1
|
Chak P, Bisht A, Choudhary D, Jain S, Joshi P, Jain S, Jain P, Dwivedi J, Sharma S. In Vitro COX Inhibitory Activity, LC-MS Analysis and Molecular Docking Study of Silene vulgaris and Stellaria media. Cell Biochem Biophys 2024:10.1007/s12013-024-01533-0. [PMID: 39313643 DOI: 10.1007/s12013-024-01533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill is a perennial wild weed species belonging to the Caryophyllaceae family and is widely available and abundant in the environment. The present study has aimed to evaluate the anti-inflammatory potential of two underutilized wild edible plants, Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill. fractions employing in-vitro COX inhibitory assay. Invitro COX-2 inhibitory potential of MESV and MESM fractions was carried out using BioVisionR "COX Activity Assay Kit (Fluorometric)". LC-MS analysis of selected fractions was conducted to identify bioactive compounds that were further validated for their affinity determination toward target enzymes employing molecular docking studies using the LibDock program. In-vitro COX inhibitory assay revealed that hexane fraction of S. vulgaris (HFSV) and hexane fraction of S. media (HFSM) caused impressive inhibition of COX-2 enzyme with IC50 values 1.38 µg/mL and 1.51 µg/mL respectively. Further, LC-MS analysis revealed the presence of 46 compounds in HFSV and 44 compounds in HFSM respectively. Amongst identified bioactive compounds in HFSV and HFSM, sinapinic acid and syringic acid showed good docking scores with COX-2 i.e., 89.256, and 82.168 respectively. Also, the availability of chrysin in HFSM and rhamnetin in HFSV exhibited good docking scores i.e., 115.092, and 112.341 with a selective affinity towards COX-2. The findings of in-vitro COX Inhibitory Activity and molecular docking studies highlighted the impressive anti-inflammatory properties of S. vulgaris and S. media, and require further investigations to establish them as therapeutic candidates in the management of inflammation and related issues.
Collapse
Affiliation(s)
- Pooja Chak
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Deepti Choudhary
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Pankaj Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
2
|
Mayakrishnan V, Thirupathi A, Ramamoorthy K, Annadurai K, Prakasam R, Gu Y, Kim CY, Ramasamy M, Karimpanchola H, Kannappan P, Vijayakumar N, Venkatesan Kumari B, Singaravelu A. Chemical Composition Analysis and Assessment of Antioxidant and Anti-Inflammatory Activities of Crude Extract of Flueggea leucopyrus on Carrageenan-Induced Paw Edema in Wistar Albino Rats. Antioxidants (Basel) 2024; 13:976. [PMID: 39199223 PMCID: PMC11351626 DOI: 10.3390/antiox13080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
A member of the Phyllanthaceae family, Flueggea leucopyrus is a well-known plant in the tribal areas of Sri Lanka, India's Shaurastra region, Australia, and Malaysia. This study provides information about Flueggea leucopyrus, a plant with a wide range of therapeutic uses in India. Different extracts from the leaves and roots of Flueggea leucopyrus were evaluated for their physical and chemical properties, preliminary phytochemical parameters, and pharmacological activities in the current study, followed by their fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), antioxidant, and anti-inflammatory properties. The aqueous extract of Flueggea leucopyrus leaves and roots have more different phytochemical elements than other solvent extracts, according to physico-chemical tests and phytochemical screening. As a result, the FT-IR, GC-MS, antioxidant, and anti-inflammatory activities of an aqueous extract were tested. Studies on hind paw edemas caused by carrageenan in albino rats examined the mean increase in paw volume and the percentage inhibition in paw volume at various time points following the injection of carrageenan (1% w/v). In comparison to the norm, these inhibitions were statistically significant (p < 0.001). The aqueous extract of Flueggea leucopyrus leaves and roots have both antioxidative and anti-inflammatory activities, indicating that it has the potential to be used in the formulation of antioxidant and anti-inflammatory medications in the future.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo 315010, China; (V.M.); (A.T.); (Y.G.)
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo 315010, China; (V.M.); (A.T.); (Y.G.)
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Kavitha Ramamoorthy
- Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India;
| | - Kaliappan Annadurai
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri 635 205, Tamil Nadu, India;
| | - Radha Prakasam
- Siddha Medicinal Plants Garden, (Central Council for Research in Siddha, Ministry of Ayush, Government of India), Mettur Dam, Salem 636 401, Tamil Nadu, India; (R.P.); (H.K.)
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo 315010, China; (V.M.); (A.T.); (Y.G.)
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Mahadevi Ramasamy
- Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India;
| | - Habeebmon Karimpanchola
- Siddha Medicinal Plants Garden, (Central Council for Research in Siddha, Ministry of Ayush, Government of India), Mettur Dam, Salem 636 401, Tamil Nadu, India; (R.P.); (H.K.)
| | - Priya Kannappan
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Affiliated to Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (B.V.K.)
| | - Bhuvaneshwari Venkatesan Kumari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (B.V.K.)
| | - Anand Singaravelu
- Department of Chemistry, Saveetha Engineering College (Autonomous), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India;
| |
Collapse
|
3
|
Aguirre ME, Orallo DE, Suárez PA, Ramirez CL. Galenic formulations of Cannabis sativa: comparison of the chemical properties of extracts obtained by simple protocols using lipidic vehicles. Nat Prod Res 2024; 38:661-666. [PMID: 36855240 DOI: 10.1080/14786419.2023.2184357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
The growing use of Cannabis sativa as a complementary therapy to allopathic medicine has brought about the modification of laws for its use worldwide. This entails the need to harmonize the methods of galenic preparations in pharmacies and cannabis-specialized non-governmental organizations as well as for self-provision as contemplated in some current legislation, such as that of Argentina. Thus, this work aimed to study simple and efficient methods to produce medicinal cannabis oils that require low-cost equipment and few handling steps. The final formulas allowed the obtaining of preparations of known concentrations of neutral cannabinoids, total polyphenol content, total flavonoid content, and antioxidant capacity. These methods allow for the selection of convenient vehicles and access to safe medicinal products of standardized quality. Our results show that cannabis extraction can be efficiently performed by directly using long-chain lipidic vehicles as extractants, resulting in a formulation with maximized oxidizing capacity and potentially extending its durability.
Collapse
Affiliation(s)
- Matías E Aguirre
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Físicas de Mar del Plata, IFIMAR (CONICET-UNMDP), Funes 3350, (7600) Mar del Plata, Argentina
| | - Dalila E Orallo
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Patricia A Suárez
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN/UNMdP-CONICET Juan B. Justo 2550, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Mantovska DI, Zhiponova MK, Petrova D, Alipieva K, Bonchev G, Boycheva I, Evstatieva Y, Nikolova D, Tsacheva I, Simova S, Yordanova ZP. Exploring the Phytochemical Composition and Biological Potential of Balkan Endemic Species Stachys scardica Griseb. PLANTS (BASEL, SWITZERLAND) 2023; 13:30. [PMID: 38202340 PMCID: PMC10780532 DOI: 10.3390/plants13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Stachys scardica Griseb. is a Balkan endemic species listed in The Red Data Book of Bulgaria with the conservation status "endangered". Successful micropropagation was achieved on MS medium supplemented with 1.5 mg/L benzyladenine (BA), followed by a subsequent ex vitro adaptation in an experimental field resulting in 92% regenerated plants. Using nuclear magnetic resonance (NMR), phenylethanoid glycosides (verbascoside, leucosceptoside A), phenolic acids (chlorogenic acid), iridoids (allobetonicoside and 8-OAc-harpagide), and alkaloids (trigonelline) were identified, characteristic of plants belonging to the genus Stachys. High antioxidant and radical scavenging activities were observed in both in situ and ex vitro acclimated S. scardica plants, correlating with the reported high concentrations of total phenols and flavonoids in these variants. Ex vitro adapted plants also exhibited a well-defined anti-inflammatory potential, demonstrating high inhibitory activity against the complement system. Employing a disk diffusion method, a 100% inhibition effect was achieved compared to positive antibiotic controls against Staphylococcus epidermidis and Propionibacterium acnes, with moderate activity against Bacillus cereus. The induced in vitro and ex vitro model systems can enable the conservation of S. scardica in nature and offer future opportunities for the targeted biosynthesis of valuable secondary metabolites, with potential applications in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Desislava I. Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| | - Miroslava K. Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (K.A.); (S.S.)
| | - Georgi Bonchev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (G.B.); (I.B.)
| | - Irina Boycheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (G.B.); (I.B.)
| | - Yana Evstatieva
- Department of Biotechnology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (Y.E.); (D.N.)
| | - Dilyana Nikolova
- Department of Biotechnology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (Y.E.); (D.N.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (K.A.); (S.S.)
| | - Zhenya P. Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| |
Collapse
|
5
|
Benedec D, Oniga I, Hanganu D, Tiperciuc B, Nistor A, Vlase AM, Vlase L, Pușcaș C, Duma M, Login CC, Niculae M, Silaghi-Dumitrescu R. Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics (Basel) 2023; 12:1644. [PMID: 37998846 PMCID: PMC10669438 DOI: 10.3390/antibiotics12111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the polyphenolic composition and antioxidant and antimicrobial potential of six Romanian Stachys species: S. officinalis, S. germanica, S. byzantina, S. sylvatica, S. palustris, and S. recta. The LC-MS/MS method was used to analyze the polyphenolic profile, while the phenolic contents were spectrophotometrically determined. The antioxidant activity was evaluated using the following methods: DPPH, FRAP, nitrite-induced autooxidation of hemoglobin, inhibition of cytochrome c-catalyzed lipid peroxidation, and electron paramagnetic resonance spectroscopy. The in vitro antimicrobial properties were assessed using agar-well diffusion, broth microdilution, and antibiofilm assays. Fifteen polyphenols were identified using LC-MS and chlorogenic acid was the major component in all the samples (1131.8-6761.4 μg/g). S. germanica, S. palustris, and S. byzantina extracts each displayed an intense antiradical action in relation to high contents of TPC (6.40 mg GAE/mL), flavonoids (3.90 mg RE/mL), and caffeic acid derivatives (0.89 mg CAE/mL). In vitro antimicrobial and antibiofilm properties were exhibited towards Candida albicans, Gram-positive and Gram-negative strains, with the most intense efficacy recorded for S. germanica and S. byzantina when tested against S. aureus. These results highlighted Stachys extracts as rich sources of bioactive compounds with promising antioxidant and antimicrobial efficacies and important perspectives for developing phytopharmaceuticals.
Collapse
Affiliation(s)
- Daniela Benedec
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Daniela Hanganu
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeş Street, 400012 Cluj-Napoca, Romania;
| | - Adriana Nistor
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeş Street, 400012 Cluj-Napoca, Romania;
| | - Cristina Pușcaș
- Department of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Street, 400028 Cluj-Napoca, Romania; (C.P.); (R.S.-D.)
| | - Mihaela Duma
- State Animal Health and Safety Veterinary Laboratory, 1 Piata Marasti Street, 400609 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Street, 400028 Cluj-Napoca, Romania; (C.P.); (R.S.-D.)
| |
Collapse
|
6
|
Manjubaashini N, Bargavi P, Balakumar S. Bioceramic and polycationic biopolymer nanocomposite scaffolds for improved wound self-healing and anti-inflammatory properties: an in vitro study. Biomater Sci 2023; 11:3921-3937. [PMID: 37092809 DOI: 10.1039/d3bm00169e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The development of wound healing scaffolds with high porosity, rapid healing properties, and anti-inflammatory functionality is vital in the chronic wound healing stage for the production of extracellular matrices of injured tissues. The 45S5 bioactive glass (BG) possesses good biocompatibility and provides a potential bonding resource for fibroblast cell proliferation, growth factor synthesis, and granulated tissue formation. Chitosan, a natural polymer, promotes tissue regeneration and has anti-microbial properties. BG and chitosan scaffolds were prepared by the freeze-drying (lyophilization) method. The chitosan scaffold is a semi-crystalline polymer with a random crystal structure because it contains more hydroxyl groups. Chitosan alone shows a sheet-like morphology with a porous microstructure (1.7475 nm). BG particulates were well decorated over the surface of the chitosan scaffold with a homogeneous dispersion. Cell viability was observed for L929 cells on the chitosan-BG scaffolds. Confocal images vividly depict the interaction of the L929 cells with the scaffold without causing any damage to the cell membrane. In vitro scratch assay shows the best wound healing activity (complete wound closure) for the BG-chitosan nanocomposite scaffolds at 18 h. The chitosan-BG scaffolds were combined with anti-inflammatory drugs and induced inflammatory genes at an inhibition rate of COX of (36, 28, and 30%), LOX of (20, 13, and 14%), and NO of (48, 38, and 39%) for chitosan, chitosan-BG, and chitosan-BG (Na-free) at 100 μL addition. The in vitro bioactivities proved that the chitosan-BG scaffolds could enable better cell formation, and exhibited improved biocompatibility, and anti-inflammatory and wound healing properties.
Collapse
Affiliation(s)
- N Manjubaashini
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| | - P Bargavi
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| |
Collapse
|
7
|
Yahia S, Khalil IA, El-Sherbiny IM. Fortified gelatin-based hydrogel scaffold with simvastatin-mixed nanomicelles and platelet rich plasma as a promising bioimplant for tissue regeneration. Int J Biol Macromol 2023; 225:730-744. [PMID: 36400213 DOI: 10.1016/j.ijbiomac.2022.11.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Treatment of intervertebral disc (IVD) degeneration includes conservative and surgical strategies that have a high risk of recurrence. Consequently, tissue engineering represents a promising alternative treatment. This study aimed at healing damaged IVD with a bioimplant that can maintain the function of defected IVD. The developed IVD scaffold is composed of a fortified biocompatible gelatin-based hydrogel to mimic the ECM mechanical properties of IVD and to allow a sustained release of loaded bioactive agents. The hydrogel is laden with platelet-rich plasma (PRP) and simvastatin (SIM)-loaded mixed pluronics nanomicelles because of their regenerative ability and anti-inflammatory effect, respectively. The gelatin-based hydrogel attained swelling of 508.9 ± 7.9 % to 543.1 ± 5.9 % after 24 h. Increasing crosslinking degree of the hydrogel improved its mechanical elasticity up to 0.3 ± 0.1 N/mm2, and retarded its degradation. The optimum mixed nanomicelles had particle size of 84 ± 0.5 nm, a surface charge of -10 ± 7.1 mv, EE% of 84.9 %, and released 88.4 % of SIM after 21 days. Cytotoxicity of IVD components was evaluated using human skin fibroblast for 3 days. WST-test results proved biocompatibility of IVD scaffold. Subcutaneous implantation of the IVD scaffold was performed for 28 days to test in-vivo biocompatibility. Histological and histochemical micrographs depicted normal healing signs such as macrophages, T-cells, angiogenesis and granulation reactions. Introducing PRP in IVD improved healing process and decreased inflammation reactions. The developed multicomponent implant could be used as potential IVD scaffold with desirable mechanical properties, biocompatibility and healing process.
Collapse
Affiliation(s)
- Sarah Yahia
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
8
|
Pizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci 2022. [DOI: 10.1007/s12038-022-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Mohammadi M, Kharazian N. Untargeted metabolomics study and identification of potential biomarkers in the six sections of the genus Stachys L. (Lamiaceae) using HPLC-MQ-API-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:915-942. [PMID: 35670362 DOI: 10.1002/pca.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The genus Stachys L., belonging to the family Lamiaceae, is one of the largest genera with remarkable medicinal properties. Plants of this genus produce a broad range of secondary metabolites. OBJECTIVES Due to the incomplete comprehensive assessment of chemical profiles in Stachys species, we conducted an untargeted metabolomics study and identified potential biomarkers in the six sections of Stachys with chemotaxonomic importance. MATERIAL AND METHODS Dried leaves of 17 taxa were utilized for analysis of all the constituents using HPLC-MQ-API-MS. The obtained data were processed and analyzed using multivariate statistical methods, including heatmaps, PLS-DA score plots, functional analysis of metabolic pathways, metabolite set enrichment analysis, and biomarker and network analysis. RESULTS Among the 129 metabolites, 111 flavonoids and 18 non-flavonoids were recognized. The most represented flavonoids, including 41 flavones and 20 flavonols, displayed remarkable abundance. In non-flavonoid compounds, a total of six coumarins and six phenolic acids were present at high levels. In terms of approved markers in six sections, 76 chemical compounds, mainly flavonoids, coumarins, quinic acids, and cinnamic acids, were identified as potential biomarkers or chemotaxonomic indicators. Accordingly, the taxonomic complexities of some Stachys species in sections Fragilicaulis, Aucheriana, and Setifolia were properly resolved. CONCLUSION An HPLC-MS/MS-based metabolomics approach integrated with multivariate statistical methods was employed to identify (1) valuable markers and analyze metabolic diversity and (2) predict the pharmaceutical properties of Stachys species. The obtained chemical profiles provide a new perspective for investigation of the Stachys genus.
Collapse
Affiliation(s)
- Mozhgan Mohammadi
- Department of Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Navaz Kharazian
- Department of Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
10
|
Development of Cyclodextrin-Functionalized Transethoniosomes of 6-Gingerol: Statistical Optimization, In Vitro Characterization and Assessment of Cytotoxic and Anti-Inflammatory Effects. Pharmaceutics 2022; 14:pharmaceutics14061170. [PMID: 35745746 PMCID: PMC9227240 DOI: 10.3390/pharmaceutics14061170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The poor solubility and stability of 6-gingerol (6-G) could hamper its clinical applications. The aim of the current study was to develop a novel ultra-deformable cyclodextrin-functionalized transethoniosomes (CD-TENs) as a promising delivery system for 6-G. Transethoniosomes (TENs) are flexible niosomes (NVs) due to their content of ethanol and edge activators (EAs). CD-functionalized nanoparticles could improve drug solubility and stability compared to the corresponding nanovesicles. 6-G-loaded ethoniosomes (ENs) were formulated by the ethanol injection technique in the presence and absence of EA and CD to explore the impact of the studied independent variables on entrapment efficiency (EE%) and % 6-G released after 24 h (Q24h). According to the desirability criteria, F8 (CD-functionalized transethoniosomal formula) was selected as the optimized formulation. F8 demonstrated higher EE%, permeation, deformability and stability than the corresponding TENs, ENs and NVs. Additionally, F8 showed higher cytotoxic and anti-inflammatory activity than pure 6-G. The synergism between complexation with CD and novel ultra-deformable nanovesicles (TENs) in the form of CD-TENs can be a promising drug delivery carrier for 6-G.
Collapse
|
11
|
Mantovska DI, Zhiponova MK, Georgiev MI, Alipieva K, Tsacheva I, Simova S, Yordanova ZP. Biological Activity and NMR-Fingerprinting of Balkan Endemic Species Stachys thracica Davidov. Metabolites 2022; 12:metabo12030251. [PMID: 35323694 PMCID: PMC8953131 DOI: 10.3390/metabo12030251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/07/2022] Open
Abstract
Stachys thracica Davidov is a Balkan endemic species distributed in Bulgaria, Greece, and Turkey. In Bulgaria, it is classified as “rare” and is under the protection of the Bulgarian biodiversity law. The aim of our study was to develop an efficient protocol for ex situ conservation of S. thracica and to perform comparative NMR-based metabolite profiling and bioactivity assays of extracts from in situ grown, in vitro cultivated, and ex vitro acclimated plants. Micropropagation of S. thracica was achieved by in vitro cultivation of mono-nodal segments on basal MS medium. Ex vitro adaptation was accomplished in the experimental field with 83% survival while conserved genetic identity between in vitro and ex vitro plants as shown by the overall sequence-related amplified polymorphism marker patterns was established. Verbascoside, chlorogenic acid, and trigonelline appeared the main secondary metabolites in in situ, in vitro cultivated, and ex vitro acclimated S. thracica. High total phenolic and flavonoid content as well as antioxidant and radical scavenging activity were observed in in situ and ex vitro plants. Further, the anti-inflammatory activity of S. thracica was tested by hemolytic assay and a high inhibition of the complement system was observed. Initiated in vitro and ex vitro cultures offer an effective tool for the management and better exploitation of the Stachys secondary metabolism and the selection of lines with high content of bioactive molecules and nutraceuticals.
Collapse
Affiliation(s)
- Desislava I. Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (D.I.M.); (M.K.Z.)
| | - Miroslava K. Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (D.I.M.); (M.K.Z.)
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (K.A.); (S.S.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (K.A.); (S.S.)
| | - Zhenya P. Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (D.I.M.); (M.K.Z.)
- Correspondence: ; Tel.: +359-888572562
| |
Collapse
|
12
|
Stachys schtschegleevii tea, matrix metalloproteinase, and disease severity in female rheumatoid arthritis patients: a randomized controlled clinical trial. Clin Rheumatol 2021; 41:1033-1044. [PMID: 34766228 DOI: 10.1007/s10067-021-05981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Stachys schtschegleevii (SSC) is a herbal medicine used to treat infections. To date, this is the first study aimed to investigate the effects of SSC tea on disease activity score (DAS), serum inflammatory biomarkers and matrix metalloproteinases (MMP-1 and MMP-3) among women with rheumatoid arthritis (RA). METHODS This pilot, triple-blind, randomized controlled clinical trial was conducted among forty-four women (age: 30-65 years) diagnosed with moderately active RA. Subjects were randomly assigned (1:1 ratio) into either SSC group (2.4 g/day SSC + 2.4 g/day black tea, n=22) or placebo (2.4 g/day black tea, n=22) for 8 weeks. Serum high-sensitivity C-reactive protein (hs-CRP), interleukin-1 beta (IL-1β), and MMPs were measured using ELISA. According to the American College of Rheumatology guideline considering hs-CRP, DAS28 was assessed. RESULTS Both study groups had respondent rates above 94.9%. The SSC intervention caused significant reductions in the number and the percent changes of the tender joints (SSC: -74.39% vs. placebo: -57.15%, mean differences= -0.77; P<0.05) and DAS28 [SSC: -32.44% vs. placebo: -22.32%, mean differences= -0.41, P<0.05). Unlike the intervention within SSC group that showed significant reductions in the mean serum levels of hs-CRP, IL-1β, and MMP-3, SSC caused significant MMP-3 reductions (SSC: -20.59% vs. placebo: 1.29%, P<0.05). CONCLUSION The SSC intervention showed an appropriate clinical efficacy for female RA patients, accompanying remarkable reductions in the number of tender and swollen joints, DAS28, and serum levels of MMP-3. This can provide additional insights to the interventional studies controlling RA-related pathological and inflammatory outcomes. Trial registration Prospectively registered at the Iranian Registry of Clinical Trials (IRCT), linked to the WHO Registry Network ( https://en.irct.ir/trial/11602 , IRCT registration number: IRCT2015032011335N5, Registration date:2015-05-12). Key Points • Stachys schtschegleevii improved clinical outcomes and attenuated disease severity in RA patients. • Stachys schtschegleevii ameliorated serum level of MMP-3 in RA patients.
Collapse
|
13
|
Pires EO, Caleja C, Garcia CC, Ferreira IC, Barros L. Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Pires EDO, Pereira E, Carocho M, Pereira C, Dias MI, Calhelha RC, Ćirić A, Soković M, Garcia CC, Ferreira ICFR, Caleja C, Barros L. Study on the Potential Application of Impatiens balsamina L. Flowers Extract as a Natural Colouring Ingredient in a Pastry Product. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9062. [PMID: 34501651 PMCID: PMC8431334 DOI: 10.3390/ijerph18179062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023]
Abstract
Flowers of the genus Impatiens are classified as edible; however, their inclusion in the human diet is not yet a common practice. Its attractive colours have stirred great interest by the food industry. In this sense, rose (BP) and orange (BO) I. balsamina flowers were nutritionally studied, followed by an in-depth chemical study profile. The non-anthocyanin and anthocyanin profiles of extracts of both flower varieties were also determined by high-performance liquid chromatography coupled to a diode array and mass spectrometry detector (HPLC-DAD-ESI/MS). The results demonstrated that both varieties presented significant amounts of phenolic compounds, having identified nine non-anthocyanin compounds and 14 anthocyanin compounds. BP extract stood out in its bioactive properties (antioxidant and antimicrobial potential) and was selected for incorporation in "bombocas" filling. Its performance as a colouring ingredient was compared with the control formulations (white filling) and with E163 (anthocyanins) colorant. The incorporation of the natural ingredient did not cause changes in the chemical and nutritional composition of the product; and although the colour conferred was lighter than presented by the formulation with E163 (suggesting a more natural aspect), the higher antioxidant activity could meet the expectations of the current high-demand consumer.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Carolina C. Garcia
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| |
Collapse
|
15
|
Pires EDO, Pereira E, Pereira C, Dias MI, Calhelha RC, Ćirić A, Soković M, Hassemer G, Garcia CC, Caleja C, Barros L, Ferreira ICFR. Chemical Composition and Bioactive Characterisation of Impatiens walleriana. Molecules 2021; 26:1347. [PMID: 33802535 PMCID: PMC7962038 DOI: 10.3390/molecules26051347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The attractive colour characteristics of the flowers of the species Impatiens walleriana have been arousing great interest in the food industry, which is looking for potential natural sources of colouring ingredients. In this sense, the present work focused on the chemical and bioactive characterization of pink and orange flowers of I. walleriana. The phenolic compounds were determined by HPLC-DAD-ESI/MS; in addition, different bioactivities (antioxidant, antimicrobial, anti-inflammatory and cytotoxicity) were also analysed. Both samples studied showed significant amounts of phenolic compounds, especially phenolic acids, flavonoids, and anthocyanins, which justifies the excellent performance in the different bioactivities studied. The orange variety, despite having a greater variety of phenolic compounds, showed a total amount of compounds lower than the pink variety. Overall, the flowers of I. walleriana emerge as a promising resource to be explored by the food industry.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira, PR 85884-000, Brazil;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Gustavo Hassemer
- Câmpus de Três Lagoas, Universidade Federal do Mato Grosso do Sul (UFMS), Três Lagoas, MS 79613-000, Brazil;
| | - Carolina Castilho Garcia
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira, PR 85884-000, Brazil;
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (C.P.); (M.I.D.); (R.C.C.); (C.C.); (I.C.F.R.F.)
| |
Collapse
|
16
|
Pulmonaria obscura and Pulmonaria officinalis Extracts as Mitigators of Peroxynitrite-Induced Oxidative Stress and Cyclooxygenase-2 Inhibitors-In Vitro and In Silico Studies. Molecules 2021; 26:molecules26030631. [PMID: 33530389 PMCID: PMC7865227 DOI: 10.3390/molecules26030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from aerial parts of P. obscura Dumort. and P. officinalis L. Phytochemical profiling demonstrated the abundance of phenolic acids and their derivatives (over 80% of the isolated fractions). Danshensu conjugates with caffeic acid, i.e., rosmarinic, lithospermic, salvianolic, monardic, shimobashiric and yunnaneic acids were identified as predominant components. The examined extracts (1–100 µg/mL) partly prevented harmful effects of the peroxynitrite-induced oxidative stress in blood plasma (decreased oxidative damage to blood plasma components and improved its non-enzymatic antioxidant capacity). The cellular safety of the extracts was confirmed in experimental models of blood platelets and peripheral blood mononuclear cells. COX-2 inhibitor screening evidently suggested a stronger activity of P. officinalis (IC50 of 13.28 and 7.24 µg/mL, in reaction with synthetic chromogen and physiological substrate (arachidonic acid), respectively). In silico studies on interactions of main components of the Pulmonaria extracts with the COX-2 demonstrated the abilities of ten compounds to bind with the enzyme, including rosmarinic acid, menisdaurin, globoidnan A and salvianolic acid H.
Collapse
|
17
|
Paun G, Neagu E, Albu C, Savin S, Radu GL. In Vitro Evaluation of Antidiabetic and Anti-Inflammatory Activities of Polyphenolic-Rich Extracts from Anchusa officinalis and Melilotus officinalis. ACS OMEGA 2020; 5:13014-13022. [PMID: 32548486 PMCID: PMC7288582 DOI: 10.1021/acsomega.0c00929] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 05/06/2023]
Abstract
This study was focused on the phytochemical composition and biological activities of Anchusa officinalis and Melilotus officinalis polyphenolic-rich extracts obtained by nanofiltration. The high-performance liquid chromatography-mass spectrometry analysis showed that chlorogenic acid and rosmarinic acid were the main phenolic acids in both extracts. The main flavonoid compound from A. officinalis extracts is luteolin, whereas rutin and isoquercitrin are the main flavonoids in M. officinalis. M. officinalis polyphenolic-rich extract had the highest α-amylase (from hog pancreas) inhibitory activity (IC50 = 1.30 ± 0.06 μg/mL) and α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity (IC50 = 92.18 ± 1.92 μg/mL). However, both extracts presented a significant α-glucosidase inhibitory activity. Furthermore, the hyaluronidase inhibition of polyphenolic-rich extracts also proved to be stronger (IC50 = 11.8 ± 0.1 μg/mL for M. officinalis and 36.5 ± 0.2 μg/mL for A. officinalis), but there was moderate or low lipoxygenase inhibition. The studies on the fibroblast cell line demonstrated that both A. officinalis and M. officinalis polyphenolic-rich extracts possess the cytotoxic effect at a concentration higher than 500 μg/mL. The experimental data suggest that both extracts are promising candidates for the development of natural antidiabetic and anti-inflammatory food supplements.
Collapse
|
18
|
Evaluation of Topical Anti-Inflammatory Effects of a Gel Formulation with Plantago Lanceolata, Achillea Millefolium, Aesculus Hippocastanum and Taxodium Distichum. Sci Pharm 2020. [DOI: 10.3390/scipharm88020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants hold a significant place as alternative treatments available for inflammatory diseases, with many phytoconstituents being frequently tested in vitro for their biological activities. In the current study, we investigated the in vivo anti-inflammatory properties of a novel active gel formulation, combining Achillea millefolium and Taxodium distichum essential oils with extracts of Aesculus hippocastanum seeds and Plantago lanceolata leaves. The toxicity of the obtained extracts and volatile oils was determined using the invertebrate model based on Daphnia magna. Anti-inflammatory potential was evaluated by the plethysmometric method on Wistar rats, expressed as the inhibition of the inflammatory oedema (%IIO), while the antinociceptive response was determined on NMRI mice, according to the tail-flick latency method. The tested gel’s efficacy was similar to the 5% diclofenac standard (maximal %IIO of 42.01% vs. 48.70%, respectively), with the anti-inflammatory effect being observed sooner than for diclofenac. Our active gel also produced a significant prolongation of tail-flick latencies at both 60 and 120 min, comparable to diclofenac. Consequently, we can imply that the active constituents present in vivo anti-inflammatory properties, and the prepared gel may be suited for use as an alternative treatment of topical inflammatory conditions.
Collapse
|
19
|
Lopes Neto JJ, Silva de Almeida T, Almeida Filho LCP, Rocha TM, Nogara PA, Nogara KF, Teixeira da Rocha JB, Almeida Moreira Leal LK, Urano Carvalho AF. Triplaris gardneriana seeds extract exhibits in vitro anti-inflammatory properties in human neutrophils after oxidative treatment. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112474. [PMID: 31836515 DOI: 10.1016/j.jep.2019.112474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triplaris gardneriana Wedd. (Polygonaceae family) is a plant species from Brazilian semiarid region which is used in local traditional medicine for the treatment of inflammatory conditions such as hemorrhoids. AIM OF THE STUDY In this study, the in vitro anti-inflammatory activity of different concentrations of ethanolic extract from T. gardneriana seeds (EETg) was performed in order to contribute to the knowledge about etnomedicinal use of this plant species. MATERIALS AND METHODS The anti-inflammatory properties were evaluated through different approaches, such as in vitro protein anti-denaturation test, scavenging of reactive oxygen species (ROS) and myeloperoxidase (MPO) inhibition in human neutrophils activated by phorbol-12-myristate-13-acetate (PMA). Besides that, molecular docking was performed to provide new insights about the interaction between the major phenolic components in the plant extract and MPO. RESULTS EETg was characterized showing a total phenol content of 153.5 ± 6.3 μg gallic acid equivalent/mg extract, ability to remove hydrogen peroxide (H2O2) in a concentration-dependent manner and had a spectroscopic profile which suggests the presence of hydroxyl groups. EETg was able to prevent protein denaturation ranging from 40.17 to 75.09%. The extract, at 10 and 20 μg/mL, was able to modulate neutrophils pro-inflammatory functions, such as degranulation and burst respiratory. In both assays, the EETg had anti-inflammatory effect comparable to nonsteroidal anti-inflammatory drugs. Among the main phenolic compounds of EETg, quercitrin, quercetin and catechin showed the highest binding affinity in silico to MPO. CONCLUSION This study demonstrated, for the first time, that the anti-inflammatory effect of T. gardneriana seeds occurs due to its modulatory effect on human neutrophil degranulation and free-radical scavenging activity.
Collapse
Affiliation(s)
- José Joaquim Lopes Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181, Fortaleza, CE, Brazil
| | - Thiago Silva de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181, Fortaleza, CE, Brazil
| | | | - Talita Magalhães Rocha
- Pharmaceutical and Cosmetics Studies Center (CEFAC), Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, 60430-370, Fortaleza, CE, Brazil
| | - Pablo Andrei Nogara
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Karise Fernanda Nogara
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | - Luzia Kalyne Almeida Moreira Leal
- Pharmaceutical and Cosmetics Studies Center (CEFAC), Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, 60430-370, Fortaleza, CE, Brazil
| | - Ana Fontenele Urano Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181, Fortaleza, CE, Brazil; Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil.
| |
Collapse
|
20
|
Slapšytė G, Dedonytė V, Adomėnienė A, Lazutka JR, Kazlauskaitė J, Ragažinskienė O, Venskutonis PR. Genotoxic properties of Betonica officinalis, Gratiola officinalis, Vincetoxicum luteum and Vincetoxicum hirundinaria extracts. Food Chem Toxicol 2019; 134:110815. [PMID: 31520668 DOI: 10.1016/j.fct.2019.110815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023]
Abstract
Genotoxicity of B. officinalis, G. officinalis, V. luteum and V. hirundinaria extracts, which demonstrated strong antioxidant capacity, was tested using chromosome aberration, sister chromatid exchange (SCE), cytokinesis-block micronucleus and alkaline single-cell gel electrophoresis (comet) assays in human lymphocytes in vitro and Ames Salmonella/microsome test. All tested extracts were not mutagenic in S. typhimurium strains TA98 and TA100 with and without metabolic activation and did not induce chromosome aberrations in human lymphocytes in vitro. Extract from G. officinalis was the only one, which induced significant increase in micronuclei, indicating possible aneugenic effect. All investigated plant extracts induced DNA damage evaluated by the comet assay, while B. officinalis and V. luteum extracts induced slight increase in SCE values. The determined variation in response might be due to the plant extract tested and donor susceptibility.
Collapse
Affiliation(s)
- Gražina Slapšytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Veronika Dedonytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aušra Adomėnienė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Jūratė Kazlauskaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ona Ragažinskienė
- Kaunas Botanical Garden, Vytautas Magnus University, Kaunas, Lithuania
| | | |
Collapse
|
21
|
Chemical and Bioactivity Evaluation of Eryngium planum and Cnicus benedictus Polyphenolic-Rich Extracts. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3692605. [PMID: 30993111 PMCID: PMC6434295 DOI: 10.1155/2019/3692605] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
This study evaluated the biological activities of Eryngium planum and of Cnicus benedictus extracts enriched in polyphenols obtained by nanofiltration. The HPLC-MS analysis showed that E. planum contains mainly flavonoids, especially rutin, while in C. benedictus extracts show the high concentration of the phenolic acids, principally the chlorogenic acid and sinapic acid. Herein, there is the first report of ursolic acid, genistin, and isorhamnetin in E. planum and C. benedictus. C. benedictus polyphenolic-rich extract showed high scavenging activity (IC50=0.0081 mg/mL) comparable to that of standard compound (ascorbic acid) and a higher reducing power (IC50= 0.082 mg/mL), with IC50 having a significantly lower value than IC50 for ascorbic acid. Both extracts were nontoxic to NCTC cell line. Among the investigated herbs, E. planum polyphenolic-rich extract showed the highest inhibitory activities with the IC50 value of 31.3 μg/mL for lipoxygenase and 24.6 μg/mL for hyaluronidase. Both polyphenolic-rich extracts had a higher inhibitory effect on α-amylase and α-glucosidase than that of the acarbose. The synergistic effect of ursolic acid, rutin, chlorogenic acid, rosmarinic acid, genistin, and daidzein identified in polyphenolic-rich extracts could be mainly responsible for the pharmacological potentials of the studied extracts used in managing inflammation and diabetes.
Collapse
|
22
|
|
23
|
Szewczyk K, Sezai Cicek S, Zidorn C, Granica S. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Nat Prod Res 2018; 33:2851-2855. [DOI: 10.1080/14786419.2018.1499644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Katarzyna Szewczyk
- Chair and Department of Pharmaceutical Botany, Medical University of Lublin, Lublin, Poland
| | - Serhat Sezai Cicek
- Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Zidorn
- Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|