8, and 10. Bulk RNA sequencing of CA2 tissue was conducted on PND 12. Social cognitive function was assessed by behavioural experiments, and in vivo CA2 neuronal activity was recorded by multi-channel electrodes on PND 60-65. RESULTS Repeated postnatal exposure to sevoflurane impaired social novelty recognition in adulthood. It also caused a decrease in the synchronisation of neuronal spiking, gamma oscillation power, and spike phase-locking between GABAergic spiking and gamma oscillations in the CA2 during social interaction. After sevoflurane exposure, we observed a reduction in the density and dendritic complexity of CA2 GABAergic neurones, and decreased expression of transcription factors critical for GABAergic neuronal development after. CONCLUSIONS Repeated postnatal exposure to sevoflurane disturbed the development of CA2 GABAergic neurones through downregulation of essential transcription factors. This resulted in impaired electrophysiological function in adult GABAergic neurones, leading to social recognition deficits. These findings reveal a potential electrophysiological mechanism underlying the long-term social recognition deficits induced by sevoflurane and highlight the crucial role of CA2 GABAergic neurones in social interactions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zijie Li
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Xin Liu
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Shiyue Fan
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuejiao Wang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jianjun Chang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China.
| | - Ping Zhao
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
7
|
Liang LR, Liu B, Cao SH, Zhao YY, Zeng T, Zhai MT, Fan Z, He DY, Ma SX, Shi XT, Zhang Y, Zhang H. Integrated ribosome and proteome analyses reveal insights into sevoflurane-induced long-term social behavior and cognitive dysfunctions through ADNP inhibition in neonatal mice. Zool Res 2024; 45:663-678. [PMID: 38766748 PMCID: PMC11188609 DOI: 10.24272/j.issn.2095-8137.2023.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 05/22/2024] Open
Abstract
A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/β-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.
Collapse
Affiliation(s)
- Li-Rong Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Shu-Hui Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - You-Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Tian Zeng
- Department of Anesthesiology, 986th Air Force Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Ting Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Ze Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Dan-Yi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - San-Xin Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Tong Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China. E-mail:
| |
Collapse
|
8
|
Neudecker V, Perez-Zoghbi JF, Brambrink AM. Commentary: Early-in-life Isoflurane Exposure Alters Resting-State Functional Connectivity in Juvenile Non-human Primates - a Role for Neuroinflammation? JOURNAL OF IMMUNOLOGICAL SCIENCES 2024; 8:1-5. [PMID: 39221429 PMCID: PMC11364266 DOI: 10.29245/2578-3009/2024/2.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The concern about anesthesia-induced developmental neurotoxicity (AIDN) in infants and young children arises from animal studies indicating potential long-term neurobehavioral impairments following early-in-life anesthesia exposure. While initial clinical studies provided ambiguous results, recent prospective assessments in children indicate associations between early-in-life anesthesia exposure and later behavioral alterations. Ethical constraints and confounding factors in clinical studies pose challenges in establishing a direct causal link and in investigating its mechanisms. This commentary on a recent study in non-human primates (NHPs) focuses on exploring the role of neuroinflammation and alterations in brain functional connectivity in the behavioral impairments following early-in-life anesthesia exposure. In juvenile NHPs, chronic astrogliosis in the amygdala correlates with alterations in functional connectivity between this area with other regions of the brain and with the behavioral impairments, suggesting a potential mechanism for AIDN. Despite acknowledging the study's limitations, these findings emphasize the need for further research with larger cohorts to confirm these associations and to establish a causal link between the neuroinflammation and the behavioral alterations associated with early-in-life anesthesia exposure.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F. Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Ansgar M. Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Neudecker V, Perez-Zoghbi JF, Miranda-Domínguez O, Schenning KJ, Ramirez JS, Mitchell AJ, Perrone A, Earl E, Carpenter S, Martin LD, Coleman K, Neuringer M, Kroenke CD, Dissen GA, Fair DA, Brambrink AM. Early-in-life isoflurane exposure alters resting-state functional connectivity in juvenile non-human primates. Br J Anaesth 2023; 131:1030-1042. [PMID: 37714750 PMCID: PMC10687619 DOI: 10.1016/j.bja.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Oscar Miranda-Domínguez
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Katie J Schenning
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Julian Sb Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Anders Perrone
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Sam Carpenter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lauren D Martin
- Animal Resources & Research Support, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristine Coleman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Damien A Fair
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Kim G, Weiss AR, Raper J. Needle in a haystack: localising the long-term neuronal changes from early-life exposure to general anaesthesia. Br J Anaesth 2023; 131:975-977. [PMID: 37833127 DOI: 10.1016/j.bja.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Narrowing down the histopathological changes in the brain after early-life exposure to general anaesthesia has presented a consistent challenge for preclinical models of anaesthetic neurotoxicity. Using resting-state functional magnetic resonance imaging, in this issue of the journal Neudecker and colleagues demonstrated in vivo connectivity changes in the brain following a seed-based analysis that was derived from previously reported histopathology in the same animals. The combination of neurohistology and neuroimaging should help focus future preclinical studies investigating the developmental consequences of early exposure to general anaesthesia.
Collapse
Affiliation(s)
- Greena Kim
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Alison R Weiss
- Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jessica Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Bong CL, Ho D, Allen JC, Lim GSM, Tan HK, Broekman BFP, Fabila T, Reddy S, Koh WP, Swee-Kim Tan J, Meaney M, Rifkin-Graboi A. Early Neurodevelopmental Outcomes Following Exposure to General Anesthesia in Infancy: EGAIN, a Prospective Cohort Study. J Neurosurg Anesthesiol 2023; 35:394-405. [PMID: 35613046 DOI: 10.1097/ana.0000000000000857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND General anesthesia (GA) is known to worsen neural outcomes in animals, but human research assessing early-life GA exposure and neurodevelopment show inconsistent findings. We investigated the effects of a single GA exposure for minor surgery on the neurodevelopment of healthy children at multiple time-points, using clinical assessments along with behavioral and neurophysiological measures rarely used in human research. METHODS GA-exposed children were a prospective cohort of 250 full-term, healthy infants who underwent GA for minor surgery before 15 months. Nonexposed children were from a separate cohort of similar age, sex, ethnicity, and maternal education. In both cohorts, clinical measures (Bayley Scales of Infant and Toddler Development-III [BSID-III] and Child Behavior Checklist [CBCL1½-5]) were assessed at 24 months, and experimental tests (memory and attentional) and neurophysiology (event-related potentials) at 6 and 18 months. RESULTS At 24 months, there were no differences between GA-exposed and nonexposed children in the cognitive, language, motor, and socioemotional domains of the BSDI-III; however, GA-exposed children had poorer parental-reported scores in BSID-III general adaptability (94.2 vs. 99.0 [mean difference, 4.77; 97.3% confidence interval, -9.29, -0.24]; P =0.020) and poorer internalizing behavior scores on CBCL1½-5 (52.8 vs. 49.4 [mean difference, 3.35; 97.3% confidence interval, 0.15-6.55]; P =0.021). For experimental measures, GA-exposed children showed differences in 4 tests at 6 and 18 months. CONCLUSIONS GA-exposed children did not differ from unexposed children in cognitive, language or motor outcomes at 24 months, but exhibited poorer parent-reported behavior scores. Differences in infant behavior and neurophysiology were detected at 6 and 18 months. Neurophysiological assessments may complement clinically relevant assessments to provide greater insights into neurodevelopment following early GA exposure.
Collapse
Affiliation(s)
- Choon Looi Bong
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital
| | | | - John Carson Allen
- Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-NUS Medical School
| | | | | | - Birit F P Broekman
- Neurodevelopment Research Center, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research
- Department of Psychiatry, Amsterdam UMC and OLVG, VU University Amsterdam, The Netherlands
| | - Teddy Fabila
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital
| | - Satish Reddy
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Michael Meaney
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR)
- Department of Psychiatry and Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR)
- Centre for Research in Child Development, National Institute of Education, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Tomlinson C, Vlasova R, Al-Ali K, Young JT, Shi Y, Lubach GR, Alexander AL, Coe CL, Styner M, Fine J. Effects of anesthesia exposure on postnatal maturation of white matter in rhesus monkeys. Dev Psychobiol 2023; 65:e22396. [PMID: 37338252 PMCID: PMC11000522 DOI: 10.1002/dev.22396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 06/21/2023]
Abstract
There is increasing concern about the potential effects of anesthesia exposure on the developing brain. The effects of relatively brief anesthesia exposures used repeatedly to acquire serial magnetic resonance imaging scans could be examined prospectively in rhesus macaques. We analyzed magnetic resonance diffusion tensor imaging (DTI) of 32 rhesus macaques (14 females, 18 males) aged 2 weeks to 36 months to assess postnatal white matter (WM) maturation. We investigated the longitudinal relationships between each DTI property and anesthesia exposure, taking age, sex, and weight of the monkeys into consideration. Quantification of anesthesia exposure was normalized to account for variation in exposures. Segmented linear regression with two knots provided the best model for quantifying WM DTI properties across brain development as well as the summative effect of anesthesia exposure. The resulting model revealed statistically significant age and anesthesia effects in most WM tracts. Our analysis indicated there were major effects on WM associated with low levels of anesthesia even when repeated as few as three times. Fractional anisotropy values were reduced across several WM tracts in the brain, indicating that anesthesia exposure may delay WM maturation, and highlight the potential clinical concerns with even a few exposures in young children.
Collapse
Affiliation(s)
- Chalmer Tomlinson
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roza Vlasova
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Khalid Al-Ali
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Young
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Tsivitis A, Wang A, Murphy J, Khan A, Jin Z, Moore R, Tateosian V, Bergese S. Anesthesia, the developing brain, and dexmedetomidine for neuroprotection. Front Neurol 2023; 14:1150135. [PMID: 37351266 PMCID: PMC10282145 DOI: 10.3389/fneur.2023.1150135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Anesthesia-induced neurotoxicity is a set of unfavorable adverse effects on central or peripheral nervous systems associated with administration of anesthesia. Several animal model studies from the early 2000's, from rodents to non-human primates, have shown that general anesthetics cause neuroapoptosis and impairment in neurodevelopment. It has been difficult to translate this evidence to clinical practice. However, some studies suggest lasting behavioral effects in humans due to early anesthesia exposure. Dexmedetomidine is a sedative and analgesic with agonist activities on the alpha-2 (ɑ2) adrenoceptors as well as imidazoline type 2 (I2) receptors, allowing it to affect intracellular signaling and modulate cellular processes. In addition to being easily delivered, distributed, and eliminated from the body, dexmedetomidine stands out for its ability to offer neuroprotection against apoptosis, ischemia, and inflammation while preserving neuroplasticity, as demonstrated through many animal studies. This property puts dexmedetomidine in the unique position as an anesthetic that may circumvent the neurotoxicity potentially associated with anesthesia.
Collapse
Affiliation(s)
- Alexandra Tsivitis
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Ashley Wang
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY, United States
| | - Ayesha Khan
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Robert Moore
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Vahe Tateosian
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| |
Collapse
|
14
|
Yang X, Wu Y, Xu X, Gao W, Xie J, Li Z, Zhou X, Feng X. Impact of Repeated Infantile Exposure to Surgery and Anesthesia on Gut Microbiota and Anxiety Behaviors at Age 6-9. J Pers Med 2023; 13:jpm13050823. [PMID: 37240993 DOI: 10.3390/jpm13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Preclinical as well as population studies have connected general anesthesia and surgery with a higher risk of abnormal cognitive development, including emotional development. Gut microbiota dysbiosis in neonatal rodents during the perioperative period has been reported, however, the relevance of this to human children who undergo multiple anesthesia for surgeries is unknown. Given the emerging role of altered gut microbes in propagating anxiety and depression, we sought to study whether repeated infantile exposures to surgery and anesthesia affect gut microbiota and anxiety behaviors later in life. (2) Methods: This is a retrospectively matched cohort study comparing 22 pediatric patients of less than 3 years of age with multiple exposures (≥3) to anesthesia for surgeries and 22 healthy controls with no history of exposure to anesthesia. The parent report version of the Spence Children's Anxiety Scale (SCAS-P) was applied to evaluate anxiety in children aged between 6 and 9 years old. Additionally, the gut microbiota profiles of the two groups were compared using 16S rRNA gene sequencing. (3) Results: In behavioral tests, the p-SCAS score of obsessive compulsive disorder and social phobia were significantly higher in children with repeated anesthesia exposure relative to the controls. There were no significant differences between the two groups with respect to panic attacks and agoraphobia, separation anxiety disorder, physical injury fears, generalized anxiety disorder, and the total SCAS-P scores. In the control group, 3 children out of 22 were found to have moderately elevated scores, but none of them had abnormally elevated scores. In the multiple-exposure group, 5 children out of 22 obtained moderately elevated scores, while 2 scored as abnormally elevated. However, no statistically significant differences were detected in the number of children with elevated and abnormally elevated scores. The data show that repeated anesthesia and surgical exposures in children led to long-lasting severe gut microbiota dysbiosis. (4) Conclusions: In this preliminary study, our findings demonstrated that early repeated exposures to anesthesia and surgical predisposes children to anxiety as well as long-term gut microbiota dysbiosis. We should confirm these findings in a larger data population size and with detailed analysis. However, the authors cannot confirm an association between the dysbiosis and anxiety.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xuanxian Xu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Wenzong Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Juntao Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Zuoqing Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Zhong J, Li C, Peng L, Pan Y, Yang Y, Guo Q, Zhong T. Repeated neonatal isoflurane exposure facilitated stress-related fear extinction impairment in male mice and was associated with ΔFosB accumulation in the basolateral amygdala and the hippocampal dentate gyrus. Behav Brain Res 2023; 446:114416. [PMID: 37003493 DOI: 10.1016/j.bbr.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Volatile anesthetics elicit neurodevelopmental toxicity in rodents and primates and lead to more exaggerated anxiety-like behavior in response to future stress. Anxiety and fear are closely correlated and maladaptive fear-associated learning is regarded as the core mechanism underlying anxiety-related disorders. However, little is known about the interaction between early-life anesthetic exposure and future stress and the accompanying effect on fear-associated learning. In the present study, we evaluated the alterations in fear-associated learning (fear acquisition and extinction) occurring in mice receiving repeated neonatal isoflurane exposure and chronic variable stress (CVS) successively through a series of fear conditioning, fear reinforcing, and fear extinction paradigms. The corticosterone (CORT) response during CVS and the immunohistochemical levels of ΔFosB and c-Fos expression in the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG) after the extinction retrieval test were also investigated. The results showed that neonatal isoflurane exposure could increase CORT levels following the first diurnal CVS procedure, but not after completion of the whole CVS paradigm. Neonatal isoflurane exposure exerted a repressive effect on fear acquisition, in contrast to that seen with CVS. Neonatal isoflurane exposure and CVS both exerted suppressive effects on fear extinction and there was a significant synergy between them. Furthermore, neonatal isoflurane exposure facilitated CVS-mediated ΔFosB accumulation in the BLA and the hippocampal DG, which may have been responsible for c-Fos expression deficits and fear extinction impairment. Collectively, these findings contribute to the understanding of the interaction between early-life anesthetic exposure and future stress, as well as the accompanying behavioral alterations.
Collapse
Affiliation(s)
- JiaLing Zhong
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - ChunLin Li
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - LuoFang Peng
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China.
| | - Yudan Pan
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - Yong Yang
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - QuLian Guo
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - Tao Zhong
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China.
| |
Collapse
|
16
|
Pre-Test Manipulation by Intraperitoneal Saline Injection with or without Isoflurane Pre-Treatment Does Not Influence the Outcome of Social Test in Male Mice. STRESSES 2023. [DOI: 10.3390/stresses3010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preclinical studies on rodents should follow the 3R principle minimising the suffering of the animals. To do so, some researchers use inhalation anaesthetic induction even before intraperitoneal injection. However, several studies suggested that both interventions might influence the behaviour of the animals. We aimed to test whether intraperitoneal injection alone or in combination with isoflurane anaesthesia is a preferable treatment method 30 min before a social test. Male C57BL/6 mice were studied using a behavioural test battery comparing three groups (one control group and intraperitoneal saline-treated groups with or without short isoflurane inhalation). Our results confirmed that both interventions had no profound influence on the conventionally measured parameters of social tests (interest in sociability, social discrimination memory, social interaction as well as resident–intruder test) and were not acutely stressful (measured by similar ACTH levels between the groups) not even after repeated administration (similar body weight gain during the one-week observation period). Taking into consideration the possible long-term harmful effect of isoflurane inhalation, we recommend using intraperitoneal injection without it as saline injection did not violate the 3R principle inducing only mild stress.
Collapse
|
17
|
Zhou X, Xu X, Lu D, Chen K, Wu Y, Yang X, Xiong W, Chen X, Lan L, Li W, Shen S, He W, Feng X. Repeated early-life exposure to anaesthesia and surgery causes subsequent anxiety-like behaviour and gut microbiota dysbiosis in juvenile rats. Br J Anaesth 2023; 130:191-201. [PMID: 36088134 PMCID: PMC11541082 DOI: 10.1016/j.bja.2022.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Early exposure to general anaesthetics for multiple surgeries or procedures might negatively affect brain development. Recent studies indicate the importance of microbiota in the development of stress-related behaviours. We determined whether repeated anaesthesia and surgery in early life cause gut microbiota dysbiosis and anxiety-like behaviours in rats. METHODS Sprague Dawley rats received skin incisions under sevoflurane 2.3 vol% three times during the first week of life. After 4 weeks, gut microbiota, anxiety-related behaviours, hippocampal serotonergic activity, and plasma stress hormones were tested. Subsequently, we explored the effect of faecal microbiota transplantation from multiple anaesthesia/surgery exposed rats after administration of a cocktail of antibiotics on anxiety-related behaviours. RESULTS Anxiety-like behaviours were observed in rats with repeated anaesthesia/surgery exposures: In the OF test, multiple anaesthesia/surgery exposures induced a decrease in the time spent in the centre compared to the Control group (P<0.05, t=3.05, df=16, Cohen's d=1.44, effect size=0.58). In the EPM test, rats in Multiple AS group travelled less (P<0.05, t=5.09, df=16, Cohen's d=2.40, effective size=0.77) and spent less time (P<0.05, t=3.58, df=16, Cohen's d=1.69, effect size=0.65) in the open arms when compared to the Control group. Repeated exposure caused severe gut microbiota dysbiosis, with exaggerated stress response (P<0.01, t=4.048, df=16, Cohen's d=-1.91, effect size=-0.69), a significant increase in the hippocampal concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) (P<0.05; for 5-HT: t=3.33, df=18, Cohen's d=-1.49, effect size=-0.60; for 5-HIAA: t=3.12, df=18, Cohen's d=-1.40, effect size=-0.57), and changes in gene expression of serotonergic receptors later in life (for Htr1a: P<0.001, t=4.49, df=16, Cohen's d=2.24, effect size=0.75; for Htr2c: P<0.01, t=3.72, df=16, Cohen's d=1.86, effect size=0.68; for Htr6: P<0.001, t=7.76, df=16, Cohen's d=3.88, effect size=0.89). Faecal microbiota transplantation led to similar anxiety-like behaviours and changes in the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. CONCLUSIONS Gut microbiota dysbiosis caused by early repeated exposure to anaesthesia and surgery affects long-term anxiety emotion behaviours in rats.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
- MGH Centre for Translational Pain Research, Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuanxian Xu
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Dihan Lu
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Keyu Chen
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yan Wu
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyu Yang
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Xiong
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xi Chen
- Department of Anaesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Liangtian Lan
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wenda Li
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- MGH Centre for Translational Pain Research, Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen He
- Department of Geriatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xia Feng
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
18
|
An Update on Preclinical Research in Anesthetic-Induced Developmental Neurotoxicity in Nonhuman Primate and Rodent Models. J Neurosurg Anesthesiol 2023; 35:104-113. [PMID: 36745171 DOI: 10.1097/ana.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Neonatal Isoflurane Exposure in Rats Impairs Short-Term Memory, Cell Viability, and Glutamate Uptake in Slices of the Frontal Cerebral Cortex, But Not the Hippocampus, in Adulthood. Neurotox Res 2022; 40:1924-1936. [PMID: 36441450 DOI: 10.1007/s12640-022-00607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols. In PND8, ex vivo analysis of hippocampal and frontal cortex slices evaluated cell viability and susceptibility to in vitro glutamate challenge. In adult rats, behavioral parameters related to anxiety-like behavior, short-term memory, and locomotor activity (PND60-62) and ex vivo analysis of cell viability, membrane permeability, glutamate uptake, and susceptibility to in vitro glutamate challenge in hippocampal and cortical slices from PND65. A single isoflurane (3%, 2 h) exposure at PND7 did not acutely alter cell viability in cortical and hippocampal slices of infant rats (PND8) per se and did not alter slice susceptibility to in vitro glutamate challenge. In rat's adulthood, behavioral analysis revealed that the neonatal isoflurane exposure did not alter anxiety-like behavior and locomotor activity (open field and rotarod tests). However, isoflurane exposure impaired short-term memory evaluated in the novel object recognition task. Ex vivo analysis of brain slices showed isoflurane neonatal exposure selectively decreased cell viability and glutamate uptake in cortical slices, but it did not alter hippocampal slice viability or glutamate uptake (PND65). Isoflurane exposure did not alter in vitro glutamate-induced neurotoxicity to slices, and isoflurane exposure caused no significant long-term damage to cell membranes in hippocampal or cortical slices. These findings indicate that a single neonatal isoflurane exposure did not promote acute damage; however, it reduced cortical, but not hippocampal, slice viability and glutamate uptake in the adulthood. Additionally, behavioral analysis showed neonatal isoflurane exposure induces short-term recognition memory impairment, consolidating that neonatal exposure to volatile anesthetics may lead to behavioral impairment in the adulthood, although it may damage brain regions differentially.
Collapse
|
20
|
Fehr T, Janssen WG, Park J, Baxter MG. Neonatal exposures to sevoflurane in rhesus monkeys alter synaptic ultrastructure in later life. iScience 2022; 25:105685. [PMID: 36567715 PMCID: PMC9772858 DOI: 10.1016/j.isci.2022.105685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Repeated or prolonged early life exposure to anesthesia is neurotoxic in animals and associated with neurocognitive impairment in later life in humans. We used electron microscopy with unbiased stereological sampling to assess synaptic ultrastructure in dorsolateral prefrontal cortex (dlPFC) and hippocampal CA1 of female and male rhesus monkeys, four years after three 4-h exposures to sevoflurane during the first five postnatal weeks. This allowed us to ascertain long-term consequences of anesthesia exposure without confounding effects of surgery or illness. Synapse areas were reduced in the largest synapses in CA1 and dlPFC, predominantly in perforated spinous synapses in CA1 and nonperforated spinous synapses in dlPFC. Mitochondrial morphology and localization changed subtly in both areas. Synapse areas in CA1 correlated with response to a mild social stressor. Thus, exposure to anesthesia in infancy can cause long-term ultrastructural changes in primates, which may be substrates for long-term alterations in synaptic transmission and behavioral deficits.
Collapse
Affiliation(s)
- Tristan Fehr
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - William G.M. Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janis Park
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA,Corresponding author
| |
Collapse
|
21
|
Xiao A, Feng Y, Yu S, Xu C, Chen J, Wang T, Xiao W. General anesthesia in children and long-term neurodevelopmental deficits: A systematic review. Front Mol Neurosci 2022; 15:972025. [PMID: 36238262 PMCID: PMC9551616 DOI: 10.3389/fnmol.2022.972025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMillions of children experienced surgery procedures requiring general anesthesia (GA). Any potential neurodevelopmental risks of pediatric anesthesia can be a serious public health issue. Various animal studies have provided evidence that commonly used GA induced a variety of morphofunctional alterations in the developing brain of juvenile animals.MethodsWe conducted a systematic review to provide a brief overview of preclinical studies and summarize the existing clinical studies. Comprehensive literature searches of PubMed, EMBASE, CINAHL, OVID Medline, Web of Science, and the Cochrane Library were conducted using the relevant search terms “general anesthesia,” “neurocognitive outcome,” and “children.” We included studies investigating children who were exposed to single or multiple GA before 18, with long-term neurodevelopment outcomes evaluated after the exposure(s).ResultsSeventy-two clinical studies originating from 18 different countries published from 2000 to 2022 are included in this review, most of which are retrospective studies (n = 58). Two-thirds of studies (n = 48) provide evidence of negative neurocognitive effects after GA exposure in children. Neurodevelopmental outcomes are categorized into six domains: academics/achievement, cognition, development/behavior, diagnosis, brain studies, and others. Most studies focusing on children <7 years detected adverse neurocognitive effects following GA exposure, but not all studies consistently supported the prevailing view that younger children were at greater risk than senior ones. More times and longer duration of exposures to GA, and major surgeries may indicate a higher risk of negative outcomes.ConclusionBased on current studies, it is necessary to endeavor to limit the duration and numbers of anesthesia and the dose of anesthetic agents. For future studies, we require cohort studies with rich sources of data and appropriate outcome measures, and carefully designed and adequately powered clinical trials testing plausible interventions in relevant patient populations.
Collapse
Affiliation(s)
- Aoyi Xiao
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Feng
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Yu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Xu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghai Chen
- Department of Hand Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tingting Wang
| | - Weimin Xiao
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weimin Xiao
| |
Collapse
|
22
|
Dong R, Lv P, Han Y, Jiang L, Wang Z, Peng L, Ma Z, Xia T, Zhang B, Gu X. Enhancement of astrocytic gap junctions Connexin43 coupling can improve long-term isoflurane anesthesia-mediated brain network abnormalities and cognitive impairment. CNS Neurosci Ther 2022; 28:2281-2297. [PMID: 36153812 PMCID: PMC9627365 DOI: 10.1111/cns.13974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
AIM Astrocytes are connected by gap junctions Connexin43 (GJs-Cx43) forming an extensive intercellular network and maintain brain homeostasis. Perioperative neurocognitive disorder (PND) occurs frequently after anesthesia/surgery and worsens patient outcome, but the neural circuit mechanisms remain unclear. This study aimed to determine the effects of the GJs-Cx43-mediated astrocytic network on PND and ascertain the underlying neural circuit mechanism. METHODS Male C57BL/6 mice were treated with long-term isoflurane exposure to construct a mouse model of PND. We also exposed primary mouse astrocytes to long-term isoflurane exposure to simulate the conditions of in vivo cognitive dysfunction. Behavioral tests were performed using the Y-maze and fear conditioning (FC) tests. Manganese-enhanced magnetic resonance imaging (MEMRI) and resting-state functional magnetic resonance imaging (rs-fMRI) were used to investigate brain activity and functional connectivity. Western blot and flow cytometry analysis were used to assess protein expression. RESULTS Reconfiguring the astrocytic network by increasing GJs-Cx43 expression can modulate 22 subregions affected by PND in three ways: reversed activation, reversed inhibition, and intensified activation. The brain functional connectivity analysis further suggests that PND is a brain network disorder that includes sleep-wake rhythm-related brain regions, contextual and fear memory-related subregions, the hippocampal-amygdala circuit, the septo-hippocampal circuit, and the entorhinal-hippocampal circuit. Notably, remodeling the astrocytic network by upregulation of GJs-Cx43 can partially reverse the abnormalities in the above circuits. Pathophysiological degeneration in hippocampus is one of the primary hallmarks of PND pathology, and long-term isoflurane anesthesia contributes to oxidative stress and neuroinflammation in the hippocampus. However, promoting the formation of GJs-Cx43 ameliorated cognitive dysfunction induced by long-term isoflurane anesthesia through the attenuation of oxidative stress in hippocampus. CONCLUSION Enhancing GJs-Cx43 coupling can improve brain network abnormalities and cognitive impairment induced by long-term isoflurane anesthesia, its mechanisms might be associated with the regulation of oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Rui Dong
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Pin Lv
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuqiang Han
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Linhao Jiang
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zimo Wang
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Liangyu Peng
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhengliang Ma
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Tianjiao Xia
- Medical SchoolNanjing UniversityNanjingChina,Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Bing Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina,Jiangsu Key Laboratory of Molecular MedicineNanjingChina,Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina,Institute of Brain ScienceNanjing UniversityNanjingChina
| | - Xiaoping Gu
- Department of AnesthesiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
23
|
Ing C, Bellinger DC. Long-term cognitive and behavioral outcomes following early exposure to general anesthetics. Curr Opin Anaesthesiol 2022; 35:442-447. [PMID: 35788121 DOI: 10.1097/aco.0000000000001155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Nearly 100 clinical studies have been published evaluating neurodevelopmental outcomes in children following surgery and anesthesia. These studies have reported mixed results, likely attributable at least in part to significant heterogeneity in their study designs, types and numbers of exposures, patient populations evaluated, and most importantly, the outcomes that were assessed. This review aims to summarize the results from clinical studies evaluating behavioral outcomes in children exposed to surgery and anesthesia. RECENT FINDINGS Children with early exposure to surgery and anesthesia were found to have limited to no differences in intelligence when compared with unexposed children. However, several studies have reported more behavioral problems in children exposed to general anesthesia. An increased incidence of attention-deficit hyperactivity disorder has also been reported in anesthetic exposed children, particularly after multiple exposures. SUMMARY Nearly all clinical studies of anesthetic neurotoxicity are observational in nature, so the associations between anesthetic exposure and behavioral deficits cannot yet be directly attributed to the anesthetic medication. However, the finding of deficits in some neurodevelopmental domains and not others will help guide the selection of appropriate outcomes in future studies of anesthetic neurotoxicity that can further evaluate whether anesthetic medications have an impact on neurodevelopment in children.
Collapse
Affiliation(s)
- Caleb Ing
- Departments of Anesthesiology and Epidemiology, Columbia University Vagelos College of Physicians and Surgeons and Mailman School of Public Health, New York, New York
| | - David C Bellinger
- Departments of Neurology and Psychiatry, Harvard Medical School
- Departments of Neurology and Psychiatry, Boston Children's Hospital
- Department of Environmental Health, Harvard T.H. Can School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Robinson EJ, Lyne TC, Blaise BJ. Safety of general anaesthetics on the developing brain: are we there yet? BJA OPEN 2022; 2:100012. [PMID: 37588272 PMCID: PMC10430845 DOI: 10.1016/j.bjao.2022.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/11/2022] [Indexed: 08/18/2023]
Abstract
Thirty years ago, neurotoxicity induced by general anaesthetics in the developing brain of rodents was observed. In both laboratory-based and clinical studies, many conflicting results have been published over the years, with initial data confirming both histopathological and neurodevelopmental deleterious effects after exposure to general anaesthetics. In more recent years, animal studies using non-human primates and new human cohorts have identified some specific deleterious effects on neurocognition. A clearer pattern of neurotoxicity seems connected to exposure to repeated general anaesthesia. The biochemistry involved in this neurotoxicity has been explored, showing differential effects of anaesthetic drugs between the developing and developed brains. In this narrative review, we start with a comprehensive description of the initial concerning results that led to recommend that any non-essential surgery should be postponed after the age of 3 yr and that research into this subject should be stepped up. We then focus on the neurophysiology of the developing brain under general anaesthesia, explore the biochemistry of the observed neurotoxicity, before summarising the main scientific and clinical reports investigating this issue. We finally discuss the GAS trial, the importance of its results, and some potential limitations that should not undermine their clinical relevance. We finally suggest some key points that could be shared with parents, and a potential research path to investigate the biochemical effects of general anaesthesia, opening up perspectives to understand the neurocognitive effects of repetitive exposures, especially in at-risk children.
Collapse
Affiliation(s)
- Emily J. Robinson
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Tom C. Lyne
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Benjamin J. Blaise
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Paediatric Anaesthetics, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Gao F, Wahl JA, Floyd TF. Anesthesia and neurotoxicity study design, execution, and reporting in the nonhuman primate: A systematic review. Paediatr Anaesth 2022; 32:509-521. [PMID: 35066973 DOI: 10.1111/pan.14401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Concern for a role of anesthesia in neurotoxicity in children originated from neonatal rodent and nonhuman primate (NHP) models, yet prospective clinical studies have largely not supported this concern. The goal of this study was to conduct an objective assessment of published NHP study rigor in design, execution, and reporting. METHODS A MEDLINE search from 2005 to December 2021 was performed. Inclusion criteria included full-length original studies published in English under peer-reviewed journals. We documented experimental parameters on anesthetic dosing, monitoring, vitals, and experimental outcomes. RESULTS Twenty-three manuscripts were included. Critical issues identified in study design included: lack of blinding in data acquisition (57%) and analysis (100%), supratherapeutic (4-12 fold) maintenance dosing in 22% of studies, lack of sample size justification (91%) resulting in a mean (SD) sample size of 6 (3) animals per group. Critical items identified in the conduct and reporting of studies included: documentation of anesthesia provider (0%), electrocardiogram monitoring (35%), arterial monitoring (4%), spontaneous ventilation employed (35%), failed intubations resulting in comingling ventilated and unventilated animals in data analysis, inaccurate reporting of failed intubation, and only 50% reporting on survival. Inconsistencies were noted in drug-related induction of neuroapoptosis and region of occurrence. Further, 67%-100% of behavior outcomes were not significantly different from controls. CONCLUSIONS Important deficits in study design, execution, and reporting were identified in neonatal NHP studies. These results raise concern for the validity and reliability of these studies and may explain in part the divergence from results obtained in human neonates.
Collapse
Affiliation(s)
- Feng Gao
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph A Wahl
- Department of Cell and Molecular Biology, Texas Tech University, Lubbock, Texas, USA
| | - Thomas F Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
26
|
Neurotoxicity Outside the Operating Room: An Evolving Challenge for Pediatricians and Pediatric Subspecialists. Acad Pediatr 2022; 22:193-195. [PMID: 34637932 DOI: 10.1016/j.acap.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
|
27
|
Neudecker V, Perez-Zoghbi JF, Brambrink AM. Does inflammation mediate behavioural alterations in anaesthesia-induced developmental neurotoxicity? Br J Anaesth 2022; 128:602-605. [PMID: 35115157 DOI: 10.1016/j.bja.2021.12.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
Anaesthesia exposure early in life potentially impairs neurobehavioural development. A recent study in the Journal investigated the possibility that progesterone mitigates anaesthesia-induced developmental neurotoxicity in neonatal rats exposed to sevoflurane. The novel findings show that the steroid hormone progesterone protects against development of behavioural alterations caused by sevoflurane. The protective mechanism is proposed to relate to anti-inflammatory properties of progesterone, which brings up important questions regarding the role of inflammation in mediating the neurobehavioural alterations in anaesthesia-induced developmental neurotoxicity. We discuss this mechanism and encourage new research that may clarify the underlying mechanisms of progesterone-induced protection and extend these findings into a translational model.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Abstract
Anesthetic agents disrupt neurodevelopment in animal models, but evidence in humans is mixed. The morphologic and behavioral changes observed across many species predicted that deficits should be seen in humans, but identifying a phenotype of injury in children has been challenging. It is increasingly clear that in children, a brief or single early anesthetic exposure is not associated with deficits in a range of neurodevelopmental outcomes including broad measures of intelligence. Deficits in other domains including behavior, however, are more consistently reported in humans and also reflect findings from nonhuman primates. The possibility that behavioral deficits are a phenotype, as well as the entire concept of anesthetic neurotoxicity in children, remains a source of intense debate. The purpose of this report is to describe consensus and disagreement among experts, summarize preclinical and clinical evidence, suggest pathways for future clinical research, and compare studies of anesthetic agents to other suspected neurotoxins.
Collapse
|
29
|
Cui J, Park J, Ju X, Lee Y, Hong B, Ahn J, Kim YH, Ko Y, Yoon SH, Lim C, Lee SY, Huh SO, Heo JY, Chung W. General Anesthesia During Neurodevelopment Reduces Autistic Behavior in Adult BTBR Mice, a Murine Model of Autism. Front Cell Neurosci 2021; 15:772047. [PMID: 34912193 PMCID: PMC8667765 DOI: 10.3389/fncel.2021.772047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
Preclinical studies suggest that repeated exposure to anesthetics during a critical period of neurodevelopment induces long-term changes in synaptic transmission, plasticity, and behavior. Such changes are of great concern, as similar changes have also been identified in animal models of neurodevelopmental disorders (NDDs) such as autism. Because of overlapping synaptic changes, it is also possible that anesthetic exposures have a more significant effect in individuals diagnosed with NDDs. Thus, we evaluated the effects of early, multiple anesthetic exposures in BTBR mice, an inbred strain that displays autistic behavior. We discovered that three cycles of sevoflurane anesthesia (2.5%, 1 h) with 2-h intervals between each exposure in late postnatal BTBR mice did not aggravate, but instead improved pathophysiological mechanisms involved with autistic behavior. Sevoflurane exposures restored E/I balance (by increasing inhibitory synaptic transmission), and increased mitochondrial respiration and BDNF signaling in BTBR mice. Most importantly, such changes were associated with reduced autistic behavior in BTBR mice, as sociability was increased in the three-chamber test and repetitive behavior was reduced in the self-grooming test. Our results suggest that anesthetic exposures during neurodevelopment may affect individuals diagnosed with NDDs differently.
Collapse
Affiliation(s)
- Jianchen Cui
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Jiho Park
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yulim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Boohwi Hong
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jeonghoon Ahn
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Yoon Hee Kim
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Youngkwon Ko
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seok-Hwa Yoon
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Chaeseong Lim
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sun Yeul Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea.,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
30
|
Anesthesia for Fetal Interventions - An Update. Adv Anesth 2021; 39:269-290. [PMID: 34715979 DOI: 10.1016/j.aan.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Zeiss CJ. Comparative Milestones in Rodent and Human Postnatal Central Nervous System Development. Toxicol Pathol 2021; 49:1368-1373. [PMID: 34569375 DOI: 10.1177/01926233211046933] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Within the substantially different time scales characterizing human and rodent brain development, key developmental processes are remarkably preserved. Shared processes include neurogenesis, myelination, synaptogenesis, and neuronal and synaptic pruning. In general, altricial rodents experience greater central nervous system (CNS) immaturity at birth and accelerated postnatal development compared to humans, in which protracted development of certain processes such as neocortical myelination and synaptic maturation extend into adulthood. Within this generalization, differences in developmental rates of various structures must be understood to accurately model human neurodevelopmental toxicity in rodents. Examples include greater postnatal neurogenesis in rodents, particularly within the dentate gyrus of rats, ongoing generation of neurons in the rodent olfactory bulb, differing time lines of neurotransmitter maturation, and differing time lines of cerebellar development. Comparisons are made to the precocial guinea pig and the long-lived naked mole rat, which, like primates, experiences more advanced CNS development at birth, with more protracted postnatal development. Methods to study various developmental processes are summarized using examples of comparative postnatal injury in humans and rodents.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, 12228Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Long-term evidence of neonatal anaesthesia neurotoxicity linked to behavioural phenotypes in monkeys: where do we go from here? Br J Anaesth 2021; 127:343-345. [PMID: 34272059 DOI: 10.1016/j.bja.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Whether anaesthesia exposure early in life leads to brain damage with long-lasting structural and behavioural consequences in primates has not been conclusively determined. A study in the British Journal of Anaesthesia by Neudecker and colleagues found that 2 yr after early anaesthesia exposure, monkeys exhibited signs of chronic astrogliosis which correlate with behavioural deficits. Given the increasing frequency of exposure to anaesthetics in infancy in humans, clinical trials are greatly needed to understand how sedative/anaesthetic agents may be impacting brain and behaviour development.
Collapse
|
33
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
34
|
Neudecker V, Perez-Zoghbi JF, Martin LD, Dissen GA, Grafe MR, Brambrink AM. Astrogliosis in juvenile non-human primates 2 years after infant anaesthesia exposure. Br J Anaesth 2021; 127:447-457. [PMID: 34266661 DOI: 10.1016/j.bja.2021.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Infant anaesthesia causes acute brain cell apoptosis, and later in life cognitive deficits and behavioural alterations, in non-human primates (NHPs). Various brain injuries and neurodegenerative conditions are characterised by chronic astrocyte activation (astrogliosis). Glial fibrillary acidic protein (GFAP), an astrocyte-specific protein, increases during astrogliosis and remains elevated after an injury. Whether infant anaesthesia is associated with a sustained increase in GFAP is unknown. We hypothesised that GFAP is increased in specific brain areas of NHPs 2 yr after infant anaesthesia, consistent with prior injury. METHODS Eight 6-day-old NHPs per group were exposed to 5 h isoflurane once (1×) or three times (3×), or to room air as a control (Ctr). Two years after exposure, their brains were assessed for GFAP density changes in the primary visual cortex (V1), perirhinal cortex (PRC), hippocampal subiculum, amygdala, and orbitofrontal cortex (OFC). We also assessed concomitant microglia activation and hippocampal neurogenesis. RESULTS Compared with controls, GFAP densities in V1 were increased in exposed groups (Ctr: 0.208 [0.085-0.427], 1×: 0.313 [0.108-0.533], 3×: 0.389 [0.262-0.652]), whereas the density of activated microglia was unchanged. In addition, GFAP densities were increased in the 3× group in the PRC and the subiculum, and in both exposure groups in the amygdala, but there was no increase in the OFC. There were no differences in hippocampal neurogenesis among groups. CONCLUSIONS Two years after infant anaesthesia, NHPs show increased GFAP without concomitant microglia activation in specific brain areas. These long-lasting structural changes in the brain caused by infant anaesthesia exposure may be associated with functional alterations at this age.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Lauren D Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Gregory A Dissen
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
35
|
Jiang M, Tang T, Liang X, Li J, Qiu Y, Liu S, Bian S, Xie Y, Fang F, Cang J. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif 2021; 54:e13042. [PMID: 33955094 PMCID: PMC8168415 DOI: 10.1111/cpr.13042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The effects of general anaesthetics on fetal brain development remain elusive. Radial glial progenitors (RGPs) generate the majority of neurons in developing brains. Here, we evaluated the acute alterations in RGPs after maternal sevoflurane exposure. METHODS Pregnant mice were exposed to 2.5% sevoflurane for 6 hours on gestational day 14.5. Interkinetic nuclear migration (INM) of RGPs in the ventricular zone (VZ) of the fetal brain was evaluated by thymidine analogues labelling. Cell fate of RGP progeny was determined by immunostaining using various neural markers. The Morris water maze (MWM) was used to assess the neurocognitive behaviours of the offspring. RNA sequencing (RNA-Seq) was performed for the potential mechanism, and the potential mechanism validated by quantitative real-time PCR (qPCR), Western blot and rescue experiments. Furthermore, INM was examined in human embryonic stem cell (hESC)-derived 3D cerebral organoids. RESULTS Maternal sevoflurane exposure induced temporary abnormities in INM, and disturbed the cell cycle progression of RGPs in both rodents and cerebral organoids without cell fate alternation. RNA-Seq analysis, qPCR and Western blot showed that the Notch signalling pathway was a potential downstream target. Reactivation of Notch by Jag1 and NICD overexpression rescued the defects in INM. Young adult offspring showed no obvious cognitive impairments in MWM. CONCLUSIONS Maternal sevoflurane exposure during neurogenic period temporarily induced abnormal INM of RGPs by targeting the Notch signalling pathway without inducing long-term effects on RGP progeny cell fate or offspring cognitive behaviours. More importantly, the defects of INM in hESC-derived cerebral organoids provide a novel insight into the effects of general anaesthesia on human brain development.
Collapse
Affiliation(s)
- Ming Jiang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Tianxiang Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xinyue Liang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Juchen Li
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Yue Qiu
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Shiwen Liu
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Bian
- Institute for Regenerative MedicineSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchShanghai East HospitalTongji UniversityShanghaiChina
| | - Yunli Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghaiChina
| | - Fang Fang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Jing Cang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
36
|
Neudecker V, Perez-Zoghbi JF, Brambrink AM. Recent advances in understanding cognitive and behavioural alterations after early-in-life anaesthesia exposure and new mitigation/alternative strategies in preclinical studies. Curr Opin Anaesthesiol 2021; 34:402-408. [DOI: 10.1097/aco.0000000000001016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Jevtovic-Todorovic V. Detrimental effects of general anaesthesia on young primates: are we closer to understanding the link? Br J Anaesth 2021; 126:575-577. [PMID: 33509616 DOI: 10.1016/j.bja.2020.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
|