1
|
Dai SP, Yang CC, Chin Y, Sun WH. T cell death-associated gene 8-mediated distinct signaling pathways modulate the early and late phases of neuropathic pain. iScience 2024; 27:110955. [PMID: 39381739 PMCID: PMC11460492 DOI: 10.1016/j.isci.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injury alters the transduction of nociceptive signaling. The coordination of neurons, glia, and immune cells results in persistent pain and inflammation. T cell death-associated gene 8 (TDAG8), located at nociceptors and immune cells, is involved in inflammatory pain and arthritis-induced pain. Here, we employed TDAG8-deficient mice, pharmacological approaches, and calcium/sodium imaging to elucidate how TDAG8-mediated signaling modulates neuron activities in a mouse model of chronic constriction injury-induced neuropathic pain. We demonstrated that TDAG8 participated alone in mechanical allodynia induced by constriction injury. (1) TDAG8-Nav1.8 signaling in small-diameter isolectin B4-positive [IB4(+)] neurons initiates mechanical allodynia; it also modulated substance P release from IB4(-) neurons to facilitate the development of early mechanical allodynia. (2) TDAG8-mediated signaling increased medium-to large-diameter IB4(-) neuron activity to maintain late mechanical allodynia; it also modulated substance P release in soma to reduce satellite glial number and Nav1.7 expression, thus attenuating chronic mechanical allodynia.
Collapse
Affiliation(s)
- Shih-Ping Dai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chieh Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yin Chin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Wong CE, Liu W, Huang CC, Lee PH, Huang HW, Chang Y, Lo HT, Chen HF, Kuo LC, Lee JS. Sciatic nerve stimulation alleviates neuropathic pain and associated neuroinflammation in the dorsal root ganglia in a rodent model. J Transl Med 2024; 22:770. [PMID: 39143617 PMCID: PMC11325705 DOI: 10.1186/s12967-024-05573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.
Collapse
Affiliation(s)
- Chia-En Wong
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Han-Wei Huang
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hsin-Tien Lo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Fang Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Paula D Bos M, Imad Damaj M, Kabbani N. Proteomic Analysis of Dorsal Root Ganglia in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599888. [PMID: 38979383 PMCID: PMC11230256 DOI: 10.1101/2024.06.20.599888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 60%) of chemotherapy induced peripheral neuropathy. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Alexandru Graur
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Bryan D Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Paula D Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298
| | - M Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
4
|
Bom ADOP, Dias-Soares M, Corrêa RCD, Neves CL, Hosch NG, de Lucena GG, Oliveira CG, Pagano RL, Chacur M, Giorgi R. Molecular Aspects Involved in the Mechanisms of Bothrops jararaca Venom-Induced Hyperalgesia: Participation of NK1 Receptor and Glial Cells. Toxins (Basel) 2024; 16:187. [PMID: 38668612 PMCID: PMC11053884 DOI: 10.3390/toxins16040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.
Collapse
Affiliation(s)
- Ariela de Oliveira Pedro Bom
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
- Postgraduate Program in Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Monique Dias-Soares
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | - Raíssa Cristina Darroz Corrêa
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
- Postgraduate Program in Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Camila Lima Neves
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | | | - Gabriela Gomes de Lucena
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | - Camilla Garcia Oliveira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-900, SP, Brazil; (C.G.O.); (M.C.)
| | - Rosana Lima Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil;
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-900, SP, Brazil; (C.G.O.); (M.C.)
| | - Renata Giorgi
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| |
Collapse
|
5
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
6
|
Wang Y, Li C, Xing J, Zhu Y, Sun M, Yin S, Liu J, Zou L, Liang S, Liu S. Neohesperidin Alleviates the Neuropathic Pain Behavior of Rats by Downregulating the P2X4 Receptor. Neurochem Res 2023; 48:781-790. [PMID: 36331667 DOI: 10.1007/s11064-022-03805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Neuropathic pain (NP) is a type of chronic pain affecting 6-8% of human health as no effective drug exists. The purinergic 2X4 receptor (P2X4R) is involved in NP. Neohesperidin (NH) is a dihydroflavonoside compound, which has anti-inflammatory and antioxidative properties. This study aimed to investigate whether NH has an effect on P2X4R-mediated NP induced by chronic constriction injury (CCI) of the sciatic nerve in rats. In this study, the CCI rat model was established to observe the changes of pain behaviors, P2X4R, and satellite glial cells (SGCs) activation in dorsal root ganglion (DRG) after NH treatment by using RT-PCR, immunofluorescence double labeling and Western blotting. Our results showed CCI rats had mechanical and thermal hyperalgesia with an increased level of P2X4R. Furthermore, SGCs were activated as indicated by increased expression of glial fibrillary acidic protein and increased tumor necrosis factor-alpha receptor 1and interleukin-1β. In addition, phosphorylated extracellular regulated protein kinases and interferon regulatory factor 5 in CCI rats increased. After NH treatment in CCI rats, the levels of above protein decreased, and the pain reduced. Overall, NH can markedly alleviate NP by reducing P2X4R expression and SGCs activation in DRG.
Collapse
Affiliation(s)
- Yueying Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Chenxi Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Jingming Xing
- Department of Basical Medicine, Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yan Zhu
- Department of Endocrine, The First Hospital of Nanchang, Nanchang, People's Republic of China
| | - Minghao Sun
- Department of Clinical Medicine, The Second Clinical Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Sui Yin
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Jianming Liu
- Department of Pharmacology, Pharmacy School of Nanchang University, Nanchang, People's Republic of China
| | - Lifang Zou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
7
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
8
|
Pozzi E, Ballarini E, Rodriguez-Menendez V, Canta A, Chiorazzi A, Monza L, Bossi M, Alberti P, Malacrida A, Meregalli C, Scuteri A, Cavaletti G, Carozzi VA. Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity. TOXICS 2023; 11:93. [PMID: 36850969 PMCID: PMC9961471 DOI: 10.3390/toxics11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Elisa Ballarini
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Annalisa Canta
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Alessia Chiorazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Laura Monza
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Mario Bossi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Alessio Malacrida
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Cristina Meregalli
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Arianna Scuteri
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Valentina Alda Carozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| |
Collapse
|
9
|
Graham RD, Sankarasubramanian V, Lempka SF. Dorsal Root Ganglion Stimulation for Chronic Pain: Hypothesized Mechanisms of Action. THE JOURNAL OF PAIN 2022; 23:196-211. [PMID: 34425252 PMCID: PMC8943693 DOI: 10.1016/j.jpain.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Dorsal root ganglion stimulation (DRGS) is a neuromodulation therapy for chronic pain that is refractory to conventional medical management. Currently, the mechanisms of action of DRGS-induced pain relief are unknown, precluding both our understanding of why DRGS fails to provide pain relief to some patients and the design of neurostimulation technologies that directly target these mechanisms to maximize pain relief in all patients. Due to the heterogeneity of sensory neurons in the dorsal root ganglion (DRG), the analgesic mechanisms could be attributed to the modulation of one or many cell types within the DRG and the numerous brain regions that process sensory information. Here, we summarize the leading hypotheses of the mechanisms of DRGS-induced analgesia, and propose areas of future study that will be vital to improving the clinical implementation of DRGS. PERSPECTIVE: This article synthesizes the evidence supporting the current hypotheses of the mechanisms of action of DRGS for chronic pain and suggests avenues for future interdisciplinary research which will be critical to fully elucidate the analgesic mechanisms of the therapy.
Collapse
Affiliation(s)
- Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States,Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, United States,Corresponding author: Scott F. Lempka, PhD, Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Road, NCRC 14-184, Ann Arbor, MI 48109-2800,
| |
Collapse
|
10
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
11
|
Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of CC Chemokine Receptor Type 3 Diminishes Pain and Enhances Opioid Analgesic Potency in a Model of Neuropathic Pain. Front Immunol 2021; 12:781310. [PMID: 34795678 PMCID: PMC8593225 DOI: 10.3389/fimmu.2021.781310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Neuropathic pain is a serious clinical issue, and its treatment remains a challenge in contemporary medicine. Thus, dynamic development in the area of animal and clinical studies has been observed. The mechanisms of neuropathic pain are still not fully understood; therefore, studies investigating these mechanisms are extremely important. However, much evidence indicates that changes in the activation and infiltration of immune cells cause the release of pronociceptive cytokines and contribute to neuropathic pain development and maintenance. Moreover, these changes are associated with low efficacy of opioids used to treat neuropathy. To date, the role of CC chemokine receptor type 3 (CCR3) in nociception has not been studied. Similarly, little is known about its endogenous ligands (C-C motif ligand; CCL), namely, CCL5, CCL7, CCL11, CCL24, CCL26, and CCL28. Our research showed that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with upregulation of CCL7 and CCL11 in the spinal cord and dorsal root ganglia (DRG). Moreover, our results provide the first evidence that single and repeated intrathecal administration of the CCR3 antagonist SB328437 diminishes mechanical and thermal hypersensitivity. Additionally, repeated administration enhances the analgesic properties of morphine and buprenorphine following nerve injury. Simultaneously, the injection of SB328437 reduces the protein levels of some pronociceptive cytokines, such as IL-6, CCL7, and CCL11, in parallel with a reduction in the activation and influx of GFAP-, CD4- and MPO-positive cells in the spinal cord and/or DRG. Moreover, we have shown for the first time that an inhibitor of myeloperoxidase-4-aminobenzoic hydrazide may relieve pain and simultaneously enhance morphine and buprenorphine efficacy. The obtained results indicate the important role of CCR3 and its modulation in neuropathic pain treatment and suggest that it represents an interesting target for future investigations.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
12
|
Lu HJ, Fu YY, Wei QQ, Zhang ZJ. Neuroinflammation in HIV-Related Neuropathic Pain. Front Pharmacol 2021; 12:653852. [PMID: 33959022 PMCID: PMC8093869 DOI: 10.3389/fphar.2021.653852] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Yuan-Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
de Oliveira VT, Ferrara-Jr JI, Matielo HA, da Silva Alves A, Britto LR, Aranha ACC, Dale CS. Involvement of substance P, osteopontin and satellite glial cells on photobiomodulation-induced antinociceptive effect in an experimental model of dentin hypersensitivity. Lasers Med Sci 2021; 36:1297-1305. [PMID: 33452567 DOI: 10.1007/s10103-021-03246-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
The aim of this work was to investigate the involvement of substance P (SP), osteopontin (OPN), and satellite glial cells (SGC) on photobiomodulation-induced (PBM) antinociceptive effect in an experimental model of dentin hypersensitivity (DH). Rats ingested isotonic drink (ID, pH 2.87) for 45 consecutive days and after this period received PBM irradiation at λ660 nm or λ808 nm (1 J, 3.5 J/cm2, 100 mW, 10 s, 0.028 cm2, continuous wave, 3 consecutive daily sessions), and were evaluated for nociceptive behavior 24, 48, 72 h, and 14 days after laser treatments. ID ingestion induced an increase on thermal sensitivity of DH characteristics in rats that was completely reversed by PBM treatment at both 660 and 808 nm. Immunohistochemical analysis revealed increased SP expression at both dentin-pulp complex (DPC) and trigeminal ganglia (TG) of DH-rats which did not occur in PBM groups by PBM treatment. Also, the increase of glial fibrillary acidic protein (GFAP) observed in the TG of DH-rats was also reversed by PBM treatment. Finally, PBM at both 660 and 808 nm increased OPN expression in the dentin-pulp complex of DH-rats after 14 days of PBM treatment. All in all, this data demonstrates that PBM reverses nociception in a DH experimental model by inhibiting neurogenic inflammation and inducing a regenerative response.
Collapse
Affiliation(s)
- Victhor Teixeira de Oliveira
- Department of Anatomy, Laboratory of Neuromodulation of Experimental Pain, University of São Paulo, Av Lineu Prestes 2415, ICB III, São Paulo, 05508-000, Brazil
| | - João Ignácio Ferrara-Jr
- Department of Anatomy, Laboratory of Neuromodulation of Experimental Pain, University of São Paulo, Av Lineu Prestes 2415, ICB III, São Paulo, 05508-000, Brazil
| | - Heloísa Alonso Matielo
- Department of Anatomy, Laboratory of Neuromodulation of Experimental Pain, University of São Paulo, Av Lineu Prestes 2415, ICB III, São Paulo, 05508-000, Brazil
| | - Adilson da Silva Alves
- Department of Physiology, Laboratory of Cellular Neurobiology, University of São Paulo, Av Lineu Prestes 1524, ICB I, São Paulo, 05508-000, Brazil
| | - Luiz Roberto Britto
- Department of Physiology, Laboratory of Cellular Neurobiology, University of São Paulo, Av Lineu Prestes 1524, ICB I, São Paulo, 05508-000, Brazil
| | - Ana Cecilia Corrêa Aranha
- Department of Restorative Dentistry, School of Dentistry, Special Laboratory of Lasers in Dentistry (LELO), University of São Paulo, Av. Prof. Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Camila Squarzoni Dale
- Department of Anatomy, Laboratory of Neuromodulation of Experimental Pain, University of São Paulo, Av Lineu Prestes 2415, ICB III, São Paulo, 05508-000, Brazil.
| |
Collapse
|
14
|
Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cell Dev Biol Anim 2021; 57:191-206. [PMID: 33438114 PMCID: PMC7802613 DOI: 10.1007/s11626-020-00532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.
Collapse
|
15
|
Wang M, Cai X, Wang Y, Li S, Wang N, Sun R, Xing J, Liang S, Liu S. Astragalin Alleviates Neuropathic Pain by Suppressing P2X4-Mediated Signaling in the Dorsal Root Ganglia of Rats. Front Neurosci 2021; 14:570831. [PMID: 33505232 PMCID: PMC7829479 DOI: 10.3389/fnins.2020.570831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023] Open
Abstract
Neurologic damage often leads to neuropathic pain, for which there are no effective treatments owing to its complex pathogenesis. The purinergic receptor P2X4 is closely associated with neuropathic pain. Astragalin (AST), a compound that is used in traditional Chinese medicine, has protective effects against allergic dermatitis and neuronal injury, but its mechanism of action is not well understood. The present study investigated whether AST can alleviate neuropathic pain in a rat model established by chronic constriction injury (CCI) to the sciatic nerve. The model rats exhibited pain behavior and showed increased expression of P2X4 and the activated satellite glial cell (SGC) marker glial fibrillary acidic protein in dorsal root ganglia (DRG). AST treatment partly abrogated the upregulation of P2X4, inhibited SGC activation, and alleviated pain behavior in CCI rats; it also suppressed ATP-activated currents in HEK293 cells overexpressing P2X4. These data demonstrate that AST relieves neuropathic pain by inhibiting P2X4 and SGC activation in DRG, highlighting its therapeutic potential for clinical pain management.
Collapse
Affiliation(s)
- Mengke Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Xia Cai
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueying Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Shizhen Li
- Undergraduate Student of the Second Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Na Wang
- Undergraduate Student of the Second Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Rui Sun
- Undergraduate Student of the Anesthesiology Department, Medical School of Nanchang University, Nanchang, China
| | - Jingming Xing
- Undergraduate Student of the Basic Medical Science Department, Medical School of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Somaza S, Montilla EM. Novel theory about radiosurgery's action mechanisms on trigeminal ganglion for idiopathic trigeminal neuralgia: Role of the satellite glial cells. Surg Neurol Int 2020; 11:412. [PMID: 33365175 PMCID: PMC7749945 DOI: 10.25259/sni_484_2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There are many theories about the cause of trigeminal neuralgia (TN). None of them satisfactorily explains how demyelination alone through the ephaptic mechanism can contribute to the development of the TN crisis. The main characteristic of TN pain is its dynamic nature, which is difficult to explain based only on anatomical findings. With these antecedents, the exact mechanism by which radiosurgery produces pain relief in TN is unknown. METHODS It is based on the trigeminal ganglion (TG) cytoarchitecture and the pathophysiological findings observed after an injury to a trigeminal branch. TG seems to have a predominant role given its cellular structure. The neuronal component in sensory ganglia is generally surrounded by a single layer of satellite glial cells (SGC), which forms a sheath around each body cell. There is increasing evidence that SGCs play a key role in nociception. This depends on their ability to influence the neuronal excitability that occurs in conditions of neuropathic and inflammatory pain; contributing to both the generation and maintenance of pain. RESULTS We have already published the beneficial effects of radiosurgery on the TG for the treatment of idiopathic TN and secondary to vertebrobasilar ectasia. Now, we are investigating the functioning of the TG and how radiosurgery could act on the SGC, deactivating them, and contributing to the decrease or disappearance of the painful condition. CONCLUSION We are postulating a theory on how radiosurgery in TG produces changes in the SGC, with implications in the pathological mechanisms initiated by the alteration caused in the neuron after a nerve injury.
Collapse
Affiliation(s)
- Salvador Somaza
- Department of Neurosurgery, Centro Diagnostico Docente Las Mercedes, Hospital de Clinicas Caracas
| | - Eglee M. Montilla
- Department of Radiation Oncologist Radiation Oncology, Centro Diagnostico Docente Las Mercedes, Caracas, Miranda, Venezuela
| |
Collapse
|
17
|
Rezq S, Alsemeh AE, D'Elia L, El-Shazly AM, Monti DM, Sobeh M, Mahmoud MF. Thymus algeriensis and Thymus fontanesii exert neuroprotective effect against chronic constriction injury-induced neuropathic pain in rats. Sci Rep 2020; 10:20559. [PMID: 33239680 PMCID: PMC7688974 DOI: 10.1038/s41598-020-77424-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/04/2020] [Indexed: 11/09/2022] Open
Abstract
We have previously demonstrated that the Thymus algeriensis and Thymus fontanesii extracts have powerful anti-inflammatory, antipyretic, and analgesic effects against acute pain models. We profiled their chemical composition and found many phenolic acids, flavonoids, and phenolic diterpenes. In this work, we investigated their antioxidant properties on HaCaT cells exposed to UVA-induced oxidative stress and examined their effects against chronic neuropathic pain and the underlying mechanisms. Through a rat chronic constriction injury (CCI) model, we induced chronic neuropathic pain by placing 4 loose ligatures around the right sciatic nerve for 14 days. Thermal and mechanical hyperalgesia in addition to cold and dynamic allodynia were tested on the day before surgery and on the 7th and 14th post-surgery days. Key markers of the nitrosative and oxidative stresses, in addition to markers of inflammation, were measured at day 14 post surgery. Histopathological examination and immunostaining of both synaptophysin and caspase-3 of sciatic nerve and brain stem were also performed. Results of this study showed that T. algeriensis extract suppresses UVA oxidative stress in HaCaT cells via activation of the Nrf-2 pathway. Both extracts attenuated hyperalgesia and allodynia at 7- and 14-days post-surgery with more prominent effects at day 14 of surgery. Their protective effects against neuropathic pain were mediated by inhibiting NOX-1, iNOS, by increasing the enzyme activity of catalase, and inhibition of inflammatory mediators, NF-κB, TNF-α, lipoxygenase, COX-2 enzymes, and PGE2. Furthermore, they improved deleterious structural changes of the brainstem and sciatic nerve. They also attenuated the increased caspase-3 and synaptophysin. The data indicate that both extracts have neuroprotective effects against chronic constriction injury-induced neuropathic pain. The observed protective effects are partially mediated through attenuation of oxidative and nitrosative stress and suppression of both neuroinflammation and neuronal apoptosis, suggesting substantial activities of both extracts in amelioration of painful peripheral neuropathy.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, 43150, Ben-Guerir, Morocco.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
18
|
Nakagawa Y, Yamada S. A novel hypothesis on metal dyshomeostasis and mitochondrial dysfunction in amyotrophic lateral sclerosis: Potential pathogenetic mechanism and therapeutic implications. Eur J Pharmacol 2020; 892:173737. [PMID: 33220280 DOI: 10.1016/j.ejphar.2020.173737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor dysfunctions resulting from the loss of upper (UMNs) and lower (LMNs) motor neurons. While ALS symptoms are coincidental with pathological changes in LMNs and UMNs, the causal relationship between the two is unclear. For example, research on the extra-motor symptoms associated with this condition suggests that an imbalance of metals, including copper, zinc, iron, and manganese, is initially induced in the sensory ganglia due to a malfunction of metal binding proteins and transporters. It is proposed that the resultant metal dyshomeostasis may promote mitochondrial dysfunction in the satellite glial cells of these sensory ganglia, causing sensory neuron disturbances and sensory symptoms. Sensory neuron hyperactivation can result in LMN impairments, while metal dyshomeostasis in spinal cord and brain stem parenchyma induces mitochondrial dysfunction in LMNs and UMNs. These events could prompt intracellular calcium dyshomeostasis, pathological TDP-43 formation, and reactive microglia with neuroinflammation, which in turn activate the apoptosis signaling pathways within the LMNs and UMNs. Our model suggests that the degeneration of LMNs and UMNs is incidental to the metal-induced changes in the spinal cord and brain stem. Over time psychiatric symptoms may appear as the metal dyshomeostasis and mitochondrial dysfunction affect other brain regions, including the reticular formation, hippocampus, and prefrontal cortex. It is proposed that metal dyshomeostasis in combination with mitochondrial dysfunction could be the underlying mechanism responsible for the initiation and progression of the pathological changes associated with both the motor and extra-motor symptoms of ALS.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
19
|
Liang H, Hu H, Shan D, Lyu J, Yan X, Wang Y, Jian F, Li X, Lai W, Long H. CGRP Modulates Orofacial Pain through Mediating Neuron-Glia Crosstalk. J Dent Res 2020; 100:98-105. [PMID: 32853530 DOI: 10.1177/0022034520950296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) plays a crucial role in the modulation of orofacial pain, and we hypothesized that CGRP mediated a neuron-glia crosstalk in orofacial pain. The objective of this study was to elucidate the mechanisms whereby CGRP mediated trigeminal neuron-glia crosstalk in modulating orofacial pain. Orofacial pain was elicited by ligating closed-coil springs between incisors and molars. Trigeminal neurons and satellite glial cells (SGCs) were cultured for mechanistic exploration. Gene and protein expression were determined through immunostaining, polymerase chain reaction, and Western blot. Orofacial pain was evaluated through the rat grimace scale. Our results revealed that the expressions of CGRP were elevated in both trigeminal neurons and SGCs following the induction of orofacial pain. Intraganglionic administration of CGRP and olcegepant exacerbated and alleviated orofacial pain, respectively. The knockdown of CGRP through viral vector-mediated RNA interference was able to downregulate CGRP expressions in both neurons and SGCs and to alleviate orofacial pain. CGRP upregulated the expression of inducible nitric oxide synthase through the p38 signaling pathway in cultured SGCs. In turn, L-arginine (nitric oxide donor) was able to enhance orofacial pain by upregulating CGRP expressions in vivo. In cultured trigeminal neurons, L-arginine upregulated the expression of CGRP, and this effect was diminished by cilnidipine (N-type calcium channel blocker) while not by mibefradil (L-type calcium channel blocker). In conclusion, CGRP modulated orofacial pain through upregulating the expression of nitric oxide through the p38 signaling pathway in SGCs, and the resulting nitric oxide in turn stimulated CGRP expression through N-type calcium channel in neurons, building a CGRP-mediated positive-feedback neuron-glia crosstalk.
Collapse
Affiliation(s)
- H Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, China
| | - H Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D Shan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Lyu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Yan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Jian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Graham RD, Bruns TM, Duan B, Lempka SF. The Effect of Clinically Controllable Factors on Neural Activation During Dorsal Root Ganglion Stimulation. Neuromodulation 2020; 24:655-671. [PMID: 32583523 DOI: 10.1111/ner.13211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Dorsal root ganglion stimulation (DRGS) is an effective therapy for chronic pain, though its mechanisms of action are unknown. Currently, we do not understand how clinically controllable parameters (e.g., electrode position, stimulus pulse width) affect the direct neural response to DRGS. Therefore, the goal of this study was to utilize a computational modeling approach to characterize how varying clinically controllable parameters changed neural activation profiles during DRGS. MATERIALS AND METHODS We coupled a finite element model of a human L5 DRG to multicompartment models of primary sensory neurons (i.e., Aα-, Aβ-, Aδ-, and C-neurons). We calculated the stimulation amplitudes necessary to elicit one or more action potentials in each neuron, and examined how neural activation profiles were affected by varying clinically controllable parameters. RESULTS In general, DRGS predominantly activated large myelinated Aα- and Aβ-neurons. Shifting the electrode more than 2 mm away from the ganglion abolished most DRGS-induced neural activation. Increasing the stimulus pulse width to 500 μs or greater increased the number of activated Aδ-neurons, while shorter pulse widths typically only activated Aα- and Aβ-neurons. Placing a cathode near a nerve root, or an anode near the ganglion body, maximized Aβ-mechanoreceptor activation. Guarded active contact configurations did not activate more Aβ-mechanoreceptors than conventional bipolar configurations. CONCLUSIONS Our results suggest that DRGS applied with stimulation parameters within typical clinical ranges predominantly activates Aβ-mechanoreceptors. In general, varying clinically controllable parameters affects the number of Aβ-mechanoreceptors activated, although longer pulse widths can increase Aδ-neuron activation. Our data support several Neuromodulation Appropriateness Consensus Committee guidelines on the clinical implementation of DRGS.
Collapse
Affiliation(s)
- Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Bo Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Dai SP, Hsieh WS, Chen CH, Lu YH, Huang HS, Chang DM, Huang SL, Sun WH. TDAG8 deficiency reduces satellite glial number and pro-inflammatory macrophage number to relieve rheumatoid arthritis disease severity and chronic pain. J Neuroinflammation 2020; 17:170. [PMID: 32471455 PMCID: PMC7257243 DOI: 10.1186/s12974-020-01851-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 05/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background The autoimmune disease rheumatoid arthritis (RA) affects approximately 1% of the global population. RA is characterized with chronic joint inflammation and often associated with chronic pain. The imbalance of pro-inflammatory and anti-inflammatory macrophages is a feature of RA progression. Glial cells affecting neuronal sensitivity at both peripheral and central levels may also be important for RA progression and associated pain. Genetic variants in the T cell death-associated gene 8 (TDAG8) locus are found to associate with spondyloarthritis. TDAG8 was also found involved in RA disease progression and associated hyperalgesia in the RA mouse model. However, its modulation in RA remains unclear. Methods To address this question, we intra-articularly injected complete Freund’s adjuvant (CFA) into TDAG8+/+, TDAG8−/− or wild-type mice, followed by pain behavioral tests. Joints and dorsal root ganglia were taken, sectioned, and stained with antibodies to observe the number of immune cells, macrophages, and satellite glial cells (SGCs). For compound treatments, compounds were intraperitoneally or orally administered weekly for 9 consecutive weeks after CFA injection. Results We demonstrated that TDAG8 deletion slightly reduced RA pain in the early phase but dramatically attenuated RA progression and pain in the chronic phase (> 7 weeks). TDAG8 deletion inhibited an increase in SGC number and inhibition of SGC function attenuated chronic phase of RA pain, so TDAG8 could regulate SGC number to control chronic pain. TDAG8 deletion also reduced M1 pro-inflammatory macrophage number at 12 weeks, contributing to the attenuation of chronic RA pain. Such results were further confirmed by using salicylanilide derivatives, CCL-2d or LCC-09, to suppress TDAG8 expression and function. Conclusions This study demonstrates that TDAG8 deletion reduced SGC and M1 macrophage number to relieve RA disease severity and associated chronic pain. M1 macrophages are critical for the development and maintenance of RA disease and pain, but glial activation is also required for the chronic phase of RA pain.
Collapse
Affiliation(s)
- Shih-Ping Dai
- Department of Life Sciences, National Central University, Jhongli, Taoyuan City, Taiwan
| | - Wei-Shan Hsieh
- Department of Life Sciences, National Central University, Jhongli, Taoyuan City, Taiwan
| | - Chien-Hua Chen
- Department of Life Sciences, National Central University, Jhongli, Taoyuan City, Taiwan
| | - Yueh-Hao Lu
- Department of Life Sciences, National Central University, Jhongli, Taoyuan City, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Der-Ming Chang
- Division of Allergy, Immunology, Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences, National Central University, Jhongli, Taoyuan City, Taiwan. .,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
22
|
Neves AF, Farias FH, de Magalhães SF, Araldi D, Pagliusi M, Tambeli CH, Sartori CR, Lotufo CMDC, Parada CA. Peripheral Inflammatory Hyperalgesia Depends on P2X7 Receptors in Satellite Glial Cells. Front Physiol 2020; 11:473. [PMID: 32523543 PMCID: PMC7261868 DOI: 10.3389/fphys.2020.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral inflammatory hyperalgesia depends on the sensitization of primary nociceptive neurons. Inflammation drives molecular alterations not only locally but also in the dorsal root ganglion (DRG) where interleukin-1 beta (IL-1β) and purinoceptors are upregulated. Activation of the P2X7 purinoceptors by ATP is essential for IL-1β maturation and release. At the DRG, P2X7R are expressed by satellite glial cells (SGCs) surrounding sensory neurons soma. Although SGCs have no projections outside the sensory ganglia these cells affect pain signaling through intercellular communication. Therefore, here we investigated whether activation of P2X7R by ATP and the subsequent release of IL-1β in DRG participate in peripheral inflammatory hyperalgesia. Immunofluorescent images confirmed the expression of P2X7R and IL-1β in SGCs of the DRG. The function of P2X7R was then verified using a selective antagonist, A-740003, or antisense for P2X7R administered in the L5-DRG. Inflammation was induced by CFA, carrageenan, IL-1β, or PGE2 administered in rat's hind paw. Blockage of P2X7R at the DRG reduced the mechanical hyperalgesia induced by CFA, and prevented the mechanical hyperalgesia induced by carrageenan or IL-1β, but not PGE2. It was also found an increase in P2X7 mRNA expression at the DRG after peripheral inflammation. IL-1β production was also increased by inflammatory stimuli in vivo and in vitro, using SGC-enriched cultures stimulated with LPS. In LPS-stimulated cultures, activation of P2X7R by BzATP induced the release of IL-1β, which was blocked by A-740003. In summary, our data suggest that peripheral inflammation leads to the activation of P2X7R expressed by SGCs at the DRG. Then, ATP-induced activation of P2X7R mediates the release of IL-1β from SGC. This evidence places the SGC as an active player in the establishment of peripheral inflammatory hyperalgesia and highlights the importance of the events in DRG for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Amanda Ferreira Neves
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Felipe Hertzing Farias
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Dionéia Araldi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Carlos Amílcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
Matsuka Y, Afroz S, Dalanon JC, Iwasa T, Waskitho A, Oshima M. The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion. Neurosci Biobehav Rev 2020; 108:393-399. [DOI: 10.1016/j.neubiorev.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
|
24
|
Zhao S, Zhou Y, Fan Y, Gong Y, Yang J, Yang R, Li L, Zou L, Xu X, Li G, Liu S, Zhang C, Li G, Liang S. Involvement of purinergic 2X 4 receptor in glycoprotein 120-induced pyroptosis in dorsal root ganglia. J Neurochem 2019; 151:584-594. [PMID: 31418825 DOI: 10.1111/jnc.14850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
Pyroptosis is a type of programmed cell death, displaying caspase-1-dependent and pro-inflammatory features. Purinergic 2X4 (P2X4 ) receptor activation in response to high-adenosine triphosphate release can induce inflammation. Envelope glycoprotein 120 (gp120) of human immunodeficiency virus type 1 is considered one of the primary pathogens leading to neuronal injury. In this study, we investigated the possible role of P2X4 receptor activation in gp120-triggered pyroptosis in cultured satellite glial cells (SGCs) of rat dorsal root ganglia (DRG). MTS assay, TdT-mediated dUTP Nick-end labeling assay, real-time RT-PCR, and western blotting et al. methods were used. The results indicated that the expression of P2X4 receptor in SGCs of DRG was up-regulated upon cultured with gp120 for 24 h. The highest decrease in viability of SGCs due to gp120 treatment was accompanied by marked increases of positive pyroptosis cells and cellular lactate dehydrogenase release, elevated levels of interleukin-1β, interleukin-18, active caspase-1 and NOD-like receptor family, pyrin domain containing 1, and enhanced phosphorylation of p38MAPK. These abnormal changes because of gp120 were significantly inhibited and cell viability was markedly improved when SGCs of DRG were treated with short hairpin RNAs targeting P2X4 receptor. Our data suggest that silencing of P2X4 receptor may act effectively against gp120-induced pyroptosis mediated by the activation of NOD-like receptor family, pyrin domain containing 1 inflammasome and caspase-1 signaling in SGCs of DRG.
Collapse
Affiliation(s)
- Shanhong Zhao
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Yanhong Zhou
- Undergraduate student of Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yang Fan
- Undergraduate student of Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yingxin Gong
- Undergraduate student of Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jingjian Yang
- Undergraduate student of Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Lifang Zou
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Chunping Zhang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Guodong Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
25
|
Somaza S, Montilla EM, Mora MC. Gamma knife radiosurgery on the trigeminal ganglion for idiopathic trigeminal neuralgia: Results and review of the literature. Surg Neurol Int 2019; 10:89. [PMID: 31528427 PMCID: PMC6744789 DOI: 10.25259/sni-134-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/21/2019] [Indexed: 11/04/2022] Open
Abstract
Background In the present study, we evaluate the results of gamma knife surgery (GKS) for the treatment of trigeminal neuralgia (TN) using the trigeminal ganglion (TG') and the adjacent fibers of trigeminal nerve as a target. Methods From February 2013 to July 2017, we treated 30 cases of TN with GKS. In this group, all patients had an idiopathic typical TN. The radiosurgical target was conformed through two isocenters, 8 and 4 mm at the cavum de Meckel. The maximum dose was 86 Gy using the isodose line of 50%. The median age of the patients was 58.5 (range 28-94) years old, and the median time from diagnosis to GKS was 94 months (range 13-480 months). The median follow-up was 28.5 (range 12-49) months. Clinical outcomes were analyzed. Univariate and multivariate analyses were performed to evaluate factors that correlated with a favorable, pain-free outcome. Results The mean time to relief of pain was 7 (range 1-40) days. The percentage of patients with significant pain relief was 93.3%. Relapse in pain was noted in four patients at 3, 16, 19, and 36 months. Nine patients were treated in acute status. Fourteen patients had intense pain between 1 and 7 days before the procedure. Among those with the recurrence of their symptoms, one patient had a microvascular decompression. Multivariate regression adjusted for age and sex suggests that, by 40 months, 70% of the patients treated with radiosurgery will remain pain free. At the last follow-up, GKS resulted in pain relief in 86.6% of patients. Our analysis suggests that, using this technique, we can expect that approximately 70% of patients with TN will have some degree of pain improvement at 3 years' post radiosurgery. Conclusions GKS on TG appears to be a reasonable treatment option with short latency period, minor collateral effects, and high percentage of pain control. The mechanism of action of radiosurgery could be related to the inactivation of the satellite glial cells in the TG.
Collapse
Affiliation(s)
- Salvador Somaza
- Departments of Neurosurgery, Centro Diagnostico Docente Las Mercedes, Hospital de Clinicas Caracas, Caracas, Venezuela
| | - Eglee M Montilla
- Departments of Radiation Oncology, Centro Diagnostico Docente Las Mercedes, Hospital de Clinicas Caracas, Caracas, Venezuela
| | - Maria C Mora
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, United States
| |
Collapse
|
26
|
Zou L, Yu K, Fan Y, Cao S, Liu S, Shi L, Li L, Yuan H, Yang R, Yi Z, Gao Y, Li G, Greffrath W, Treede RD, Li M, Xu H, Zhang C, Liang S. The Inhibition by Guanfu Base A of Neuropathic Pain Mediated by P2Y 12 Receptor in Dorsal Root Ganglia. ACS Chem Neurosci 2019; 10:1318-1325. [PMID: 30475578 DOI: 10.1021/acschemneuro.8b00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) is involved in mechanical and thermal hyperalgesia. The upregulated P2Y12 receptor expressed in SGCs of the DRG participates in the nociceptive transmission of neuropathic pain. Guanfu base A (GFA) has been reported to exhibit antiarrhythmic and anti-inflammatory effects. In this study, we explored the effects of GFA on P2Y12 receptor-mediated mechanical and thermal hyperalgesia in chronic constriction injury (CCI) rats. Sprague-Dawley rats were randomly divided into sham operation group (Sham), CCI operation group (CCI), CCI rats treated with guanfu base A group (CCI + GFA) and control rats treated with GFA group (Ctrl + GFA). Mechanical withdrawal threshold and thermal withdrawal latency were measured. P2Y12 expression in L4-L6 dorsal root ganglion (DRG) was detected by quantitative real-time PCR and Western blot. After CCI treatment, mechanical and thermal hyperalgesia and the expression values of P2Y12 receptor mRNA and protein in DRG were increased. Dual-labeling immunofluorescence showed that the coexpression of P2Y12 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to sham rats. GFA relieved mechanical and thermal hyperalgesia in the CCI rats, decreased the expression of P2Y12 mRNA and protein and phosphorylation of p38 MAPK in the DRG, and increased the ADP-downregulated cAMP concentrations in HEK293 cells transfected with P2Y12 plasmid. After CCI rats were treated with GFA, the coexpression of P2Y12 receptor and GFAP in the DRG was significantly decreased compared to the untreated CCI group. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in the CCI rats.
Collapse
Affiliation(s)
- Lifang Zou
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Kehua Yu
- Medical Laboratory Center of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Yang Fan
- Undergraduate student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Suixia Cao
- Undergraduate student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Liran Shi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Huilong Yuan
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhihua Yi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yun Gao
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wolfgang Greffrath
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Man Li
- Department of Neurobiology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Chunping Zhang
- Department of Cell Biology, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
27
|
Vinterhøj HSH, Stensballe A, Duroux M, Gazerani P. Characterization of rat primary trigeminal satellite glial cells and associated extracellular vesicles under normal and inflammatory conditions. J Proteomics 2019; 190:27-34. [DOI: 10.1016/j.jprot.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/05/2018] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
|
28
|
Valles SL, Iradi A, Aldasoro M, Vila JM, Aldasoro C, de la Torre J, Campos-Campos J, Jorda A. Function of Glia in Aging and the Brain Diseases. Int J Med Sci 2019; 16:1473-1479. [PMID: 31673239 PMCID: PMC6818212 DOI: 10.7150/ijms.37769] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglia cells during aging, neurodegeneration and neuroinflammation show different morphological and transcriptional profiles (related to axonal direction and cell adhesion). Furthermore, expressions of the receptors on the surface and actin formation compared to young are also different. This review delves into the role of glia during aging and the development of the diseases. The susceptibility of different regions of the brain to disease are linked to the overstimulation of signals related to the immune system during aging, as well as the damaging impact of these cascades on the functionality of different populations of microglia present in each region of the brain. Furthermore, a decrease in microglial phagocytosis has been related to many diseases and also has been detected during aging. In this paper we also describe the role of glia in different illness, such as AD, ALS, pain related disorders, cancer, developmental disorders and the problems produced by opening of the blood brain barrier. Future studies will clarify many points planted by this review.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Jose M Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | | | - Juan Campos-Campos
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| |
Collapse
|
29
|
Black BJ, Atmaramani R, Plagens S, Campbell ZT, Dussor G, Price TJ, Pancrazio JJ. Emerging neurotechnology for antinoceptive mechanisms and therapeutics discovery. Biosens Bioelectron 2018; 126:679-689. [PMID: 30544081 DOI: 10.1016/j.bios.2018.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
The tolerance, abuse, and potential exacerbation associated with classical chronic pain medications such as opioids creates a need for alternative therapeutics. Phenotypic screening provides a complementary approach to traditional target-based drug discovery. Profiling cellular phenotypes enables quantification of physiologically relevant traits central to a disease pathology without prior identification of a specific drug target. For complex disorders such as chronic pain, which likely involves many molecular targets, this approach may identify novel treatments. Sensory neurons, termed nociceptors, are derived from dorsal root ganglia (DRG) and can undergo changes in membrane excitability during chronic pain. In this review, we describe phenotypic screening paradigms that make use of nociceptor electrophysiology. The purpose of this paper is to review the bioelectrical behavior of DRG neurons, signaling complexity in sensory neurons, various sensory neuron models, assays for bioelectrical behavior, and emerging efforts to leverage microfabrication and microfluidics for assay development. We discuss limitations and advantages of these various approaches and offer perspectives on opportunities for future development.
Collapse
Affiliation(s)
- Bryan J Black
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
| | - Rahul Atmaramani
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Sarah Plagens
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
30
|
Chen JY, Chu LW, Cheng KI, Hsieh SL, Juan YS, Wu BN. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci Rep 2018; 8:16457. [PMID: 30405207 PMCID: PMC6220313 DOI: 10.1038/s41598-018-34915-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Valproate (VPA) is a well-known drug for treating epilepsy and mania, but its action in neuropathic pain is unclear. We used a chronic constriction injury (CCI) model to explore whether VPA prevents neuropathic pain-mediated inflammation and neuronal death. Rats were treated with or without VPA. CCI + VPA rats were intraperitoneally injected with VPA (300 mg/kg/day) from postoperative day (POD) 1 to 14. We measured paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) 1 day before surgery and 1, 3, 7, 14 days after CCI and harvested the sciatic nerves (SN), spinal cord (SC) and dorsal root ganglia (DRG) on POD 3, 7, and 14. PWL and PWT were reduced in CCI rats, but increased in CCI + VPA rats on POD 7 and POD 14. VPA lowered CCI-induced inflammatory proteins (pNFκB, iNOS and COX-2), pro-apoptotic proteins (pAKT/AKT and pGSK-3β/GSK-3β), proinflammatory cytokines (TNF-α and IL-1β) and nuclear pNFκB activation in the SN, DRG and SC in CCI rats. COX-2 and pGSK-3 proteins were decreased by VPA on immunofluorescence analysis. VPA attenuated CCI-induced thermal and mechanical pain behaviors in rats in correlation with anti-neuroinflammation action involving reduction of pNFκB/iNOS/COX-2 activation and inhibition of pAKT/pGSK-3β-mediated neuronal death from injury to peripheral nerves.
Collapse
Affiliation(s)
- Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Li-Wen Chu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Lin YT, Chen JC. Dorsal Root Ganglia Isolation and Primary Culture to Study Neurotransmitter Release. J Vis Exp 2018. [PMID: 30346383 DOI: 10.3791/57569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dorsal root ganglia (DRG) contain cell bodies of sensory neurons. This type of neuron is pseudo-unipolar, with two axons that innervate peripheral tissues, such as skin, muscle and visceral organs, as well as the spinal dorsal horn of the central nervous system. Sensory neurons transmit somatic sensation, including touch, pain, thermal, and proprioceptive sensations. Therefore, DRG primary cultures are widely used to study the cellular mechanisms of nociception, physiological functions of sensory neurons, and neural development. The cultured neurons can be applied in studies involving electrophysiology, signal transduction, neurotransmitter release, or calcium imaging. With DRG primary cultures, scientists may culture dissociated DRG neurons to monitor biochemical changes in single or multiple cells, overcoming many of the limitations associated with in vivo experiments. Compared to commercially available DRG-hybridoma cell lines or immortalized DRG neuronal cell lines, the composition and properties of the primary cells are much more similar to sensory neurons in tissue. However, due to the limited number of cultured DRG primary cells that can be isolated from a single animal, it is difficult to perform high-throughput screens for drug targeting studies. In the current article, procedures for DRG collection and culture are described. In addition, we demonstrate the treatment of cultured DRG cells with an agonist of neuropeptide FF receptor type 2 (NPFFR2) to induce the release of peptide neurotransmitters (calcitonin gene-related peptide (CRGP) and substance P (SP)).
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University; Healthy Aging Research Center, Chang Gung University; Neuroscience Research Center, Chang Gung Memorial Hospital;
| |
Collapse
|
32
|
Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan H. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain 2018; 14:1744806918808150. [PMID: 30280656 PMCID: PMC6311569 DOI: 10.1177/1744806918808150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation plays an important role in the induction and maintenance of chronic pain. Orchestra of pattern-recognition receptor-induced pro-inflammatory and anti-inflammatory cytokines is critical for inflammation homeostasis. CD11b on macrophages could inhibit toll-like receptor (TLR) activation-induced inflammatory responses. However, the function of CD11b on microglia remains unknown. In the current study, we demonstrated that CD11b-deficient microglia cells produced more inflammatory cytokines, such as interleukin-6 and tumor necrosis factor alpha, while less anti-inflammatory cytokines. Signal transduction assay confirmed that nuclear factor-κB activation was increased in CD11b-deficient microglia cells, which resulted from decreased activation of Src. Inhibition of Src by PP1 increased inflammation in wild-type microglia cells significantly, but not in CD11b-deficient microglia cells. In vivo, CD11b-deficient mice were more susceptible to chronic constrictive injury-induced allodynia and hyperalgesia with significantly more inflammatory cytokines expression. All these results indicated that the regulatory function of CD11b-Src signal pathway on both inflammatory and anti-inflammatory cytokines in microglia cells is a potential target in neuropathic pain treatment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenyun Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yiru Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yajuan Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Guo J, Sheng X, Dan Y, Xu Y, Zhang Y, Ji H, Wang J, Xu Z, Che H, Li G, Liang S, Li G. Involvement of P2Y 12 receptor of stellate ganglion in diabetic cardiovascular autonomic neuropathy. Purinergic Signal 2018; 14:345-357. [PMID: 30084083 DOI: 10.1007/s11302-018-9616-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Diabetes as a chronic epidemic disease with obvious symptom of hyperglycemia is seriously affecting human health globally due to the diverse diabetic complications. Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of both type 1 and type 2 diabetes and incurs high morbidity and mortality. However, the underlying mechanism for DCAN is unclear. It is well known that purinergic signaling is involved in the regulation of cardiovascular function. In this study, we examined whether the P2Y12 receptor could mediate DCAN-induced sympathetic reflexes. Our results revealed that the abnormal changes of blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were improved in diabetic rats treated with P2Y12 short hairpin RNA (shRNA). Meanwhile, the expression of P2Y12 receptor, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and connexin 43 (Cx43) in stellate ganglia (SG) was decreased in P2Y12 shRNA-treated diabetic rats. In addition, knocking down the P2Y12 receptor also inhibited the activation of p38 MARK in the SG of diabetic rats. Taken together, these findings demonstrated that P2Y12 receptor in the SG may participate in developing diabetic autonomic neuropathy, suggesting that the P2Y12 receptor could be a potential therapeutic target for the treatment of DCAN.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Xuan Sheng
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yu Dan
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yurong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yuanruohan Zhang
- Queen Mary School, Medical College of Nanchang University, Nanchang, 330006, China
| | - Huihong Ji
- Department of the First Clinical, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jiayue Wang
- Department of the First Clinical, Medical College of Nanchang University, Nanchang, 330006, China
| | - Zixi Xu
- Department of the First Clinical, Medical College of Nanchang University, Nanchang, 330006, China
| | - Hongyu Che
- Queen Mary School, Medical College of Nanchang University, Nanchang, 330006, China
| | - Guodong Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
34
|
Zou L, Han X, Liu S, Gong Y, Wu B, Yi Z, Liu H, Zhao S, Jia T, Li L, Yuan H, Shi L, Zhang C, Gao Y, Li G, Xu H, Liang S. Baicalin Depresses the Sympathoexcitatory Reflex Induced by Myocardial Ischemia via the Dorsal Root Ganglia. Front Physiol 2018; 9:928. [PMID: 30065662 PMCID: PMC6056627 DOI: 10.3389/fphys.2018.00928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia (MI) is one of the major causes of death in cardiac diseases. Purinergic signaling is involved in bidirectional neuronal-glial communication in the primary sensory ganglia. The sensory neuritis of cardiac afferent neurons in cervical dorsal root ganglion (cDRG) interacts with cardiac sympathetic efferent postganglionic neurons, forming feedback loops. The P2Y12 receptor is expressed in satellite glial cells (SGCs) of DRG. Baicalin is a major active ingredient extracted from natural herbal medicines, which has anti-inflammatory and strong anti-oxidation properties. In this study we investigated the effect of baicalin on P2Y12 receptor in the cervical DRG SGC-mediated sympathoexcitatory reflex, which is increased during MI. The results showed that the expression of P2Y12 receptor mRNA and protein in DRG, and the co-localization values of P2Y12 receptor and glial fibrillary acidic protein (GFAP) in cDRG SGCs were increased after MI. The activated SGCs increased IL-1β protein expression and elevated Akt phosphorylation in cDRG. Baicalin treatment inhibited the upregulation of the P2Y12 receptor, GFAP protein and Akt phosphorylation in cDRG neurons/SGCs. The stellate ganglia (SG) affect cardiac sympathetic activity. Baicalin treatment also decreased the upregulation of the P2Y12 receptor, GFAP protein in the SG. The P2Y12 agonist, 2Me-SADP, increased [Ca2+]i in HEK293 cells transfected with the P2Y12 receptor plasmid and SGCs in cDRG. These results indicate that application of baicalin alleviates pathologic sympathetic activity induced by MI via inhibition of afferents in the cDRG.
Collapse
Affiliation(s)
- Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Xinyao Han
- First Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Yingxin Gong
- First Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Zhihua Yi
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hui Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Tianyu Jia
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
35
|
Kolos EA, Korzhevskii DE. Glutamine Synthetase-Containing Cells of the Dorsal Root Ganglion at Different Stages of Rat Ontogeny. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418030049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise? Dev Biol 2018; 444 Suppl 1:S25-S35. [PMID: 29454705 DOI: 10.1016/j.ydbio.2018.02.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
Schwann cell precursors (SCPs) are multipotent embryonic progenitors covering all developing peripheral nerves. These nerves grow and navigate with unprecedented precision, delivering SCP progenitors to almost all locations in the embryonic body. Within specific developing tissues, SCPs detach from nerves and generate neuroendocrine cells, autonomic neurons, mature Schwann cells, melanocytes and other cell types. These properties of SCPs evoke resemblances between them and their parental population, namely, neural crest cells. Neural crest cells are incredibly multipotent migratory cells that revolutionized the course of evolution in the lineage of early chordate animals. Given this similarity and recent data, it is possible to hypothesize that proto-neural crest cells are similar to SCPs spreading along the nerves. Here, we review the multipotency of SCPs, the signals that govern them, their potential therapeutic value, SCP's embryonic origin and their evolutionary connections. We dedicate this article to the memory of Wilhelm His, the father of the microtome and "Zwischenstrang", currently known as the neural crest.
Collapse
Affiliation(s)
- Alessandro Furlan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria.
| |
Collapse
|
37
|
Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B, Li L, Yuan H, Shi L, Zhang C, Gao Y, Liu S, Xu H, Liu H, Liang S, Li G. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia. Front Neurosci 2018; 11:755. [PMID: 29422835 PMCID: PMC5788895 DOI: 10.3389/fnins.2017.00755] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP). Satellite glial cells (SGCs) enwrap the neuronal soma in the dorsal root ganglia (DRG). The purinergic 2 (P2) Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM). Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β) and connexin43 (Cx43) resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt) in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM.
Collapse
Affiliation(s)
- Tianyu Jia
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jingan Rao
- Second Clinical Department, Medical School, Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Zhihua Yi
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Bing Wu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China.,Department of Cell Biology, Medical School, Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hui Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
38
|
Yi Z, Ouyang S, Zhou C, Xie L, Fang Z, Yuan H, Yang J, Zou L, Jia T, Zhao S, Li L, Shi L, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain. Front Pharmacol 2018; 9:593. [PMID: 29950989 PMCID: PMC6008568 DOI: 10.3389/fphar.2018.00593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022] Open
Abstract
Aim: In this study, we investigated whether andrographolide (Andro) can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action. Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R), interleukin-1β (IL-1β), IL-10, phospho-extracellular regulated protein kinases (ERK) (p-ERK) in the L4-L6 dorsal root ganglia (DRG) were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP) in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7) receptor. Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4-L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4-L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4-L6 DRG on 14th day after surgery. Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.
Collapse
Affiliation(s)
- Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Nursing College, Medical College of Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Shuai Ouyang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Congfa Zhou
- Department of Anatomy, Medical College of Nanchang University, Nanchang, China
| | - Lihui Xie
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Zhi Fang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jinpu Yang
- Undergraduate Student of the Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Tianyu Jia
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Department of Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Shangdong Liang,
| |
Collapse
|
39
|
Shi L, Wu B, Yi Z, Zhao S, Zou L, Li L, Yuan H, Jia T, Liu S, Liu H, Gao Y, Li G, Xu H, Zhang C, Liang S. P2Y 12 shRNA treatment relieved HIV gp120-induced neuropathic pain in rats. Neurochem Int 2018; 112:259-266. [DOI: 10.1016/j.neuint.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 11/26/2022]
|
40
|
Komiya H, Shimizu K, Ishii K, Kudo H, Okamura T, Kanno K, Shinoda M, Ogiso B, Iwata K. Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. J Oral Sci 2018; 60:493-499. [DOI: 10.2334/josnusd.17-0452] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hiroki Komiya
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kohei Shimizu
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Kae Ishii
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Hiroshi Kudo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Teinosuke Okamura
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kohei Kanno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
41
|
Yi Z, Xie L, Zhou C, Yuan H, Ouyang S, Fang Z, Zhao S, Jia T, Zou L, Wang S, Xue Y, Wu B, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. P2Y 12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine. Purinergic Signal 2017; 14:47-58. [PMID: 29159762 DOI: 10.1007/s11302-017-9594-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.
Collapse
Affiliation(s)
- Zhihua Yi
- School of life Sciences of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Nursing College, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lihui Xie
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Congfa Zhou
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Huilong Yuan
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuai Ouyang
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhi Fang
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shanhong Zhao
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tianyu Jia
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hong Xu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changshui Xu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- School of life Sciences of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
42
|
Komiya H, Shimizu K, Noma N, Tsuboi Y, Honda K, Kanno K, Ohara K, Shinoda M, Ogiso B, Iwata K. Role of Neuron-Glial Interaction Mediated by IL-1β in Ectopic Tooth Pain. J Dent Res 2017; 97:467-475. [PMID: 29131694 DOI: 10.1177/0022034517741253] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although many reports have demonstrated that ectopic pain develops in the orofacial region following tooth pulp inflammation, which often causes misdiagnosis and inappropriate treatment for patients with pulpitis, the precise mechanism remains unknown. In the present study, we hypothesized that the functional interaction between satellite glial cells and neurons mediated by interleukin 1β (IL-1β) in the trigeminal ganglion (TG) is involved in ectopic orofacial pain associated with tooth pulp inflammation. The digastric muscle electromyogram (D-EMG) activity elicited by capsaicin administration into the maxillary second molar tooth pulp was analyzed to evaluate the noxious reflex and was significantly increased in rats with inflammation of the maxillary first molar (M1) versus rats injected with saline. A significant increase in the expression of connexin43 (Cx43), a gap junction containing protein, was observed in activated satellite glial cells surrounding second molar-innervating neurons in the TG after M1 pulpitis. Daily administration of Gap26, a Cx43 mimetic peptide and inhibitor, in the TG significantly suppressed the enhancement of capsaicin-induced D-EMG activity and the percentage of Fluoro-Gold (FG)-labeled cells encircled by glial fibrillary acid protein-immunoreactive (IR) + Cx43-IR cells after M1 pulp inflammation ( P < 0.01). The percentage of FG-labeled cells encircled by glial fibrillary acid protein-IR + IL-1β-IR cells, IL-1 type I receptor-IR cells labeled with FG, and TRPV1-IR cells labeled with FG significantly increased after M1 pulp inflammation ( P < 0.01). Daily administration of IL-1ra, an IL-1 receptor antagonist, into the TG significantly reduced the enhancement of capsaicin-induced D-EMG activity and the percentage of TRPV1-IR neurons labeled with FG after M1 pulp inflammation ( P < 0.01). The present findings suggest that satellite glial cell is activated in the TG via activated gap junctions composed of Cx43 following tooth pulp inflammation, which leads to the hyperactivation of remote neurons via IL-1β mechanisms and results in ectopic tooth pulp pain in the adjacent tooth.
Collapse
Affiliation(s)
- H Komiya
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Shimizu
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - N Noma
- 3 Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,4 Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Y Tsuboi
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Kanno
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Ohara
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - M Shinoda
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
43
|
Deng Z, Xu C. Role of the neuroendocrine antimicrobial peptide catestatin in innate immunity and pain. Acta Biochim Biophys Sin (Shanghai) 2017; 49:967-972. [PMID: 28981685 DOI: 10.1093/abbs/gmx083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
Catestatin (CST) is a neuroendocrine peptide which is derived from the chromogranin A. It has been demonstrated that CST can affect a wide range of processes, such as innate immunity, inflammatory and autoimmune reactions, and several homeostatic regulations. Furthermore, CST is positive against several kinds of bacterial strains at micromolecular range, which shows its antimicrobial activity. Recently, the role of CST in acute and chronic pain has attracted much attention. In this review, we discussed the latest research findings of CST and its role in innate immunity and pain.
Collapse
Affiliation(s)
- Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
44
|
Effects of LncRNA BC168687 siRNA on Diabetic Neuropathic Pain Mediated by P2X 7 Receptor on SGCs in DRG of Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7831251. [PMID: 29204447 PMCID: PMC5674491 DOI: 10.1155/2017/7831251] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/06/2017] [Indexed: 01/28/2023]
Abstract
Diabetic neuropathic pain (DNP), one of the early symptoms of diabetic neuropathy, relates to metabolic disorders induced by high blood glucose, neurotrophic vascular ischemia and hypoxia, and autoimmune factors. This study was aimed at exploring the effects of long noncoding RNA (lncRNA) BC168687 siRNA on DNP mediated by P2X7 receptor on SGCs in DRG of rats. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats, the expression levels of P2X7 mRNA and protein in the DRG, and nitric oxide (NO) in the serum were, respectively, detected in our study. Our experimental results showed that the level of BC168687 mRNA in DNP group was markedly higher than that of control group; the MWT and TWL of DNP + BC168687 si group were significantly increased, and the expression levels of P2X7 in DRG and the concentrations of NO in serum of DNP + BC168687 si group were decreased compared to those of the DNP group. In conclusion, lncRNA BC168687 may participate in the pathogenesis of DNP mediated by P2X7 receptor, which will provide a novel way for the study of the pathogenesis of diabetes mellitus complicated with neuropathic pain and its prevention and treatment.
Collapse
|
45
|
Nascimento DSM, Potes CS, Soares ML, Ferreira AC, Malcangio M, Castro-Lopes JM, Neto FLM. Drug-Induced HSP90 Inhibition Alleviates Pain in Monoarthritic Rats and Alters the Expression of New Putative Pain Players at the DRG. Mol Neurobiol 2017; 55:3959-3975. [PMID: 28550532 DOI: 10.1007/s12035-017-0628-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/19/2017] [Indexed: 01/17/2023]
Abstract
Purinergic receptors (P2XRs) have been widely associated with pain states mostly due to their involvement in neuron-glia communication. Interestingly, we have previously shown that satellite glial cells (SGC), surrounding dorsal root ganglia (DRG) neurons, become activated and proliferate during monoarthritis (MA) in the rat. Here, we demonstrate that P2X7R expression increases in ipsilateral DRG after 1 week of disease, while P2X3R immunoreactivity decreases. We have also reported a significant induction of the activating transcriptional factor 3 (ATF3) in MA. In this study, we show that ATF3 knocked down in DRG cell cultures does not affect the expression of P2X7R, P2X3R, or glial fibrillary acidic protein (GFAP). We suggest that P2X7R negatively regulates P2X3R, which, however, is unlikely mediated by ATF3. Interestingly, we found that ATF3 knockdown in vitro induced significant decreases in the heat shock protein 90 (HSP90) expression. Thus, we evaluated in vivo the involvement of HSP90 in MA and demonstrated that the HSP90 messenger RNA levels increase in ipsilateral DRG of inflamed animals. We also show that HSP90 is mostly found in a cleaved form in this condition. Moreover, administration of a HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), attenuated MA-induced mechanical allodynia in the first hours. The drug also reversed the HSP90 upregulation and cleavage. 17-DMAG seemed to attenuate glial activation and neuronal sensitization (as inferred by downregulation of GFAP and P2X3R in ipsilateral DRG) which might correlate with the observed pain alleviation. Our data indicate a role of HSP90 in MA pathophysiology, but further investigation is necessary to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Diana Sofia Marques Nascimento
- Departamento de Biomedicina-Unidade de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Pain Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Catarina Soares Potes
- Departamento de Biomedicina-Unidade de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Pain Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Miguel Luz Soares
- Departamento de Biomedicina-Unidade de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Pain Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratório de Apoio à Investigação em Medicina Molecular (LAIMM), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - António Carlos Ferreira
- Departamento de Biomedicina-Unidade de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Pain Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratório de Apoio à Investigação em Medicina Molecular (LAIMM), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - José Manuel Castro-Lopes
- Departamento de Biomedicina-Unidade de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Pain Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Fani Lourença Moreira Neto
- Departamento de Biomedicina-Unidade de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Pain Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
46
|
Wang F, Xiang H, Fischer G, Liu Z, Dupont MJ, Hogan QH, Yu H. HMG-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury. Brain Res 2016; 1652:62-70. [PMID: 27671501 DOI: 10.1016/j.brainres.2016.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, Kir4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Orthopedic Surgery, Affiliated Hospitals of Qingdao University, Qingdao 266000, PR China
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Dupont
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
47
|
Mavlyutov TA, Duellman T, Kim HT, Epstein ML, Leese C, Davletov BA, Yang J. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience 2016; 331:148-57. [PMID: 27339730 PMCID: PMC5047027 DOI: 10.1016/j.neuroscience.2016.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons.
Collapse
MESH Headings
- Animals
- Antibodies
- Blotting, Western
- Cell Membrane/metabolism
- Endoplasmic Reticulum/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Immunohistochemistry
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Neurons/metabolism
- Neurons/ultrastructure
- Nuclear Envelope/metabolism
- Phosphopyruvate Hydratase/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptors, sigma/genetics
- Receptors, sigma/immunology
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Hung Tae Kim
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Miles L Epstein
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Bazbek A Davletov
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| |
Collapse
|
48
|
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|
49
|
Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL. Current advances in orthodontic pain. Int J Oral Sci 2016; 8:67-75. [PMID: 27341389 PMCID: PMC4932774 DOI: 10.1038/ijos.2016.24] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 02/05/2023] Open
Abstract
Orthodontic pain is an inflammatory pain that is initiated by orthodontic force-induced vascular occlusion followed by a cascade of inflammatory responses, including vascular changes, the recruitment of inflammatory and immune cells, and the release of neurogenic and pro-inflammatory mediators. Ultimately, endogenous analgesic mechanisms check the inflammatory response and the sensation of pain subsides. The orthodontic pain signal, once received by periodontal sensory endings, reaches the sensory cortex for pain perception through three-order neurons: the trigeminal neuron at the trigeminal ganglia, the trigeminal nucleus caudalis at the medulla oblongata and the ventroposterior nucleus at the thalamus. Many brain areas participate in the emotion, cognition and memory of orthodontic pain, including the insular cortex, amygdala, hippocampus, locus coeruleus and hypothalamus. A built-in analgesic neural pathway—periaqueductal grey and dorsal raphe—has an important role in alleviating orthodontic pain. Currently, several treatment modalities have been applied for the relief of orthodontic pain, including pharmacological, mechanical and behavioural approaches and low-level laser therapy. The effectiveness of nonsteroidal anti-inflammatory drugs for pain relief has been validated, but its effects on tooth movement are controversial. However, more studies are needed to verify the effectiveness of other modalities. Furthermore, gene therapy is a novel, viable and promising modality for alleviating orthodontic pain in the future.
Collapse
Affiliation(s)
- Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li-Na Liao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Li Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 2015; 11:307-16. [PMID: 25957584 PMCID: PMC4529850 DOI: 10.1007/s11302-015-9453-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.
Collapse
|