1
|
H Elsayed A, Cao X, Marrero RJ, Nguyen NHK, Wu H, Ni Y, Ribeiro RC, Tobias H, Valk PJ, Béliveau F, Richard-Carpentier G, Hébert J, Zwaan CM, Gamis A, Kolb EA, Aplenc R, Alonzo TA, Meshinchi S, Rubnitz J, Pounds S, Lamba JK. Integrated drug resistance and leukemic stemness gene-expression scores predict outcomes in large cohort of over 3500 AML patients from 10 trials. NPJ Precis Oncol 2024; 8:168. [PMID: 39090192 PMCID: PMC11294346 DOI: 10.1038/s41698-024-00643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
In this study, we leveraged machine-learning tools by evaluating expression of genes of pharmacological relevance to standard-AML chemotherapy (ara-C/daunorubicin/etoposide) in a discovery-cohort of pediatric AML patients (N = 163; NCT00136084 ) and defined a 5-gene-drug resistance score (ADE-RS5) that was predictive of outcome (high MRD1 positivity p = 0.013; lower EFS p < 0.0001 and OS p < 0.0001). ADE-RS5 was integrated with a previously defined leukemic-stemness signature (pLSC6) to classify patients into four groups. ADE-RS5, pLSC6 and integrated-score was evaluated for association with outcome in one of the largest assembly of ~3600 AML patients from 10 independent cohorts (1861 pediatric and 1773 adult AML). Patients with high ADE-RS5 had poor outcome in validation cohorts and the previously reported pLSC6 maintained strong significant association in all validation cohorts. For pLSC6/ADE-RS5-integrated-score analysis, using Group-1 (low-scores for ADE-RS5 and pLSC6) as reference, Group-4 (high-scores for ADE-RS5 and pLSC6) showed worst outcome (EFS: p < 0.0001 and OS: p < 0.0001). Groups-2/3 (one high and one low-score) showed intermediate outcome (p < 0.001). Integrated score groups remained an independent predictor of outcome in multivariable-analysis after adjusting for established prognostic factors (EFS: Group 2 vs. 1, HR = 4.68, p < 0.001, Group 3 vs. 1, HR = 3.22, p = 0.01, and Group 4 vs. 1, HR = 7.26, p < 0.001). These results highlight the significant prognostic value of transcriptomics-based scores capturing disease aggressiveness through pLSC6 and drug resistance via ADE-RS5. The pLSC6 stemness score is a significant predictor of outcome and associates with high-risk group features, the ADE-RS5 drug resistance score adds further value, reflecting the clinical utility of simultaneous testing of both for optimizing treatment strategies.
Collapse
Affiliation(s)
- Abdelrahman H Elsayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xueyuan Cao
- Department of Health Promotion and Disease Prevention, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard J Marrero
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Nam H K Nguyen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yonhui Ni
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Herold Tobias
- Department of Medicine III, Ludwig Maximillans University Hospital, LMU Munich, Germany
| | - Peter J Valk
- Department of Hematology, Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - François Béliveau
- Quebec leukemia cell bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Guillaume Richard-Carpentier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Medical Oncology and Hematology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Josée Hébert
- Quebec leukemia cell bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Alan Gamis
- Division of Hematology/Oncology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Edward Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Richard Aplenc
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd A Alonzo
- COG Statistics and Data Center, Monrovia, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Cerovska E, Salek C, Kundrat D, Sestakova S, Pesek A, Brozinova I, Belickova M, Remesova H. ABC transporters are predictors of treatment failure in acute myeloid leukaemia. Biomed Pharmacother 2024; 170:115930. [PMID: 38039756 DOI: 10.1016/j.biopha.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION To date, no chemoresistance predictors are included in acute myeloid leukaemia (AML) prognostic scoring systems to distinguish responding and refractory AML patients prior to chemotherapy. ABC transporters have been described as altering AML chemosensitivity; however, a relevant study investigating their role at various molecular levels was lacking. METHODS Gene expression, genetic variants, methylation and activity of ABCA2, ABCA5, ABCB1, ABCB6, ABCC1, ABCC3 and ABCG2 were analysed in AML blasts and healthy myeloblasts. Differences between responding and refractory AML in a cohort of 113 patients treated with 3 + 7 induction therapy were explored. RESULTS ABCC3 variant rs2301837 (p = 0.049), ABCG2 variant rs11736552 (p = 0.044), higher ABCA2 (p = 0.021), ABCC1 (p = 0.017), and ABCG2 expression (p = 0.023) and a higher number of concurrently overexpressed transporters (p = 0.002) were predictive of treatment failure by multivariate analysis. Expression of ABCA5 (p = 0.003), ABCB6 (p = 0.001) and ABCC3 (p < 0.0001) increased significantly after chemotherapy. Higher ABCG2 promoter methylation correlated with lower ABCG2 expression (p = 0.0001). ABCC1 was identified as the most active transporter in AML blasts by functional analysis. CONCLUSIONS ABC transporters, especially ABCC1 seem to contribute substantially to AML chemoresistance. A detailed understanding of chemoresistance mechanisms and the clinical implications of chemosensitivity predictors may lead to alternative therapeutic approaches for AML patients with unveiled chemoresistance signatures.
Collapse
Affiliation(s)
- Ela Cerovska
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, Faculty of Science, Albertov 6, 128 00 Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, First Faculty of Medicine, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - David Kundrat
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Sarka Sestakova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Adam Pesek
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Ivana Brozinova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, First Faculty of Medicine, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Hana Remesova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Alinejad T, Modarressi S, Sadri Z, Hao Z, Chen CS. Diagnostic applications and therapeutic option of Cascade CRISPR/Cas in the modulation of miRNA in diverse cancers: promises and obstacles. J Cancer Res Clin Oncol 2023; 149:9557-9575. [PMID: 37222810 PMCID: PMC10423114 DOI: 10.1007/s00432-023-04747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology is a molecular tool specific to sequences for engineering genomes. Among diverse clusters of Cas proteins, the class 2/type II CRISPR/Cas9 system, despite several challenges, such as off-target effects, editing efficiency, and efficient delivery, has shown great promise for driver gene mutation discovery, high-throughput gene screening, epigenetic modulation, nucleic acid detection, disease modeling, and more importantly for therapeutic purposes. CRISPR-based clinical and experimental methods have applications across a wide range of areas, especially for cancer research and, possibly, anticancer therapy. On the other hand, given the influential role of microRNAs (miRNAs) in the regulations of cellular division, carcinogenicity, tumorigenesis, migration/invasion, and angiogenesis in diverse normal and pathogenic cellular processes, in different stages of cancer, miRNAs are either oncogenes or tumor suppressors, according to what type of cancer they are involved in. Hence, these noncoding RNA molecules are conceivable biomarkers for diagnosis and therapeutic targets. Moreover, they are suggested to be adequate predictors for cancer prediction. Conclusive evidence proves that CRISPR/Cas system can be applied to target small non-coding RNAs. However, the majority of studies have highlighted the application of the CRISPR/Cas system for targeting protein-coding regions. In this review, we specifically discuss diverse applications of CRISPR-based tools for probing miRNA gene function and miRNA-based therapeutic involvement in different types of cancers.
Collapse
Affiliation(s)
- Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Shabnam Modarressi
- Department of Food Microbiology, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C. Copenhagen, Denmark
| | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX USA
| | - Zuo Hao
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Cheng Shui Chen
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| |
Collapse
|
4
|
Arévalo CM, Cruz-Rodriguez N, Quijano S, Fiorentino S. Plant-derived extracts and metabolic modulation in leukemia: a promising approach to overcome treatment resistance. Front Mol Biosci 2023; 10:1229760. [PMID: 37520325 PMCID: PMC10382028 DOI: 10.3389/fmolb.2023.1229760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Leukemic cells acquire complex and often multifactorial mechanisms of resistance to treatment, including various metabolic alterations. Although the use of metabolic modulators has been proposed for several decades, their use in clinical practice has not been established. Natural products, the so-called botanical drugs, are capable of regulating tumor metabolism, particularly in hematopoietic tumors, which could partly explain the biological activity attributed to them for a long time. This review addresses the most recent findings relating to metabolic reprogramming-Mainly in the glycolytic pathway and mitochondrial activity-Of leukemic cells and its role in the generation of resistance to conventional treatments, the modulation of the tumor microenvironment, and the evasion of immune response. In turn, it describes how the modulation of metabolism by plant-derived extracts can counteract resistance to chemotherapy in this tumor model and contribute to the activation of the antitumor immune system.
Collapse
Affiliation(s)
- Cindy Mayerli Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Rodríguez-Macías G, Briz O, Cives-Losada C, Chillón MC, Martínez-Laperche C, Martínez-Arranz I, Buño I, González-Díaz M, Díez-Martín JL, Marin JJG, Macias RIR. Role of Intracellular Drug Disposition in the Response of Acute Myeloid Leukemia to Cytarabine and Idarubicin Induction Chemotherapy. Cancers (Basel) 2023; 15:3145. [PMID: 37370755 DOI: 10.3390/cancers15123145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Despite its often low efficacy and high toxicity, the standard treatment for acute myeloid leukemia (AML) is induction chemotherapy with cytarabine and idarubicin. Here, we have investigated the role of transporters and drug-metabolizing enzymes in this poor outcome. The expression levels (RT-qPCR) of potentially responsible genes in blasts collected at diagnosis were related to the subsequent response to two-cycle induction chemotherapy. The high expression of uptake carriers (ENT2), export ATP-binding cassette (ABC) pumps (MDR1), and enzymes (DCK, 5-NT, and CDA) in the blasts was associated with a lower response. Moreover, the sensitivity to cytarabine in AML cell lines was associated with ENT2 expression, whereas the expression of ABC pumps and enzymes was reduced. No ability of any AML cell line to export idarubicin through the ABC pumps, MDR1 and MRP, was found. The exposure of AML cells to cytarabine or idarubicin upregulated the detoxifying enzymes (5-NT and DCK). In AML patients, 5-NT and DCK expression was associated with the lack of response to induction chemotherapy (high sensitivity and specificity). In conclusion, in the blasts of AML patients, the reduction of the intracellular concentration of the active metabolite of cytarabine, mainly due to the increased expression of inactivating enzymes, can determine the response to induction chemotherapy.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Macías
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Hematology, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - María C Chillón
- Hematology, Biomedical Research Institute of Salamanca, Salamanca University Hospital, 37007 Salamanca, Spain
- CIBER in Oncology (CIBER-ONC), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain
| | | | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marcos González-Díaz
- Hematology, Biomedical Research Institute of Salamanca, Salamanca University Hospital, 37007 Salamanca, Spain
- CIBER in Oncology (CIBER-ONC), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - José L Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
6
|
Persaud AK, Bernier MC, Massey MA, Agrawal S, Kaur T, Nayak D, Xie Z, Weadick B, Raj R, Hill K, Abbott N, Joshi A, Anabtawi N, Bryant C, Somogyi A, Cruz-Monserrate Z, Amari F, Coppola V, Sparreboom A, Baker SD, Unadkat JD, Phelps MA, Govindarajan R. Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice. Nat Commun 2023; 14:3175. [PMID: 37264059 PMCID: PMC10235067 DOI: 10.1038/s41467-023-38789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael A Massey
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Life Sciences Education, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Shipra Agrawal
- Division of Nephrology & Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tejinder Kaur
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiliang Xie
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kasey Hill
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Nicole Abbott
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadeen Anabtawi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Claire Bryant
- Center for Clinical & Translational Research, Nationwide Children's Hospital, Columbus, OH, 43210, USA
| | - Arpad Somogyi
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Bae KH, Lai F, Oruc B, Osato M, Chen Q, Kurisawa M. Self-Assembled Daunorubicin/Epigallocatechin Gallate Nanocomplex for Synergistic Reversal of Chemoresistance in Leukemia. Int J Mol Sci 2022; 24:ijms24010381. [PMID: 36613821 PMCID: PMC9820275 DOI: 10.3390/ijms24010381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chemoresistance is one of the major challenges for the treatment of acute myeloid leukemia. Epigallocatechin gallate (EGCG), a bioactive polyphenol from green tea, has attracted immense interest as a potential chemosensitizer, but its application is limited due to the need for effective formulations capable of co-delivering EGCG and anti-leukemic drugs. Herein, we describe the formation and characterization of a micellar nanocomplex self-assembled from EGCG and daunorubicin, an anthracycline drug for the first-line treatment of acute myeloid leukemia. This nanocomplex was highly stable at pH 7.4 but stimulated to release the incorporated daunorubicin at pH 5.5, mimicking an acidic endosomal environment. More importantly, the nanocomplex exhibited superior cytotoxic efficacy against multidrug-resistant human leukemia cells over free daunorubicin by achieving a strong synergism, as supported by median-effect plot analysis. The observed chemosensitizing effect was in association with enhanced nucleus accumulation of daunorubicin, elevation of intracellular reactive oxygen species and caspase-mediated apoptosis induction. Our study presents a promising strategy for circumventing chemoresistance for more effective leukemia therapy.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, The Proteos, Singapore 138673, Singapore
| | - Betul Oruc
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, The Proteos, Singapore 138673, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
- Correspondence:
| |
Collapse
|
8
|
Curcumin Modulates Oxidative Stress, Fibrosis, and Apoptosis in Drug-Resistant Cancer Cell Lines. Life (Basel) 2022; 12:life12091427. [PMID: 36143462 PMCID: PMC9504331 DOI: 10.3390/life12091427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
In cancer management, drug resistance remains a challenge that reduces the effectiveness of chemotherapy. Several studies have shown that curcumin resensitizes cancer cells to chemotherapeutic drugs to overcome resistance. In the present study, we investigate the potential therapeutic role of curcumin in regulating the proliferation of drug-resistant cancers. Six drug-sensitive (MCF7, HCT116, and A549) and -resistant (MCF7/TH, HCT116R, and A549/ADR) cancer cell lines were treated with curcumin followed by an analysis of cytotoxicity, LDH enzyme, total reactive oxygen species, antioxidant enzymes (SOD and CAT), fibrosis markers (TGF-β1 protein, fibronectin, and hydroxyproline), and expression of cellular apoptotic markers (Bcl-2, Bax, Bax/Bcl-2 ratio, Annexin V, cytochrome c, and caspase-8). Additionally, the expression of cellular SIRT1 was estimated by ELISA and RT-PCR analysis. Curcumin treatment at doses of 2.7–54.3 µM significantly reduced the growth of sensitive and resistant cells as supported with decreased viability and increased cellular LDH enzyme of treated cells compared to controls non-treated cells. Curcumin also at doses of 2.7 and 54.3 µM regulated the fibrogenesis by reducing the expression of fibrotic markers in treated cells. Analysis of apoptotic markers indicated increased Bax, Bax, Bax/Bcl-2 ratio, Annexin V, caspase-8, and cytochrome c expression, while Bcl-2 expressions were significantly reduced. In curcumin-treated cells at 2.7 μM, non-significant change in ROS with significant increase in SOD and CAT activity was observed, whereas an increase in ROS with a reduction in respective antioxidant enzymes were seen at higher concentrations along with significant upregulation of SIRT1. In conclusion, the present study shows that curcumin induces anticancer activity against resistant cancer cell lines in a concentration- and time-dependent manner. The protective activities of curcumin against the growth of cancer cells are mediated by modulating oxidative stress, regulating fibrosis, SIRT1 activation, and inducing cellular apoptosis. Therefore, curcumin could be tested as an auxiliary therapeutic agent to improve the prognosis in patients with resistant cancers.
Collapse
|
9
|
Shaikh S, Shaikh J, Naba YS, Doke K, Ahmed K, Yusufi M. Curcumin: reclaiming the lost ground against cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:298-320. [PMID: 35582033 PMCID: PMC9019276 DOI: 10.20517/cdr.2020.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Curcumin, a polyphenol, has a wide range of biological properties such as anticancer, antibacterial, antitubercular, cardioprotective and neuroprotective. Moreover, the anti-proliferative activities of Curcumin have been widely studied against several types of cancers due to its ability to target multiple pathways in cancer. Although Curcumin exhibited potent anticancer activity, its clinical use is limited due to its poor water solubility and faster metabolism. Hence, there is an immense interest among researchers to develop potent, water-soluble, and metabolically stable Curcumin analogs for cancer treatment. While drug resistance remains a major problem in cancer therapy that renders current chemotherapy ineffective, curcumin has shown promise to overcome the resistance and re-sensitize cancer to chemotherapeutic drugs in many studies. In the present review, we are summarizing the role of curcumin in controlling the proliferation of drug-resistant cancers and development of curcumin-based therapeutic applications from cell culture studies up to clinical trials.
Collapse
Affiliation(s)
- Siraj Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Javed Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Yusufi Sadia Naba
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India
| | - Kailas Doke
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Khursheed Ahmed
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Mujahid Yusufi
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| |
Collapse
|
10
|
Zhang Y, Cheng J, Li J, He J, Li X, Xu F. The GLP-1R Agonist Exendin-4 Attenuates Hyperglycemia-Induced Chemoresistance in Human Endometrial Cancer Cells Through ROS-Mediated Mitochondrial Pathway. Front Oncol 2022; 11:793530. [PMID: 34988025 PMCID: PMC8721044 DOI: 10.3389/fonc.2021.793530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to assess the effects of the antidiabetic drug Exendin-4 (Exe-4), a GLP-1 receptor agonist, on the response of human endometrial cancer cells to chemotherapy under high glucose (HG) conditions. Cell viability was detected using a cell counting kit (CCK)-8. Cell apoptosis and reactive oxygen species (ROS) levels were measured by flow cytometry. Gene expression was evaluated by real-time PCR and immunoblotting. The chemotherapeutic drug cisplatin (DDP) dose-dependently inhibited both human endometrial adenocarcinoma Ishikawa and HEC1B cells, a response reversed by HG. Meanwhile, Exe-4 attenuated hyperglycemia’s effect by elevating intracellular lactate dehydrogenase (LDH) and ROS production. Similarly, DDP-induced elevation of intracellular rhodamine123 was attenuated by HG, and Exe-4 reversed HG’s impact. The chemoresistance genes multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein (Pgp) were upregulated. At the same time, topoisomerase II (TOPO II) was downregulated under HG conditions, suggesting HG-induced chemoresistance. Exe-4 did not significantly influence the above genes. DDP downregulated Bcl-2 and Bcl-XL and upregulated Bax, cytosolic cytochrome c, and PARP under normal glucose (NG) versus HG conditions, and Exe-4 attenuated these effects. Upstream of Bax/Bcl, acetylated P53 was upregulated by DDP and downregulated by HG, whose effect was reversed by Exe-4. DPP treatment significantly induced apoptosis and cell cycle arrest in the S phase under NG, and HG reduced these effects. Prolonged exposure to HG induces DDP chemoresistance in human endometrial cancer cells but is alleviated by Exe-4.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gynecology, Third Affiliated Hospital, Sun-Yet Sen University, Guangzhou, China
| | - Juan Cheng
- Department of Gynecology, Third Affiliated Hospital, Sun-Yet Sen University, Guangzhou, China
| | - Jing Li
- Department of Gynecology, Third Affiliated Hospital, Sun-Yet Sen University, Guangzhou, China
| | - Junxian He
- Department of Gynecology, Third Affiliated Hospital, Sun-Yet Sen University, Guangzhou, China
| | - Xiaomao Li
- Department of Gynecology, Third Affiliated Hospital, Sun-Yet Sen University, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|
11
|
Development of Multidrug Resistance in Acute Myeloid Leukemia Is Associated with Alterations of the LPHN1/GAL-9/TIM-3 Signaling Pathway. Cancers (Basel) 2021; 13:cancers13143629. [PMID: 34298843 PMCID: PMC8304048 DOI: 10.3390/cancers13143629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
P-glycoprotein (known as ABCB1 transporter) expression in myeloid blasts of acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) leads to the commonly observed multidrug resistance. Overexpression of latrophilin-1 was detected in leukemic cells from AML patients. In a previous study, we showed that ABCB1 overexpression is associated with decreased latrophilin-1 expression in MOLM-13/VCR and SKM-1/VCR AML cell variants derived from MOLM-13 and SKM-1 cells by vincristine selection/adaptation. In the present study, we found that if ABCB1 overexpression occurs in myeloid blasts of newly diagnosed MDS patients, latrophilin-1 expression is attenuated. Latrophilin-1 may initiate TIM-3- and galectin-9-mediated immune escape. We demonstrated changes in the expression of both proteins by comparing ABCB1-positive cell variants (MOLM-13/VCR, SKM-1/VCR) with their ABCB1-negative counterparts. Galectin-9 was present in our cell lines in eight protein isoforms for which we identified the respective transcription variants resulting from alternative splicing, and we verified their structure by sequencing. The isoform profile of galectin-9 was different between ABCB1-positive and ABCB1-negative cell variants. The interaction partner of galectin-9 is CD44, and its expression was altered in the ABCB1-positive variants MOLM-13/VCR and SKM-1/VCR compared to their ABCB1-negative counterparts.
Collapse
|
12
|
Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sánchez I, Mora-García MDL, Weiss-Steider B, Santiago-Osorio E. Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. Int J Mol Sci 2021; 22:ijms22094955. [PMID: 34066940 PMCID: PMC8124548 DOI: 10.3390/ijms22094955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in older adults, is a heterogeneous disease that originates from the clonal expansion of undifferentiated hematopoietic progenitor cells. These cells present a remarkable variety of genes and proteins with altered expression and function. Despite significant advances in understanding the molecular panorama of AML and the development of therapies that target mutations, survival has not improved significantly, and the therapy standard is still based on highly toxic chemotherapy, which includes cytarabine (Ara-C) and allogeneic hematopoietic cell transplantation. Approximately 60% of AML patients respond favorably to these treatments and go into complete remission; however, most eventually relapse, develop refractory disease or chemoresistance, and do not survive for more than five years. Therefore, drug resistance that initially occurs in leukemic cells (primary resistance) or that develops during or after treatment (acquired resistance) has become the main obstacle to AML treatment. In this work, the main molecules responsible for generating chemoresistance to Ara-C in AML are discussed, as well as some of the newer strategies to overcome it, such as the inclusion of molecules that can induce synergistic cytotoxicity with Ara-C (MNKI-8e, emodin, metformin and niclosamide), subtoxic concentrations of chemotherapy (PD0332991), and potently antineoplastic treatments that do not damage nonmalignant cells (heteronemin or hydroxyurea + azidothymidine).
Collapse
Affiliation(s)
- Guadalupe Rosario Fajardo-Orduña
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
| | - Benny Weiss-Steider
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
- Correspondence: ; Tel.: +52-55-57-73-41-08
| |
Collapse
|
13
|
Fuchs O, Bokorova R. Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovasc Hematol Disord Drug Targets 2021; 21:7-22. [PMID: 33687890 DOI: 10.2174/1871529x21666210308111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
Collapse
Affiliation(s)
- Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
14
|
Olaparib Synergizes the Anticancer Activity of Daunorubicin via Interaction with AKR1C3. Cancers (Basel) 2020; 12:cancers12113127. [PMID: 33114555 PMCID: PMC7693014 DOI: 10.3390/cancers12113127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Sample summary Anthracyclines (ANT) are anti-tumor agents frequently used for the treatment of various cancers. Unfortunately, their clinical success is overshadowed by the emergence of drug resistance. Metabolism by carbonyl reducing enzymes (CREs) represents a critical mechanism of ANT resistance. Here, we have explored possible interactions of CREs with olaparib, an FDA-approved targeted chemotherapeutic. Although olaparib has been demonstrated to potentiate the antiproliferative effect of ANT in experimental models, the causing mechanisms remain unclear. In our study, we demonstrated that olaparib potently inhibits the AKR1C3 reductase at clinically relevant concentrations. Furthermore, we showed that this interaction mediates the reversal of ANT resistance and thus represents a critical mechanism of the synergy between ANT and olaparib. Our observations represent valuable knowledge that could be transformed into the more effective therapy of AKR1C3-expressing tumors. Abstract Olaparib is a potent poly (ADP-ribose) polymerase inhibitor currently used in targeted therapy for treating cancer cells with BRCA mutations. Here we investigate the possible interference of olaparib with daunorubicin (Daun) metabolism, mediated by carbonyl-reducing enzymes (CREs), which play a significant role in the resistance of cancer cells to anthracyclines. Incubation experiments with the most active recombinant CREs showed that olaparib is a potent inhibitor of the aldo–keto reductase 1C3 (AKR1C3) enzyme. Subsequent inhibitory assays in the AKR1C3-overexpressing cellular model transfected human colorectal carcinoma HCT116 cells, demonstrating that olaparib significantly inhibits AKR1C3 at the intracellular level. Consequently, molecular docking studies have supported these findings and identified the possible molecular background of the interaction. Drug combination experiments in HCT116, human liver carcinoma HepG2, and leukemic KG1α cell lines showed that this observed interaction can be exploited for the synergistic enhancement of Daun’s antiproliferative effect. Finally, we showed that olaparib had no significant effect on the mRNA expression of AKR1C3 in HepG2 and KG1α cells. In conclusion, our data demonstrate that olaparib interferes with anthracycline metabolism, and suggest that this phenomenon might be utilized for combating anthracycline resistance.
Collapse
|
15
|
Carotenuto P, Hedayat S, Fassan M, Cardinale V, Lampis A, Guzzardo V, Vicentini C, Scarpa A, Cascione L, Costantini D, Carpino G, Alvaro D, Ghidini M, Trevisani F, Te Poele R, Salati M, Ventura S, Vlachogiannis G, Hahne JC, Boulter L, Forbes SJ, Guest RV, Cillo U, Said‐Huntingford I, Begum R, Smyth E, Michalarea V, Cunningham D, Rimassa L, Santoro A, Roncalli M, Kirkin V, Clarke P, Workman P, Valeri N, Braconi C. Modulation of Biliary Cancer Chemo-Resistance Through MicroRNA-Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology 2020; 72:982-996. [PMID: 31879968 PMCID: PMC7590111 DOI: 10.1002/hep.31094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Changes in single microRNA (miRNA) expression have been associated with chemo-resistance in biliary tract cancers (BTCs). However, a global assessment of the dynamic role of the microRNome has never been performed to identify potential therapeutic targets that are functionally relevant in the BTC cell response to chemotherapy. APPROACH AND RESULTS High-throughput screening (HTS) of 997 locked nucleic acid miRNA inhibitors was performed in six cholangiocarcinoma cell lines treated with cisplatin and gemcitabine (CG) seeking changes in cell viability. Validation experiments were performed with mirVana probes. MicroRNA and gene expression was assessed by TaqMan assay, RNA-sequencing, and in situ hybridization in four independent cohorts of human BTCs. Knockout of microRNA was achieved by CRISPR-CAS9 in CCLP cells (MIR1249KO) and tested for effects on chemotherapy sensitivity in vitro and in vivo. HTS revealed that MIR1249 inhibition enhanced chemotherapy sensitivity across all cell lines. MIR1249 expression was increased in 41% of cases in human BTCs. In validation experiments, MIR1249 inhibition did not alter cell viability in untreated or dimethyl sulfoxide-treated cells; however, it did increase the CG effect. MIR1249 expression was increased in CD133+ biliary cancer cells freshly isolated from the stem cell niche of human BTCs as well as in CD133+ chemo-resistant CCLP cells. MIR1249 modulated the chemotherapy-induced enrichment of CD133+ cells by controlling their clonal expansion through the Wnt-regulator FZD8. MIR1249KO cells had impaired expansion of the CD133+ subclone and its enrichment after chemotherapy, reduced expression of cancer stem cell markers, and increased chemosensitivity. MIR1249KO xenograft BTC models showed tumor shrinkage after exposure to weekly CG, whereas wild-type models showed only stable disease over treatment. CONCLUSIONS MIR1249 mediates resistance to CG in BTCs and may be tested as a target for therapeutics.
Collapse
|
16
|
Herold N. Pharmacological strategies to overcome treatment resistance in acute myeloid leukemia: increasing leukemic drug exposure by targeting the resistance factor SAMHD1 and the toxicity factor Top2β. Expert Opin Drug Discov 2020; 16:7-11. [PMID: 32866407 DOI: 10.1080/17460441.2020.1811672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet , Stockholm, Sweden.,Paediatric Oncology, Theme of Children's Health, Karolinska University Hospital Solna , Stockholm, Sweden
| |
Collapse
|
17
|
Wise JG, Nanayakkara AK, Aljowni M, Chen G, De Oliveira MC, Ammerman L, Olengue K, Lippert AR, Vogel PD. Optimizing Targeted Inhibitors of P-Glycoprotein Using Computational and Structure-Guided Approaches. J Med Chem 2019; 62:10645-10663. [PMID: 31702922 PMCID: PMC7031812 DOI: 10.1021/acs.jmedchem.9b00966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of ABC transporters like P-glycoprotein (P-gp) has been correlated with resistances in cancer chemotherapy. Intensive efforts to identify P-gp inhibitors for use in combination therapy have not led to clinically approved inhibitors to date. Here, we describe computational approaches combined with structure-based design to improve the characteristics of a P-gp inhibitor previously identified by us. This hit compound represents a novel class of P-gp inhibitors that specifically targets and inhibits P-gp ATP hydrolysis while not being transported by the pump. We describe here a new program for virtual chemical synthesis and computational assessment, ChemGen, to produce hit compound variants with improved binding characteristics. The chemical syntheses of several variants, efficacy in reversing multidrug resistance in cell culture, and biochemical assessment of the inhibition mechanism are described. The usefulness of the computational predictions of binding characteristics of the inhibitor variants is discussed and compared to more traditional structure-based approaches.
Collapse
Affiliation(s)
- John G. Wise
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Amila K. Nanayakkara
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Maha Aljowni
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- Department of Chemistry, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Gang Chen
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Maisa C. De Oliveira
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Lauren Ammerman
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Ketetha Olengue
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Alexander R. Lippert
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- Department of Chemistry, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Pia D. Vogel
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| |
Collapse
|
18
|
Nanayakkara AK, Vogel PD, Wise JG. Prolonged inhibition of P-glycoprotein after exposure to chemotherapeutics increases cell mortality in multidrug resistant cultured cancer cells. PLoS One 2019; 14:e0217940. [PMID: 31173617 PMCID: PMC6555590 DOI: 10.1371/journal.pone.0217940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
One common reason for cancer chemotherapy failure is increased drug efflux catalyzed by membrane transporters with broad pump substrate specificities, which leads to resistances to a wide range of chemically unrelated drugs. This multidrug resistance (MDR) phenomenon results in failed therapies and poor patient prognoses. A common cause of MDR is over-expression of the P-glycoprotein (ABCB1/P-gp) transporter. We report here on an MDR modulator that is a small molecule inhibitor of P-glycoprotein, but is not a pump substrate for P-gp and we show for the first time that extended exposure of an MDR prostate cancer cell line to the inhibitor following treatment with chemotherapeutics and inhibitor resulted in trapping of the chemotherapeutics within the cancerous cells. This trapping led to decreased cell viability, survival, and motility, and increased indicators of apoptosis in the cancerous cells. In contrast, extended exposure of non-Pgp-overexpressing cells to the inhibitor during and after similar chemotherapy treatments did not lead to decreased cell viability and survival, indicating that toxicity of the chemotherapeutic was not increased by the inhibitor. Increases in efficacy in treating MDR cancer cells without increasing toxicity to normal cells by such extended inhibitor treatment might translate to increased clinical efficacy of chemotherapies if suitable inhibitors can be developed.
Collapse
Affiliation(s)
- Amila K. Nanayakkara
- Center for Drug Discovery, Design and Delivery, The Center for Scientific Computing, and The Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
| | - Pia D. Vogel
- Center for Drug Discovery, Design and Delivery, The Center for Scientific Computing, and The Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- * E-mail: (JGW); (PDV)
| | - John G. Wise
- Center for Drug Discovery, Design and Delivery, The Center for Scientific Computing, and The Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
- * E-mail: (JGW); (PDV)
| |
Collapse
|
19
|
Mayer LD, Tardi P, Louie AC. CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine 2019; 14:3819-3830. [PMID: 31213803 PMCID: PMC6537039 DOI: 10.2147/ijn.s139450] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Combination regimens are a standard of care for many cancers. However, components of such regimens are typically first developed individually and subsequently combined using strategies to minimize toxicity. Little or no consideration is given to strategies that potentially maximize efficacy. In contrast, CPX-351 (Vyxeos®) is a dual-drug liposomal encapsulation of cytarabine and daunorubicin that was rationally designed to improve efficacy over the traditional 7+3 cytarabine/daunorubicin chemotherapy regimen for patients with acute myeloid leukemia (AML). The notable clinical efficacy of CPX-351 is achieved through maintenance of a synergistic 5:1 molar ratio of cytarabine and daunorubicin within the liposome after intravenous injection. The CPX-351 liposome, which is formulated to contain bilayers of distearoylphosphatidylcholine, distearoylphosphatidylglycerol, and cholesterol at a 7:2:1 molar ratio and remains in a gel phase at body temperature, provides stability without polyethylene glycol, controlled release of cytarabine and daunorubicin, limited systemic drug distribution, and preferential internalization within malignant myeloblasts in the bone marrow via active uptake of liposomes into cytoplasmic vacuoles. Thus, the CPX-351 liposome protects cytarabine and daunorubicin from metabolism and elimination, while overcoming pharmacokinetic differences between the two agents. In clinical studies, these liposome properties markedly increased the elimination half-life of CPX-351 versus free cytarabine and daunorubicin and maintained a synergistic drug ratio for over 24 hrs after administration. Preferential uptake of liposomes by leukemia cells suggests that relatively large amounts of cytarabine and daunorubicin enter malignant cells via liposomes, potentially bypassing P-glycoprotein-based efflux pumps, which are important mediators of chemotherapy resistance, and contribute to the rapid clearance of leukemia cells from the circulation and bone marrow. These pharmacologic advantages, a direct consequence of properties of the encapsulating liposome, may explain the efficacy of CPX-351 in patients with newly diagnosed high-risk/secondary AML and the reduced drug exposure in off-target tissues that contribute to a manageable safety profile.
Collapse
Affiliation(s)
| | - Paul Tardi
- Jazz Pharmaceuticals, Inc., Palo Alto, CA, USA
| | | |
Collapse
|
20
|
Kolesnikova M, Sen'kova A, Tairova S, Ovchinnikov V, Pospelova T, Zenkova M. Clinical and Prognostic Significance of Cell Sensitivity to Chemotherapy Detected in vitro on Treatment Response and Survival of Leukemia Patients. J Pers Med 2019; 9:jpm9020024. [PMID: 31067780 PMCID: PMC6617197 DOI: 10.3390/jpm9020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in leukemia treatment. The objective of this study was to identity predictors of MDR to allow for rapid and economical assessment of the efficacy of planned antitumor therapy for leukemia patients. The study included 113 patients with acute and chronic leukemias. Prior to antitumor therapy, we measured the sensitivity of tumor cells of patients to the panel of chemotherapeutic drugs, together with MDR1 mRNA and P-glycoprotein (P-gp) expression as one of the mechanisms of MDR, and compared these data with the response to therapy. The scales for leukemia patients according to therapy response, drug sensitivity of tumor cells, MDR1 mRNA and P-gp levels, and the presence of unfavorable immunological and cytogenetic markers were introduced for subsequent correlation analysis. We show that the drug resistance of tumor cells of leukemia patients estimated in vitro at diagnosis correlates with a poor response to chemotherapy and is usually combined with aberrant and immature immunological markers, cytogenetic abnormalities, and a high expression of MDR1 mRNA and P-gp. All together, these factors indicate unfavorable prognosis and low survival of leukemia patients. Thus, the sensitivity of tumor cells to chemotherapeutic drugs measured in vitro at diagnosis may have prognostic value for individual types of leukemia.
Collapse
Affiliation(s)
- Maria Kolesnikova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Aleksandra Sen'kova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| | - Sofia Tairova
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Viktor Ovchinnikov
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Tatiana Pospelova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Marina Zenkova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
21
|
Bergandi L, Mungo E, Morone R, Bosco O, Rolando B, Doublier S. Hyperglycemia Promotes Chemoresistance Through the Reduction of the Mitochondrial DNA Damage, the Bax/Bcl-2 and Bax/Bcl-XL Ratio, and the Cells in Sub-G1 Phase Due to Antitumoral Drugs Induced-Cytotoxicity in Human Colon Adenocarcinoma Cells. Front Pharmacol 2018; 9:866. [PMID: 30150934 PMCID: PMC6099160 DOI: 10.3389/fphar.2018.00866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetes and cancer are common, chronic, and potentially fatal diseases that frequently co-exist. Observational studies clearly indicate that the risk of several types of cancer is increased in diabetic patients and a number of cancer types have shown a higher mortality rate in patients with hyperglycemic associated pathologies. This scenario could be due, at least in part, to a lower efficacy of the cancer treatments which needs to be better investigated. Here, we evaluated the effects of a prolonged exposure to high glucose (HG) to the response to chemotherapy on human colon adenocarcinoma HT29 and LOVO cell lines. We observed that hyperglycemia protected against the decreased cell viability and cytotoxicity and preserved from the mitochondrial DNA lesions induced by doxorubicin (DOX) and 5-fluorouracil (5-FU) treatments by lowering ROS production. In HT29 cells the amount of intracellular DOX and its nuclear localization were not modified by HG incubation in terms of Pgp, BCRP, MRP1, 5 and 8 activity and gene expression. On the contrary, in LOVO cells, the amount of intracellular DOX was significantly decreased after a bolus of DOX in HG condition and the expression and activity of MPR1 was increased, suggesting that HG promotes drug chemoresistance in both HT29 and LOVO cells, but in a different way. In both cell types, HG condition prevented the susceptibility to apoptosis by decreasing the ratio Bax/Bcl-2 and Bax/Bcl-XL and diminished the level of cytosolic cytochrome c and the cleavage of full length of PARP induced by DOX and 5-FU. Finally, hyperglycemia reduced cell death by decreasing the cell percentage in sub-G1 peak induced by DOX (via a cell cycle arrest in the G2/M phase) and 5-FU (via a cell cycle arrest in the S phase) in HT29 and LOVO cells. Taken together, our data showed that a prolonged exposure to HG protects human colon adenocarcinoma cells from the cytotoxic effects of two widely used chemotherapeutic drugs, impairing the effectiveness of the chemotherapy itself.
Collapse
Affiliation(s)
| | - Eleonora Mungo
- Department of Oncology, University of Turin, Turin, Italy
| | - Rosa Morone
- Department of Oncology, University of Turin, Turin, Italy
| | - Ornella Bosco
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | |
Collapse
|
22
|
Chen P, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Chen XP. Influence of UGT1A1 polymorphisms on the outcome of acute myeloid leukemia patients treated with cytarabine-base regimens. J Transl Med 2018; 16:197. [PMID: 30016963 PMCID: PMC6050722 DOI: 10.1186/s12967-018-1579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS UDP-glucuronosyltransferase 1A subfamily (UGT1A) enzymes can inactivate cytarabine (Ara-C) by glucuronidation, and thus serves as candidate genes for interindividual difference in Ara-C response. UGT1A1 is a major UGT1A isoform expressed in human liver. METHODS UGT1A1*6 and *28 polymorphisms resulting in reduced UGT1A1 activity were genotyped in 726 adult acute myeloid leukemia (AML) patients treated with Ara-C based regimens. Influences of both polymorphisms on chemosensitivity and disease prognosis of the patients were evaluated. RESULTS After one or two courses of Ara-C based induction chemotherapy, the complete remission (CR) rate was significantly higher in patients carrying the UGT1A1*6 (77.0%) or the UGT1A1*28 (76.4%) alleles as compared with corresponding wild-type homozygotes (66.9 and 68.5%, respectively). Carriers of the UGT1A1*6 or *28 alleles showed significantly decreased risk of non-CR (OR = 0.528, 95% CI 0.379-0.737, P = 1.7 × 10-4) and better overall survival (HR = 0.787, 95% CI 0.627-0.990, P = 0.040) as compared with homozygotes for both polymorphisms. CONCLUSION Our results suggest that UGT1A1*28 and UGT1A1*6 are associated with improved clinical outcomes in Chinese AML patients treated with Ara-C.
Collapse
Affiliation(s)
- Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Role of drug transporters in the sensitivity of acute myeloid leukemia to sorafenib. Oncotarget 2018; 9:28474-28485. [PMID: 29983874 PMCID: PMC6033373 DOI: 10.18632/oncotarget.25494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background Chemoresistance often limits the success of the pharmacological treatment in acute myeloid leukemia (AML) patients. Although positive results have been obtained with tyrosine kinase inhibitors (TKIs), such as sorafenib, especially in patients with Fms-like tyrosine kinase 3 (FLT3)-positive AML, the success of chemotherapy is very heterogeneous. Here we have investigated in vitro whether the transportome (set of expressed plasma membrane transporters) is involved in the differential response of AML to sorafenib. Methods The sensitivity to sorafenib-induced cell death (MTT test and anexin V/7-AAD method) was evaluated in five different cell lines: MOLM-13, OCI-AML2, HL-60, HEL and K-562. The transportome was characterized by measuring mRNA using RT-qPCR. Drug uptake/efflux was determined by flow cytometry using specific substrates and inhibitors. Results The cytostatic response to sorafenib was: MOLM-13>>OCI-AML2>HL-60>HEL≈K-562. Regarding efflux pumps, MDR1 was highly expressed in HEL>K-562≈MOLM-13, but not in OCI-AML2 and HL-60. BCRP and MPR3 expression was low in all cell lines, whereas MRP4 and MRP5 expression was from moderate to high. Flow cytometry studies demonstrated that MRP4, but not MRP5, was functional. The expression of the organic cation transporter 1 (OCT1), involved in sorafenib uptake, was MOLM-13>OCI-AML2≈HL-60 and non detectable in HEL and K-562. Transfection of HEL cells with OCT1 increased the sensitivity of these cells to sorafenib, whereas inactive genetic variants failed to induce this change. Conclusion Together with changes in the expression/function of receptors targeted by TKIs, the expression of plasma membrane transporters involved in sorafenib uptake/efflux may affect the response of leukemia cells to this drug.
Collapse
|
24
|
Sterner RM, Kremer KN, Dudakovic A, Westendorf JJ, van Wijnen AJ, Hedin KE. Tissue-Nonspecific Alkaline Phosphatase Is Required for MC3T3 Osteoblast-Mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis. THE JOURNAL OF IMMUNOLOGY 2018; 201:1086-1096. [PMID: 29914885 DOI: 10.4049/jimmunol.1800174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 01/21/2023]
Abstract
The bone marrow microenvironment harbors and protects leukemic cells from apoptosis-inducing agents via mechanisms that are incompletely understood. We previously showed SDF-1 (CXCL-12), a chemokine readily abundant within the bone marrow microenvironment, induces apoptosis in acute myeloid leukemia (AML) cells that express high levels of the SDF-1 receptor CXCR4. However, differentiating osteoblasts found within this niche protect cocultured AML cells from apoptosis. Additionally, this protection was abrogated upon treatment of the differentiating osteoblasts with histone deacetylase inhibitors (HDACi). In this study, we begin to characterize and target the molecular mechanisms that mediate this osteoblast protection. Quantitative RT-PCR revealed that HDACi treatment of differentiating osteoblasts (mouse MC3T3 osteoblast cell line) reduced expression of multiple genes required for osteoblast differentiation, including genes important for producing mineralized bone matrix. Interestingly, pretreating differentiating osteoblasts with cyclosporine A, a drug known to inhibit osteoblast differentiation, similarly impaired osteoblast-mediated protection of cocultured AML cells (KG1a and U937 human AML cell lines). Both HDACi and cyclosporine A reduced osteoblast expression of the key mineralization enzyme tissue-nonspecific alkaline phosphatase (TNAP; encoded by Alpl). Moreover, specifically reducing TNAP expression or activity in differentiating osteoblasts significantly impaired the ability of the osteoblasts to protect cocultured AML cells. Together, our results indicate that inhibiting osteoblast matrix mineralization by specifically targeting TNAP is sufficient to significantly impair osteoblast-mediated protection of AML cells. Therefore, designing combination therapies that additionally target the osteoblast-produced mineralized bone matrix may improve treatment of AML by reducing the protection of leukemic cells within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Rosalie M Sterner
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905
| | - Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905; and
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905; and.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905; and.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905;
| |
Collapse
|
25
|
Gravina GL, Mancini A, Mattei C, Vitale F, Marampon F, Colapietro A, Rossi G, Ventura L, Vetuschi A, Di Cesare E, Fox JA, Festuccia C. Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models. Oncotarget 2018; 8:29865-29886. [PMID: 28415741 PMCID: PMC5444710 DOI: 10.18632/oncotarget.16168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT). Results Vosaroxin showed antitumor activity in clonogenic survival assays, with IC50 of 10−100 nM, and demonstrated radiosensitization. Combined treatments exhibited significantly higher γH2Ax levels compared with controls. In xenograft models, vosaroxin reduced tumor growth and showed enhanced activity with RT; vosaroxin/RT combined was more effective than temozolomide/RT. Vosaroxin/RT triggered rapid and massive cell death with characteristics of necrosis. A minor proportion of treated cells underwent caspase-dependent apoptosis, in agreement with in vitro results. Vosaroxin/RT inhibited RT-induced autophagy, increasing necrosis. This was associated with increased recruitment of granulocytes, monocytes, and undifferentiated bone marrow–derived lymphoid cells. Pharmacokinetic analyses revealed adequate blood-brain penetration of vosaroxin. Vosaroxin/RT increased disease-free survival (DFS) and overall survival (OS) significantly compared with RT, vosaroxin alone, temozolomide, and temozolomide/RT in the U251-luciferase orthotopic model. Materials and Methods Cellular, molecular, and antiproliferative effects of vosaroxin alone or combined with RT were evaluated in 13 GBM cell lines. Tumor growth delay was determined in U87MG, U251, and T98G xenograft mouse models. (DFS) and (OS) were assessed in orthotopic intrabrain models using luciferase-transfected U251 cells by bioluminescence and magnetic resonance imaging. Conclusions Vosaroxin demonstrated significant activity in vitro and in vivo in GBM models, and showed additive/synergistic activity when combined with RT in O6-methylguanine methyltransferase-negative and -positive cell lines.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Claudia Mattei
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Giulia Rossi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, Chair of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Judith A Fox
- Sunesis Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
26
|
Salunkhe S, Mishra SV, Nair J, Ghosh S, Choudhary N, Kaur E, Shah S, Patkar K, Anand D, Khattry N, Hasan SK, Dutt S. Inhibition of novel GCN5-ATM axis restricts the onset of acquired drug resistance in leukemia. Int J Cancer 2018; 142:2175-2185. [DOI: 10.1002/ijc.31242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sameer Salunkhe
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Saket V. Mishra
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Jyothi Nair
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Samadri Ghosh
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Neha Choudhary
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Ekjot Kaur
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Sanket Shah
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Ketaki Patkar
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Dev Anand
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Navin Khattry
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Syed K. Hasan
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Shilpee Dutt
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| |
Collapse
|
27
|
Luo W, Song L, Chen XL, Zeng XF, Wu JZ, Zhu CR, Huang T, Tan XP, Lin XM, Yang Q, Wang JZ, Li XK, Wu XP. Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells. Oncotarget 2018; 7:26709-23. [PMID: 27050374 PMCID: PMC5042009 DOI: 10.18632/oncotarget.8489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.
Collapse
Affiliation(s)
- Wu Luo
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Li Song
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xi-Lei Chen
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiang-Feng Zeng
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Jian-Zhang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cai-Rong Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Tao Huang
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiang-Peng Tan
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiao-Mian Lin
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Qi Yang
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Ji-Zhong Wang
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Xiao-Kun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Ping Wu
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, 510632, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
28
|
Arai Y, Kondo T, Shigematsu A, Tanaka J, Ohashi K, Fukuda T, Hidaka M, Kobayashi N, Iwato K, Sakura T, Onizuka M, Ozawa Y, Eto T, Kurokawa M, Kahata K, Uchida N, Atsuta Y, Mizuta S, Kako S. Improved prognosis with additional medium-dose VP16 to CY/TBI in allogeneic transplantation for high risk ALL in adults. Am J Hematol 2018; 93:47-57. [PMID: 28983949 DOI: 10.1002/ajh.24933] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) with the conventional cyclophosphamide and total body irradiation (CY/TBI) regimen is an essential therapeutic strategy for acute lymphoblastic leukemia (ALL) in adults. Medium-dose etoposide (VP16, 30-40 mg/kg) can be added to intensify this CY/TBI regimen and reduce relapse; however, differences in prognosis between the VP16/CY/TBI and CY/TBI regimens have not yet been fully analyzed. We conducted a retrospective cohort study using a Japanese transplant registry database to compare the prognosis between the VP16/CY/TBI (VP16, total 30-40 mg/kg) (N = 376) and CY/TBI (N = 1178) regimens in adult patients with ALL transplanted at complete remission (CR) between January 1, 2000 and December 31, 2014. Our analyses indicated that VP16/CY/TBI significantly reduced relapse compared with CY/TBI (risk ratio, 0.75; 95% confidence interval [CI], 0.56-1.00; P = .05) with a corresponding improvement in leukemia-free survival (hazard ratio [HR], 0.76; 95%CI, 0.62-0.93; P = .01), particularly in patients transplanted at CR1 with advanced-risk (positive minimal residual disease, presence of poor-risk cytogenetics, or an initial elevated leukocyte count) (HR, 0.75; 95%CI, 0.56-1.00; P = .05) or those transplanted beyond CR2 (HR, 0.58; 95%CI, 0.39-0.88; P = .01). The addition of VP16 did not increase post-transplant complications or nonrelapse mortality (HR, 0.88; 95%CI, 0.65-1.18; P = .38). This study is the first to reveal the efficacy of the addition of medium-dose VP16 to CY/TBI in high-risk ALL. To establish new myeloablative conditioning regimens including VP16, a large-scale prospective study is necessary.
Collapse
Affiliation(s)
- Yasuyuki Arai
- Department of Hematology and Oncology; Graduate School of Medicine, Kyoto University; Kyoto Japan
- Laboratory of Host Defenses; National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda Maryland
| | - Tadakazu Kondo
- Department of Hematology and Oncology; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Akio Shigematsu
- Department of Hematology; Sapporo Hokuyu Hospital; Sapporo Japan
| | - Junji Tanaka
- Department of Hematology; Tokyo Women's Medical University; Tokyo Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center; Komagome Hospital; Tokyo Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation; National Cancer Center Hospital; Tokyo Japan
| | - Michihiro Hidaka
- Department of Hematology; National Hospital Organization Kumamoto Medical Center, Kumamoto; Japan
| | - Naoki Kobayashi
- Department of Hematology; Sapporo Hokuyu Hospital; Sapporo Japan
| | - Koji Iwato
- Department of Hematology; Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital; Hiroshima Japan
| | - Toru Sakura
- Leukemia Research Center, Saiseikai Maebashi Hospital; Maebashi Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology; Tokai University School of Medicine; Isehara Japan
| | - Yukiyasu Ozawa
- Department of Hematology; Japanese Red Cross Nagoya First Hospital; Nagoya Japan
| | - Tetsuya Eto
- Department of Hematology; Hamanomachi Hospital; Fukuoka Japan
| | - Mineo Kurokawa
- Department of Cell Therapy and Transplantation Medicine; The University of Tokyo Hospital; Tokyo Japan
| | - Kaoru Kahata
- Department of Hematology; Hokkaido University Hospital; Hokkaido Japan
| | - Naoyuki Uchida
- Department of Hematology; Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital; Tokyo Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation; Nagoya Japan
- Department of Healthcare Administration; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Shuichi Mizuta
- Department of Hematology; National Hospital Organization Toyohashi Medical Center; Toyohashi Japan
| | - Shinichi Kako
- Division of Hematology; Jichi Medical University; Saitama Japan
| |
Collapse
|
29
|
Sterner RM, Kremer KN, Al-Kali A, Patnaik MM, Gangat N, Litzow MR, Kaufmann SH, Westendorf JJ, van Wijnen AJ, Hedin KE. Histone deacetylase inhibitors reduce differentiating osteoblast-mediated protection of acute myeloid leukemia cells from cytarabine. Oncotarget 2017; 8:94569-94579. [PMID: 29212250 PMCID: PMC5706896 DOI: 10.18632/oncotarget.21809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/15/2017] [Indexed: 12/04/2022] Open
Abstract
The bone marrow microenvironment protects acute myeloid leukemia (AML) cells during chemotherapy and is a major factor in relapse. Here, we examined which type(s) of bone marrow cells are responsible for the relapse of AML following treatment with cytarabine (Ara-C), and we identified a means to inhibit this protection. To determine the protective cell type(s), AML cells were treated with Ara-C, and AML cell survival in the presence or absence of osteoblast lineage cells was assessed. Cultured AML cells and patient bone marrow isolates were each significantly protected from Ara-C-induced apoptosis by co-culture with differentiating osteoblasts. Moreover, pretreating differentiating osteoblasts with the histone deacetylase inhibitors (HDACi) vorinostat and panobinostat abrogated the ability of the differentiating osteoblasts to protect AML cells. Together, our results indicate that differentiating osteoblasts have the potential to promote residual AML in the bone marrow following standard chemotherapy and act via a mechanism requiring HDACi-sensitive gene expression. Using HDACi to target the leukemic microenvironment in combination with Ara-C could potentially improve treatment of AML. Moreover, other strategies for manipulating bone marrow osteoblasts may also help eradicate AML cells and reduce relapse.
Collapse
Affiliation(s)
- Rosalie M Sterner
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Aref Al-Kali
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Naseema Gangat
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Mark R Litzow
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Scott H Kaufmann
- Division of Hematology and Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA.,Department of Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| |
Collapse
|
30
|
Murphy T, Yee KWL. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin Pharmacother 2017; 18:1765-1780. [DOI: 10.1080/14656566.2017.1391216] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tracy Murphy
- Division of Medical Oncology and Hematology, University Health Network – Princess Margaret Cancer Centre, Toronto, Canada
| | - Karen W. L. Yee
- Division of Medical Oncology and Hematology, University Health Network – Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
31
|
Zhang Y, Liu Y, Xu X. Upregulation of miR-142-3p Improves Drug Sensitivity of Acute Myelogenous Leukemia through Reducing P-Glycoprotein and Repressing Autophagy by Targeting HMGB1. Transl Oncol 2017; 10:410-418. [PMID: 28445844 PMCID: PMC5406584 DOI: 10.1016/j.tranon.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
miR-142-3p was reported to be downregulated in acute myelogenous leukemia (AML) and acted as a novel diagnostic marker. However, the regulatory effect of miR-142-3p on drug resistance of AML cells and its underlying mechanism have not been elucidated. Here, we found that miR-142-3p was significantly downregulated and high mobility group box 1 (HMGB1) was dramatically upregulated in AML samples and cells, as well as drug-resistant AML cells. P-gp level and autophagy were markedly enhanced in HL-60/ADR and HL-60/ATRA cells. miR-142-3p overexpression improved drug sensitivity of AML cells by inhibiting cell viability and promoting apoptosis, and inhibited P-gp level and autophagy in drug-resistant AML cells, whereas HMGB1 overexpression obviously reversed these effect. HMGB1 was demonstrated to be a target of miR-142-3p, and miR-142-3p negatively regulated HMGB1 expression. In conclusion, our study elucidated that upregulation of miR-142-3p improves drug sensitivity of AML through reducing P-glycoprotein and repressing autophagy by targeting HMGB1, contributing to better understanding the molecular mechanism of drug resistance in AML.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xueju Xu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|